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Abstract: Recognizing handwritten Arabic characters poses a significant challenge due to the 

complexities of the cursive script and the visual similarities between characters. While deep learning 

techniques have shown substantial promise, advancements in model architectures are essential to 

further enhance performance. Neutrosophic Sets (NS) have demonstrated their potential in 

improving classification models by effectively handling indeterminate and inconsistent data. This 

paper introduces a novel approach that integrates Neutrosophic Sets with a hybrid deep learning 

model, combining Convolutional Neural Networks (CNNs) with Bidirectional Recurrent Neural 

Networks (Bi-LSTM and Bi-GRU). This integration allows for the extraction of spatial features and 

modeling of temporal dynamics in handwritten Arabic text. Experiments conducted on the Hijjaa 

and AHCD datasets revealed that the NS_CNN_Bi-LSTM model achieved an accuracy of 92.38% on 

the Hijjaa dataset, while the NS_CNN_Bi-GRU model attained 97.38% accuracy on the AHCD 

dataset, outperforming previous deep learning approaches. These results highlight the significant 

performance improvements achieved through advanced temporal modeling and contextual 

representation, without the need for explicit segmentation. The findings contribute to the ongoing 

development of highly accurate and sophisticated deep learning systems for Arabic handwriting 

recognition, with broad applications in areas requiring efficient extraction of text from handwritten 

documents. 

Keywords: Handwritten Character Recognition; Deep Learning; Arabic Natural Language 

Processing; Optical Character Recognition; Neutrosophic Sets. 

 

1. Introduction 

Handwriting recognition, a key area within Optical Character Recognition (OCR), is crucial in 

various sectors like industry, education, government, and healthcare. Arabic handwriting 

recognition, in particular, is a challenging but promising research area due to its complex, cursive 

nature and the variability in individual handwriting styles [1,2]. Despite these challenges, recent 

advancements have improved the accuracy of Arabic handwriting recognition systems. 

Deep learning, particularly through Recurrent Neural Networks (RNNs) and Long Short-Term 

Memory (LSTM) networks, has revolutionized handwriting recognition. RNNs, despite initial 

training difficulties, benefit from LSTM networks that handle contextual information better. To 

address challenges in offline handwriting recognition, images can be converted into 1D sequences 

and processed bidirectionally with LSTM networks. Integrating Convolutional Neural Networks 
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(CNNs) with RNNs has further enhanced the ability to recognize and process handwritten characters 

effectively [3]. 

Neutrosophic Sets (NS) and Neutrosophic Numbers (NN) provide a robust mathematical 

framework, finding applications in various fields, including Decision-Making, Image Processing, and 

Information Systems. These frameworks are particularly relevant in contexts involving 

indeterminate, inconsistent, or incomplete information [4–9]. By extending classical and fuzzy set 

theories to include the indeterminacy component, neutrosophic sets offer a flexible, generalized tool 

that more accurately reflects the complexities of real-world scenarios, making them particularly 

useful where traditional approaches may be inadequate. 

This study aims to develop an advanced system for offline Arabic handwriting recognition by 

harnessing the capabilities of CNNs, Bidirectional Long Short-Term Memory (Bi-LSTM) networks, 

and Bidirectional Gated Recurrent Units (Bi-GRU), while also incorporating Neutrosophic Sets (NS) 

and Neutrosophic Numbers (NN) into existing models. The proposed system is specifically 

engineered to tackle the unique challenges inherent in Arabic handwriting recognition. 

The primary contributions of this research are as follows: 

• Examination of Neutrosophic Sets and Neutrosophic Numbers, including their 

applications across different domains. 

• Development and implementation of innovative novel models designed to enhance 

recognition accuracy. 

• Evaluation and comparison of the proposed models with state-of-the-art approaches and 

previous studies. 

The paper is structured as follows: Section 2 presents a comprehensive survey of the current 

advancements in Arabic handwriting recognition. Section 3 provides an overview of Neutrosophic 

Sets and Neutrosophic Numbers. Section 4 outlines the details of our proposed system. In Section 5, 

we report the results of our experiments. Section 6 offers an in-depth discussion and a systematic 

evaluation of the system's performance. Section 7 summarizes our key findings and suggests 

potential avenues for future research. Finally, Section 8 revisits and elaborates on these proposed 

directions for future investigation in this field. 

2. Related work 

This research represents the first application of Neutrosophic Sets and Neutrosophic Numbers 

in the field of Recognition of Handwritten Arabic Characters. Consequently, this section is divided 

into two parts: The first part reviews a thorough examination of the existing literature, encompassing 

a wide range of methodologies that utilize machine learning and deep learning techniques for the 

Recognition of Handwritten Arabic Characters. The second part examines the latest research on 

Neutrosophic Sets and Neutrosophic Numbers with a focus on Image Classification. The reviewed 

studies primarily focus on introducing various approaches to tackle this challenging task. 

2.1. Recognition of Handwritten Arabic Characters 

In 2017, El-Sawy et al. [10] presented a novel CNN model that was trained and tested using their 

proprietary dataset called AHCD. The dataset consisted of 16,800 handwritten Arabic characters from 

60 individuals aged 19 to 40, divided into 28 classes. Their model achieved an impressive accuracy of 

94.9% on this dataset. 

In a 2020 study conducted by Altwaijry et al. [11], the focus shifted towards recognizing Arabic 

letters in children's handwriting. The researchers created a special dataset called Hijja, consisting of 

47,434 distinct and linked Arabic characters written by youngsters aged 7 to 12. They developed a 

CNN-based model to assess its performance on the dataset. A comparison was made with the model 

proposed by El-Sawy [10] using both the Hijja and AHCD datasets. The experimental findings 

demonstrated that their model outperformed the compared model, achieving accuracy rates of 88% 

and 97% on the Hijja and AHCD datasets, respectively. 
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Nayef et al. [12] presented a study focusing on CNN models for recognizing handwritten Arabic 

characters while incorporating an improved Leaky-ReLU activation function. Four datasets were 

used to evaluate their models: AHCD, HIJJA, MNIST, and their own dataset containing 38,100 

handwritten Arabic characters. The proposed CNN model, employing Leaky-ReLU optimization, 

surpassed the model mentioned in [12], achieving accuracy rates of 99%, 95%, and 90% on AHCD, 

the researchers' dataset, and Hijja, respectively. 

2.2. Neutrosophic in Image Classification 

In recent years, Neutrosophic has attracted considerable attention within the scientific 

community. In [13], the authors proposed a membership-based neutrosophic approach for 

supervised fingerprint image classification. The model applies neutrosophic logic to handle 

uncertainty in fingerprint features, enhancing classification accuracy. The study evaluated the 

approach using standard datasets and reported improved performance compared to traditional 

techniques. The method effectively handled noise and ambiguous data, proving its robustness for 

fingerprint image analysis. 

Elatawy et al.[14] developed a system to recognize alphabet Arabic sign language using 

neutrosophic techniques and fuzzy c-means. The system enhances input images with a Gaussian 

filter, then converts them to a neutrosophic domain for feature extraction. This leads to the 

classification of corresponding letters, with a reported accuracy of 91%. The combination of 

neutrosophic image processing and fuzzy clustering effectively improves sign language recognition 

accuracy. 

In 2023, the authors proposed a deep learning model combining Neutrosophic and CNN for 

image and text classification. They used a neutrosophic approach to preprocess input data, enhancing 

feature extraction and noise reduction. The model was evaluated on multiple datasets and achieved 

notable improvements in accuracy compared to traditional methods. Data augmentation techniques, 

such as rotation and flipping, were applied to improve generalization. The authors also experimented 

with various optimizers, with the Adam optimizer showing the best results. Their model 

demonstrated its robustness in handling complex classification tasks[4]. 

3. Neutrosophic Sets and Neutrosophic Numbers  

Neutrosophic Sets (NS), introduced by Florentin Smarandache in 1998[15], represent a 

significant extension of classical set theory and fuzzy set theory. The core idea behind neutrosophic 

sets is to handle the uncertainty, imprecision, incompleteness, and inconsistency that often arise in 

real-world situations. While classical set theory strictly dichotomizes elements into members and 

non-members, and fuzzy set theory introduces the notion of partial membership, neutrosophic sets 

allow for a more nuanced representation by incorporating three independent components: truth-

membership (𝑇), indeterminacy-membership (𝐼), and falsity-membership (𝐹)[15– 17]. 

3.1. Formal Definition of Neutrosophic Sets 

A Neutrosophic Set (NS) can be characterized as a three-part structure: 

• 𝑇: The degree of truth. 

• 𝐼: The degree of indeterminacy. 

• 𝐹: The degree of falsity. 

Each element in the neutrosophic set is represented by a triplet 𝑥(𝑇, 𝐼, 𝐹).  And Formally, a 

Neutrosophic Set 𝐴 in a universe of discourse 𝑈 is defined as: 

𝐴 = {⟨𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)⟩: 𝑥 ∈ 𝑈}, (1) 

where: 

• 𝑇(𝑥) ∈ [0,1] is the truth-membership degree of the element 𝑥. 

• 𝐼(𝑥) ∈ [0,1] is the indeterminacy-membership degree of 𝑥. 
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• 𝐹(𝑥) ∈ [0,1] is the falsity-membership degree of 𝑥. 

Unlike in Fuzzy Sets, where 𝑇𝐴(𝑥) + 𝐹𝐴(𝑥) = 1 , Neutrosophic Sets allow the sum 𝑇𝐴(𝑥) +

𝐼𝐴(𝑥) + 𝐹𝐴(𝑥)  to take any value in the real number space, thus offering flexibility in modeling 

situations where the information is incomplete or conflicting. 

For example, if we consider an element 𝑥 in a Neutrosophic Set 𝐴, the membership degrees 

might be: 

𝑇𝐴(𝑥) = 0.6, 𝐼𝐴(𝑥) = 0.3, 𝐹𝐴(𝑥) = 0.2 

In this case, 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) = 1.1, indicating that the sum of the three components is not 

necessarily constrained to 1, unlike in classical or Fuzzy Sets. This ability to model indeterminacy 

𝐼𝐴(𝑥)  independently of the truth 𝑇𝐴(𝑥)  and falsity 𝐹𝐴(𝑥)  components make Neutrosophic Sets 

particularly powerful in contexts where uncertainty is a dominant factor. 

Building on the concept of Neutrosophic Sets, Neutrosophic Numbers (NN) have been 

developed to represent uncertain quantities in mathematical and engineering contexts. A 

Neutrosophic Number 𝑁 is defined as a triplet: 

𝑁 = ⟨𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁⟩, (2) 

where 𝑇𝑁  , 𝐼𝑁  , and 𝐹𝑁   are the truth, indeterminacy, and falsity components, respectively. 

These components are often intervals or real numbers, reflecting the uncertainty and vagueness 

associated with the quantity. 

Neutrosophic Numbers can be used in Arithmetic Operations, Decision-Making processes, and 

various Engineering Applications where conventional numbers fail to capture the complexity of the 

situation. 

3.2. Types of Neutrosophic Sets 

There are several variations of neutrosophic sets, designed to capture different aspects of 

uncertainty: 

3.2.1. Single-Valued Neutrosophic Sets (SVNS) 

A Single-Valued Neutrosophic Set (SVNS) is an extension of the traditional Fuzzy Set, 

designed to handle uncertainty, vagueness, and indeterminacy[18]. Each element 𝑥  in a 

Neutrosophic Set is characterized by three independent membership functions: 

• Truth Membership 𝑇(𝑥), which measures the degree of truth. 

• Indeterminacy Membership 𝐼(𝑥) , which quantifies the level of indeterminacy or 

uncertainty about the element’s membership. 

• Falsity Membership 𝐹(𝑥), which measures the degree of falsity. 

Mathematically, for a given element 𝑥, we have: 

𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥) ∈ [0,1], (3) 

These values represent the truth, indeterminacy, and falsity respectively, with the constraint: 

0 ≤ 𝑇(𝑥) + 𝐼(𝑥) + 𝐹(𝑥) ≤ 3, (4) 

An SVNS provides a flexible way to express uncertainty in data, where each of the three values 

reflects different aspects of the element's membership in the set. SVNS are especially useful in 

problems like Image Processing, Decision-Making, and Classification, where managing imprecise or 

noisy data is crucial. 

3.2.2. Interval-Valued Neutrosophic Sets (IVNS) 

Interval-Valued Neutrosophic Sets (IVNS) further extend the SVNS by allowing the 

membership functions—truth, indeterminacy, and falsity—to take interval values instead of single 
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values. This reflects greater uncertainty, as each membership is now an interval rather than a precise 

number[19].  

For an element 𝑥 , the truth membership 𝑇(𝑥), indeterminacy membership 𝐼(𝑥), and falsity 

membership 𝐹(𝑥) are intervals defined as: 

𝑇(𝑥) ∈ [𝑇min, 𝑇max], 𝐼(𝑥) ∈ [𝐼min, 𝐼max], 𝐹(𝑥) ∈ [𝐹min, 𝐹max], (5) 

with the condition that: 

𝑇min, 𝐼min, 𝐹min ≥ 0, 𝑇max, 𝐼max, 𝐹max ≤ 1, (6) 

and: 

0 ≤ 𝑇max + 𝐼max + 𝐹max ≤ 3, (7) 

This representation allows the model to capture a range of possible values for each membership, 

reflecting uncertainty or variability in the data more effectively than a single value. IVNS are useful 

in cases where the data itself is inherently imprecise, such as Expert Decision-Making with vague or 

uncertain information. 

3.2.3. Multi-Valued Neutrosophic Sets 

In Multi-Valued Neutrosophic Sets, the membership values for truth, indeterminacy, and 

falsity are drawn from a discrete set rather than a continuous interval[20]. For an element 𝒙, we have: 

𝑇(𝑥) ∈ {𝑡1, 𝑡2, … , 𝑡𝑛}, 𝐼(𝑥) ∈ {𝑖1, 𝑖2, … , 𝑖𝑚}, 𝐹(𝑥) ∈ {𝑓1, 𝑓2, … , 𝑓𝑝}, (8) 

where 𝒕𝒊, 𝒊𝒋, and 𝒇𝒌 are discrete values typically chosen from a finite set of real numbers. This 

framework is appropriate for problems where the degree of truth, falsity, and indeterminacy must 

take on specific predefined values rather than being continuous. For instance, multi-valued 

neutrosophic sets are useful in Logical Systems or Decision Models where categorical values are 

required.  

3.2.4. Generalized Neutrosophic Sets 

Generalized Neutrosophic Sets extend the neutrosophic model by allowing the truth, 

indeterminacy, and falsity membership functions to take values outside the traditional interval [0, 1]  

[21]. For an element 𝑥, the memberships are defined as: 

𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥) ∈ ℝ,         with no restrictions, (9) 

This type of set allows membership values to exceed 1 or be negative, which can represent 

extreme certainty or extreme falsity, respectively. Generalized Neutrosophic Sets are more abstract 

and are used in cases where a wider range of membership values is necessary, often in philosophical 

or highly theoretical applications. 

3.2.5. Refined Neutrosophic Sets 

Refined Neutrosophic Sets provide a more granular view of the truth, indeterminacy, and 

falsity memberships by dividing each of these components into sub-components[22]. For example, 

truth membership could be refined into positive truth and negative truth, capturing more subtle 

nuances of the element’s relationship with the set. For an element 𝒙, the truth membership could be 

defined as: 

𝑻(𝒙) = 𝑻𝟏(𝒙) + 𝑻𝟐(𝒙),   where   𝑻𝟏(𝒙) is positive truth, and 𝑻𝟐(𝒙) is negative truth., (10) 

This allows for a more detailed representation of uncertainty and is useful in complex Decision-

Making problems where the fine-grained nature of the data is important. 
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In summary, SVNS are simpler and computationally efficient but less flexible in representing 

complex uncertainty compared to IVNS, Generalized, or Refined Neutrosophic Sets, which provide 

more nuanced and detailed representations of uncertainty at the cost of computational complexity. 

4. Research Methodology 

In this research, we employ the most utilized strategies and techniques, specifically in the field 

of NLP, for Arabic Recognition of Handwritten Characters. We present and discuss these strategies, 

methods, and their implementation plan in the research, supported by links on GitHub and Kaggle. 

This is aimed at sharing our findings with researchers worldwide who are interested in this 

specialization, to support scientific collaboration and validate the results of our research, ensuring 

that no one can claim the results are inaccurate. 

4.1. Datasets Description 

For all experiments conducted in this paper, we utilized publicly available datasets comprising 

of Hijjaa Data set, Arabic Handwritten Characters Data set (AHCD). 

The Hijjaa dataset1, created by Saudi Arabian schoolchildren [11], comprises 47,434 images of 

108 Arabic letters in various word positions. Despite initial issues with letter placement and 

alignment, the dataset was resized to 32x32 pixels, balanced for letter representation, and organized 

into 29 folders without vocalization diacritics. In contrast, the Arabic Handwritten Characters 

Dataset2 (AHCD) includes 16,800 characters written by 60 participants, scanned at 300 dpi, and 

divided into training and test sets [10]. The AHCD dataset's pre-processing involved converting 

images to grayscale and applying filters to handle variations in writing styles and character shapes. 

4.2. Proposed Models 

The final models represent a sophisticated Deep Learning model architecture designed to 

incorporate Neutrosophic Logic principles into a CNNs structure, followed by a series of (Bi-

LSTM/Bi-GRU) layers. The model leverages the unique capabilities of both CNNs and (LSTM/GRU) 

to capture spatial features and temporal dependencies, making it suitable for complex tasks such as 

Image Recognition, where uncertainty and imprecision are inherent. 

4.2.1. Neutrosophic Transformation and Layer 

In neutrosophic image processing, we aim to represent an image in terms of truth (𝑇) , 

indeterminacy (𝐼) , and falsity (𝐹) , which provide a more nuanced interpretation of image 

characteristics compared to classical binary or fuzzy representations. Below is a detailed explanation 

of each step in the conversion of an image into a neutrosophic representation, including the relevant 

equations. 

4.2.1.1. Preprocessing the Input Image 

The input is a grayscale image, where pixel values range from 0 to 255. The first step in 

converting the image into a neutrosophic image involves normalizing these pixel intensities to a scale 

between 0 and 1. This normalization makes the subsequent calculations easier to handle numerically. 

𝑁(𝑥, 𝑦) =
𝐼(𝑥,𝑦)

255
, (11) 

Where: 

• 𝑁(𝑥, 𝑦)is the normalized pixel intensity at position (𝑥, 𝑦). 

 
1 https://github.com/israksu/Hijja2  

2 https://www.kaggle.com/datasets/mloey1/ahcd1  

https://github.com/israksu/Hijja2
https://www.kaggle.com/datasets/mloey1/ahcd1
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• 𝐼(𝑥, 𝑦) is the original intensity of the pixel at position (𝑥, 𝑦), which lies between 0 and 255. 

4.2.1.2. Calculation of Local Mean Intensity 

To assess the local intensity around each pixel, we compute the local mean of pixel values in a 

neighborhood window (usually a 3x3 or 5x5 window) around the pixel (𝑥, 𝑦). 

The local mean 𝜇(𝑥, 𝑦) is given by: 

𝜇(𝑥, 𝑦) =
1

|𝑊|
∑ 𝑁(𝑥′, 𝑦′)

(𝑥′,𝑦′)∈𝑊
, (12) 

Where: 

• 𝜇(𝑥, 𝑦) is the local mean intensity around the pixel (𝑥, 𝑦). 

• 𝑊 is the neighborhood window centered around (𝑥, 𝑦). 

• |𝑊| is the number of pixels in the neighborhood window. 

4.2.1.3. Calculation of Local Standard Deviation 

Next, we compute the local standard deviation 𝜎(𝑥, 𝑦) in the same neighborhood. The local 

standard deviation measures the variation in pixel intensities within the neighborhood window. It 

provides insight into how homogeneous or inhomogeneous the local region is. 

𝜎(𝑥, 𝑦) = √
1

|𝑊|
∑ (𝑁(𝑥′, 𝑦′) − 𝜇(𝑥, 𝑦))2

(𝑥′,𝑦′)∈𝑊
, (13) 

Where: 

• 𝜎(𝑥, 𝑦) is the local standard deviation at pixel (𝑥, 𝑦). 

• 𝜇(𝑥, 𝑦) is the local mean intensity computed in Step 2. 

• 𝑊 is the neighborhood window. 

4.2.1.4. Calculation of Truth Membership (T) 

The truth membership (𝑇) evaluates how similar the intensity of a pixel is to its surrounding 

neighborhood. A pixel whose intensity is close to the local mean will have a high truth value, 

indicating that it likely belongs to the background or a homogenous region. 

The truth membership is defined as: 

𝑇(𝑥, 𝑦) =
𝑁(𝑥,𝑦)−𝑚𝑖𝑛(𝑁)

𝑚𝑎𝑥(𝑁)−𝑚𝑖𝑛(𝑁)
, (14) 

Where: 

• 𝑇(𝑥, 𝑦) is the truth membership of the pixel at position (𝑥, 𝑦). 

• 𝑁(𝑥, 𝑦) is the normalized intensity of the pixel. 

• 𝑚𝑖𝑛(𝑁) and 𝑚𝑎𝑥(𝑁) are the minimum and maximum intensity values in the 

neighborhood window 𝑊. 

This normalization ensures that truth values are scaled between 0 and 1. 

4.2.1.5. Calculation of Indeterminacy Membership (𝐼) 

The indeterminacy membership (𝐼)  quantifies the uncertainty associated with a pixel’s 

intensity. In regions where there is high variance in intensity (e.g., edges or noisy areas), the 

indeterminacy will be high. 

The indeterminacy membership is calculated using the local standard deviation: 
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𝐼(𝑥, 𝑦) = 1 − exp (−
𝜎(𝑥,𝑦)2

2
), (15) 

Where: 

• 𝐼(𝑥, 𝑦) is the indeterminacy membership of the pixel at position (𝑥, 𝑦). 

• 𝜎(𝑥, 𝑦) is the local standard deviation calculated in Step 3. 

This formula ensures that indeterminacy increases as the standard deviation (and hence the local 

variation in pixel intensities) increases. 

4.2.1.6. Calculation of Falsity Membership (𝐹) 

The falsity membership (𝐹)  is the complement of the truth membership. It indicates how 

different a pixel's intensity is from its neighbors, potentially identifying regions that do not belong to 

the background or homogeneous areas. 

𝐹(𝑥, 𝑦) = 1 − 𝑇(𝑥, 𝑦), (16) 

Where: 

• 𝐹(𝑥, 𝑦) is the falsity membership of the pixel at position (𝑥, 𝑦). 

• 𝑇(𝑥, 𝑦) is the truth membership calculated in Step 4. 

4.2.1.7. Construction of the Neutrosophic Image 

Finally, the image is represented in a Neutrosophic Set by combining the truth (𝑇) , 

indeterminacy (𝐼), and falsity (𝐹) memberships for each pixel. Thus, each pixel in the image is 

represented as a triplet (𝑻, 𝑰, 𝑭), where: 

• 𝑇(𝑥, 𝑦) captures how similar the pixel is to the local region. 

• 𝐼(𝑥, 𝑦) captures the uncertainty or indeterminacy about the pixel. 

• 𝐹(𝑥, 𝑦) captures how different the pixel is from the local region. 

Final Output 

The output is a Neutrosophic Image, where each pixel is represented as: 

Neutrosophic Image =  {(𝑇(𝑥, 𝑦), 𝐼(𝑥, 𝑦), 𝐹(𝑥, 𝑦)) | 𝑥, 𝑦 ∈  Image Dimensions}, (17) 

This representation provides more information than classical pixel intensities by accounting for 

local homogeneity (truth), uncertainty (indeterminacy), and differences (falsity) within the image. 

This step-by-step process allows for a comprehensive analysis of the image in terms of local 

features and uncertainties, making it a powerful tool for image processing tasks such as denoising, 

edge detection, and segmentation. 

4.2.2. Convolutional Layers 

Next, the model employs multiple convolutional layers to extract spatial features from the 

transformed input. Convolutional layers apply filters to the input tensor to detect local patterns such 

as edges or textures, which are crucial for understanding image content. Each convolutional 

operation can be represented as: 

𝑋conv
(𝑙)

= 𝜎(𝑊(𝑙) ∗ 𝑋conv
(𝑙−1)

+ 𝑏(𝑙)), (18) 

where 𝑋conv
(𝑙)

 is the output of the 𝑙-th convolutional layer, 𝑊(𝑙) are the filters, ∗ denotes the 

convolution operation, 𝑏(𝑙) is the bias term, and 𝜎 is an activation function, typically ReLU. 
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MaxPooling layers follow some convolutional layers, downsampling the feature maps to reduce 

computational complexity and to focus on the most prominent features. Batch normalization is 

applied to stabilize and accelerate training by normalizing the input to each layer, ensuring that it 

has a mean of zero and a standard deviation of one. 

4.2.3. Reshaping and Bidirectional recurrent neural network Layers 

After the convolutional layers, the 3D tensor 𝑋conv is reshaped to a 2D tensor in preparation for 

the GRU layers. Specifically, the tensor is reshaped from dimensions (𝐻′, 𝑊′, 𝐶′) to (𝐻′ × 𝑊′, 𝐶′), 

where 𝐻′ × 𝑊′ is treated as the sequence length, and 𝐶′ represents the features at each timestep. 

This operation is mathematically described as: 

𝑋reshape = Reshape(𝑋conv) = (𝐻′ × 𝑊′, 𝐶′), (19) 

4.2.3.1. Bi-LSTM 

The Bi-LSTM layers then process this reshaped tensor. LSTMs (Long Short-Term Memory 

networks) are a type of Recurrent Neural Network (RNN) that can capture temporal dependencies 

by maintaining a hidden state that evolves over the sequence while also incorporating mechanisms 

to learn when to forget or remember certain information. The bidirectional nature of the LSTM means 

that it processes the input sequence in both forward and backward directions, capturing context from 

both past and future states. The output from each LSTM layer is: 

𝐻𝑡
Bi-LSTM = LSTMfwd(𝑋reshape,𝑡) ⊕ LSTMbwd(𝑋reshape,𝑡), (20) 

where ⊕  denotes concatenation, LSTMfwd  and LSTMbwd  are the forward and backward 

LSTMs, and 𝑯𝒕
Bi-LSTM is the hidden state at time step 𝒕. 

4.2.3.2. Bi-GRU 

The Bi-GRU layers then process this reshaped tensor. GRUs are a type of Recurrent Neural 

Network (RNN) that can capture temporal dependencies by maintaining a hidden state that evolves 

over the sequence. The bidirectional nature of the GRU means that it processes the input sequence in 

both forward and backward directions, capturing context from both past and future states. The 

output from each GRU layer is: 

𝐻𝑡
Bi-GRU = GRUfwd(𝑋reshape,𝑡) ⊕ GRUbwd(𝑋reshape,𝑡), (21) 

where ⊕ denotes concatenation, GRUfwd and GRUbwd are the forward and backward GRUs, 

and 𝑯𝒕
Bi-GRU is the hidden state at time step 𝒕. 

4.2.3. Fully Connected Layers and Output 

Finally, the output of the last RNN layer is flattened into a vector and passed through several 

dense (fully connected) layers. These layers perform non-linear transformations on the high-level 

features extracted by the convolutional and RNN layers, enabling the model to make predictions. The 

final layer applies a SoftMax activation function to produce a probability distribution over the target 

classes: 

𝑦
^

= SoftMax(𝑊out𝑋dense + 𝑏out), (22) 

where 𝑦
^
 is the predicted output, 𝑊out and 𝑏out are the weights and bias of the output layer, 

and 𝑋dense is the output of the last dense layer. 

This architecture allows the model to capture both the spatial features and temporal 

dependencies in the data while explicitly accounting for uncertainty through neutrosophic logic. This 
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makes it particularly well-suited for complex tasks such as image recognition in environments where 

data uncertainty is a significant factor. 

 

Figure 1.  NS_CNN_Bi-LSTM/Bi-GRU architecture. 

5. Experiments 

5.1. Evaluation Phase 

These evaluation metrics are employed to assess and compare the performance of classification 

models. Precision, recall, and F1-score provide insights into specific characteristics, such as the 

balance between True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives 

(FN), while accuracy offers a general performance overview. When interpreting and applying these 

metrics, it is essential to consider the problem's specific requirements and context. 

 

1- Accuracy:  

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (23) 

 
2- Recall: 

𝐑𝐞𝐜𝐚𝐥𝐥 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (24) 

 

3- Precision: 

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (25) 

 

4- F1-score:  

𝐅𝟏 − 𝐬𝐜𝐨𝐫𝐞 =
2(Recall ∗  Precision)

Recall + Precision
 (26) 

 

5.2. Experimental Setup 

We conducted experiments in the Kaggle environment using a Dell G5 15 laptop, featuring an 

8th generation Intel Core i7 processor with a base frequency of 2.20 GHz and a maximum frequency 

of 2.21 GHz. The system is equipped with an NVIDIA GeForce GTX graphics card (6 GB VRAM) and 

16 GB of RAM, with settings adjusted to utilize NVIDIA TESLA P100 GPUs for all trials. While some 
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processes, such as those involving Pandas and Scikit-learn libraries, do not benefit from GPU 

acceleration, these GPUs are highly advantageous for training deep learning models.  

5.3. Experimental Design 

In this study, The models were compiled with a categorical cross-entropy loss function and the 

Adam optimizer, with accuracy as the evaluation metric. The training process involved a dataset of 

images and their corresponding labels. For training, a batch size of 128 was used, and the model 

underwent 200 epochs of training to learn from the data. A separate validation dataset, comprising 

images and their corresponding labels, was used to evaluate the model's capacity to generalize to 

previously unseen data. During training, the model's weights were adjusted according to the loss 

function and optimizer to minimize the loss and enhance prediction accuracy. To ensure robust 

performance and avoid overfitting, the validation data was continuously monitored, allowing for 

adjustments to the training process as needed. 

6. Results and Discussion 

In this study, we proposed four novel deep learning models, CNN_Bi-LSTM, CNN_Bi-GRU, 

NS_CNN_Bi-LSTM, and NS_CNN_Bi-GRU, for the task of Arabic handwritten character 

recognition. Our research aimed to utilize existing deep learning techniques and enhance the 

accuracy of Arabic handwriting recognition. To evaluate the performance of our proposed models, 

we utilized two datasets: AHCD and Hijjaa. 

In Experiment 1, the performance of four models—CNN_Bi-LSTM, CNN_Bi-GRU, 

NS_CNN_Bi-LSTM, and NS_CNN_Bi-GRU—was tested on the AHCD dataset. The NS_CNN_Bi-

GRU model outperformed all others, achieving 97.38% accuracy on the testing set and 99.90% on the 

training set, with the lowest loss values (0.0034 for training and 0.2364 for testing). High training 

accuracies (ranging from 99.37% to 99.99%) indicate strong learning capabilities across all models, 

with the NS-enhanced versions performing slightly better. Test accuracies and loss metrics further 

confirmed the NS_CNN_Bi-GRU’s superior generalization to unseen data, highlighting the impact 

of the NS component in improving model performance. 

The models maintained consistently high macro and weighted averages for precision, recall, and 

F1-scores (0.96 to 0.97), demonstrating balanced performance across all character classes. Characters 

like ا, ب, ج, and س had near-perfect F1-scores, while a few, including ت, ذ, ر, and ظ, showed slightly 

lower F1-scores (0.92 to 0.96), likely due to structural similarities. Overall, the NS-enhanced models, 

particularly NS_CNN_Bi-GRU, exhibited better accuracy and lower losses, suggesting that GRU 

units may be more effective than LSTM units in character recognition tasks. 

In Experiment 2, the proposed models were tested on the Hijjaa dataset, with the NS_CNN_Bi-

LSTM model outperforming all others. It achieved a 92.38% accuracy on the testing set and 99.38% 

on the training set. The NS_CNN_Bi-LSTM also recorded the lowest loss value of 0.0206 during 

training, with a test loss of 0.5159, indicating its strong performance. Comparatively, CNN_Bi-LSTM, 

CNN_Bi-GRU, and NS_CNN_Bi-GRU had slightly lower test accuracies (ranging from 90.23% to 

91.78%) and higher loss values, reflecting stable but slightly inferior generalization compared to 

NS_CNN_Bi-LSTM. 

Class-wise, characters such as ا, ش, and ي consistently achieved high F1-scores, indicating the 

models’ strong ability to recognize these characters. However, characters like د, ذ, and ء proved more 

challenging, particularly for CNN_Bi-LSTM and CNN_Bi-GRU models. The NS-enhanced models, 

especially NS_CNN_Bi-LSTM, demonstrated better performance in recognizing these difficult 

characters. Across all models, macro and weighted average precision, recall, and F1-scores hovered 

around 0.90, with NS_CNN_Bi-LSTM showing a marginally better balance and higher overall 

averages, suggesting its superiority in handling diverse character classes. 

In summary, the results show that integrating the NS component with CNN and Bidirectional 

Recurrent Layers (LSTM/GRU) significantly enhances the accuracy and reduces the loss of models 
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for Arabic handwritten character recognition across different datasets. The NS_CNN_Bi-GRU model 

performs best on the AHCD dataset, achieving a strong balance between accuracy and loss, while the 

NS_CNN_Bi-LSTM model stands out on the Hijjaa dataset with superior accuracy and lower loss 

during both training and testing. Overall, the NS-enhanced models demonstrate robust performance, 

especially in handling difficult character classes, proving to be valuable in advancing the field of 

Arabic handwritten character recognition. 

 

Table 1. The results of proposed Models on AHCD Dataset. 

Model CNN_Bi-LSTM CNN_Bi-GRU NS_CNN_Bi-LSTM NS_CNN_Bi-GRU 

Char. 

Class 

# 

Precision Recall 

F1-

score 

Precision Recall 

F1-

score 

Precisi

on 

Recall 

F1-

score 

Precision Recall F1-score 

 1 0.99 1 0.98 1 0.95 0.99 0.99 0.98 0.98 0.99 0.98 1 ا

 0.98 0.98 0.98 0.99 0.97 1 1 0.99 1 0.98 0.98 0.98 2 ب

 0.95 0.94 0.97 0.96 0.98 0.94 0.94 0.97 0.91 0.92 0.93 0.91 3 ت

 0.98 0.99 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.94 0.95 0.93 4 ث

 1 0.99 1 0.99 0.98 1 0.98 0.97 0.99 0.97 0.95 0.98 5 ج

 0.97 1 0.94 0.96 0.97 0.94 0.97 0.99 0.94 0.96 0.98 0.94 6 ح

 0.97 0.95 0.99 0.94 0.94 0.94 0.98 0.97 1 0.96 0.97 0.95 7 خ

 0.94 0.95 0.93 0.97 0.97 0.97 0.95 0.96 0.94 0.95 0.97 0.92 8 د

 0.96 0.95 0.97 0.97 0.97 0.97 0.94 0.9 0.97 0.94 0.94 0.94 9 ذ

 0.95 0.98 0.91 0.97 0.99 0.94 0.95 0.99 0.91 0.95 0.94 0.97 10 ر

 0.96 0.93 0.98 0.96 0.93 0.99 0.96 0.94 0.97 0.94 0.91 0.97 11 ز

 0.98 1 0.95 0.99 0.98 1 0.98 0.98 0.98 0.99 0.98 0.99 12 س 

 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.99 13 ش 

 0.98 0.98 0.98 0.97 0.98 0.96 0.97 0.99 0.94 0.98 0.98 0.97 14 ص 

 0.98 0.97 1 0.96 0.93 0.99 0.96 0.93 0.99 0.96 0.97 0.96 15 ض 

 0.97 1 0.94 0.96 0.99 0.94 0.96 0.99 0.94 0.96 0.98 0.94 16 ط

 0.97 0.94 1 0.95 0.93 0.98 0.97 0.94 0.99 0.96 0.95 0.97 17 ظ

 0.98 0.97 0.99 0.97 0.97 0.96 0.99 0.99 0.99 0.96 0.93 0.98 18 ع

 0.99 0.98 0.99 0.97 0.97 0.97 1 1 1 0.97 0.95 0.98 19 غ

 0.97 0.97 0.97 0.96 0.98 0.94 0.96 0.97 0.94 0.95 0.97 0.93 20 ف

 0.97 0.96 0.97 0.97 0.96 0.98 0.96 0.94 0.97 0.95 0.94 0.97 21 ق

 0.97 0.97 0.98 0.99 0.98 0.99 0.97 0.95 1 0.95 0.97 0.94 22 ك

 0.99 0.99 0.99 1 1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 23 ل

 0.99 0.99 0.98 0.98 0.97 0.99 0.98 1 0.97 0.98 0.98 0.97 24 م

 0.95 0.96 0.94 0.97 0.94 0.99 0.95 0.93 0.97 0.93 0.9 0.96 25 ن

 0.97 0.97 0.97 0.98 0.98 0.97 0.97 0.97 0.98 0.98 0.97 0.99 26 ه

 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.97 0.96 27 و

 1 0.99 1 0.99 0.98 0.99 1 1 0.99 0.97 0.97 0.97 28 ي

                   

Accuracy 

(train) 

 0.9937  0.9978  0.9999  0.999 

Accuracy (test)  0.9616  0.9705  0.9714  0.9738 
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Loss (train)  0.023  0.0058  0.0034  0.0046 

Loss (test)  0.2369  0.2495  0.2364  0.2406 

Macro avg 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 

Weighted avg 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 

 

Table 2. The results of proposed Models on Hijjaa Dataset. 

Model CNN_Bi-LSTM CNN_Bi-GRU NS_CNN_Bi-LSTM NS_CNN_Bi-GRU 

Char. 
Class 

# 
Precision Recall F1-score Precision Recall F1-score Precision Recall 

F1-

score 
Precision Recall F1-score 

 0.98 0.96 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.99 1 ا

 0.94 0.94 0.94 0.93 0.94 0.93 0.94 0.95 0.92 0.95 0.97 0.93 2 ب

 0.87 0.88 0.86 0.9 0.89 0.91 0.9 0.89 0.9 0.88 0.93 0.84 3 ت

 0.89 0.88 0.9 0.92 0.92 0.93 0.92 0.91 0.93 0.9 0.86 0.94 4 ث

 0.92 0.94 0.91 0.95 0.94 0.95 0.94 0.93 0.95 0.94 0.91 0.96 5 ج

 0.84 0.84 0.85 0.89 0.89 0.88 0.87 0.9 0.84 0.87 0.89 0.85 6 ح

 0.88 0.88 0.89 0.9 0.91 0.89 0.89 0.91 0.87 0.89 0.87 0.91 7 خ

 0.77 0.71 0.83 0.75 0.72 0.78 0.77 0.74 0.8 0.77 0.77 0.77 8 د

 0.78 0.73 0.84 0.77 0.72 0.83 0.76 0.73 0.8 0.73 0.75 0.71 9 ذ

 0.89 0.89 0.88 0.91 0.88 0.95 0.88 0.91 0.86 0.88 0.89 0.87 10 ر

 0.92 0.94 0.9 0.9 0.91 0.89 0.89 0.89 0.89 0.9 0.88 0.93 11 ز

 0.93 0.92 0.94 0.94 0.92 0.97 0.95 0.95 0.95 0.96 0.98 0.93 12 س 

 0.96 0.96 0.96 0.97 0.96 0.98 0.96 0.94 0.98 0.95 0.94 0.96 13 ش 

 0.86 0.9 0.83 0.9 0.94 0.85 0.9 0.9 0.91 0.89 0.86 0.93 14 ص 

 0.89 0.86 0.92 0.91 0.91 0.91 0.91 0.9 0.92 0.91 0.87 0.95 15 ض 

 0.9 0.92 0.88 0.92 0.93 0.92 0.92 0.94 0.9 0.93 0.93 0.93 16 ط

 0.92 0.91 0.93 0.94 0.93 0.96 0.93 0.9 0.97 0.94 0.94 0.95 17 ظ

 0.82 0.84 0.81 0.88 0.9 0.86 0.87 0.85 0.88 0.84 0.88 0.81 18 ع

 0.87 0.82 0.92 0.9 0.89 0.91 0.87 0.84 0.91 0.87 0.87 0.88 19 غ

 0.82 0.87 0.78 0.86 0.87 0.85 0.85 0.87 0.83 0.85 0.87 0.83 20 ف

 0.88 0.92 0.85 0.92 0.89 0.95 0.92 0.9 0.94 0.9 0.9 0.91 21 ق

 0.9 0.89 0.9 0.92 0.92 0.92 0.9 0.89 0.91 0.89 0.91 0.87 22 ك

 0.91 0.91 0.91 0.91 0.94 0.88 0.9 0.91 0.89 0.91 0.93 0.9 23 ل

 0.89 0.89 0.89 0.94 0.94 0.93 0.92 0.96 0.88 0.93 0.95 0.92 24 م

 0.83 0.81 0.85 0.86 0.89 0.83 0.82 0.88 0.78 0.83 0.86 0.8 25 ن

 0.88 0.89 0.87 0.91 0.94 0.89 0.89 0.87 0.91 0.91 0.88 0.94 26 ه

 0.92 0.93 0.91 0.93 0.9 0.97 0.92 0.91 0.94 0.93 0.9 0.96 27 و

 0.93 0.93 0.94 0.95 0.95 0.95 0.93 0.93 0.93 0.95 0.94 0.96 28 ي

 0.85 0.87 0.83 0.88 0.86 0.9 0.86 0.85 0.87 0.87 0.85 0.9 29 ء

                   

Accuracy 

(train) 

 0.9883  0.9911  0.9938  0.9666 

Accuracy (test)  0.9178  0.9023  0.9238  0.9064 
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Loss (train)  0.0369  0.0273  0.0206  0.0935 

Loss (test)  0.4983  0.5281  0.5801  0.5159 

Macro avg 0.9 0.89 0.9 0.9 0.89 0.9 0.92 0.91 0.91 0.89 0.88 0.88 

Weighted avg 0.9 0.9 0.9 0.9 0.9 0.9 0.92 0.92 0.92 0.89 0.89 0.89 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 2. Model performance on the AHCL dataset: (a) Accuracy curves for CNN_Bi-LSTM during training and 

testing; (b) Accuracy curves for CNN_Bi-GRU during training and testing; (c) Loss curves for CNN_Bi-LSTM during 
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training and testing; (d) Loss curves for CNN_Bi-GRU during training and testing; (e) Accuracy curves for NS_CNN_Bi-

LSTM during training and testing; (f) Accuracy curves for NS_CNN_Bi-GRU during training and testing; (g) Loss 

curves for NS_CNN_Bi-LSTM during training and testing; (h) Loss curves for NS_CNN_Bi-GRU during training and 

testing. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 3. Model performance on the Hijjaa dataset: (a) Accuracy curves for CNN_Bi-LSTM during training and 

testing; (b) Accuracy curves for CNN_Bi-GRU during training and testing; (c) Loss curves for CNN_Bi-LSTM during 
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training and testing; (d) Loss curves for CNN_Bi-GRU during training and testing; (e) Accuracy curves for NS_CNN_Bi-

LSTM during training and testing; (f) Accuracy curves for NS_CNN_Bi-GRU during training and testing; (g) Loss 

curves for NS_CNN_Bi-LSTM during training and testing; (h) Loss curves for NS_CNN_Bi-GRU during training and 

testing. 

 

Table 3 compares the performance of the proposed CNN_Bi-LSTM, CNN_Bi-GRU, 

NS_CNN_Bi-LSTM, and NS_CNN_Bi-GRU models with other models in the literature on the Hijjaa 

and AHCD datasets. The NS_CNN_Bi-LSTM model achieves the highest accuracy on the Hijjaa 

dataset, with 99.38% during training and 92.38% on testing, outperforming most existing models. 

Similarly, the NS_CNN_Bi-GRU model excels on the AHCD dataset, achieving 99.90% training 

accuracy and 97.38% testing accuracy, demonstrating its superiority in both datasets. These models 

consistently deliver strong precision, recall, and F1-scores, making them highly effective for Arabic 

handwritten character recognition tasks.  

 

Table 3. Performance comparison with models from the literature 

References Datasets Accuracy Precision Recall F1-Score 

Altwaijry et al. [11] Hijjaa 88% 88% 88% 88% 

Nayef et al., [12] Hijjaa 90% - - - 

Bin Durayhim et al. [23] Hijjaa 
Train 99.5% 99% 99% 99% 

Test 86.3% 85% 86% 85% 

M.G. Mahdi et al. (LSTM[24] Hijjaa 
Train 96.2% 96% 96% 96% 

Test 84.6% 85% 84% 84% 

M.G. Mahdi et al. (GRU)[24] Hijjaa 
Train 92.7% 92% 92% 92% 

Test 81.5% 82% 81% 81% 

M.G. Mahdi et al. (Bi-LSTM) 

[24] 
Hijjaa 

Train 98.3% 98% 98% 98% 

Test 85% 85% 84% 84% 

M.G. Mahdi et al. (Bi-GRU) [24] Hijjaa 
Train 97.3% 97% 97% 97% 

Test 84.6% 85% 85% 85% 

CNN_Bi-LSTM Hijjaa 
Train 98.83% 98% 98% 98% 

Test 91.78% 91% 91% 91% 

CNN_Bi-GRU Hijjaa 
Train 99.11% 99% 99% 99% 

Test 90.23% 90% 90% 90% 

Proposed NS_CNN_Bi-LSTM Hijjaa 
Train 99.38 99% 99% 99% 

Test 92.38% 92% 92% 92% 

Proposed NS_CNN_Bi-GRU Hijjaa 
Train 96.66% 96% 96% 96% 

Test 90.64% 90% 90% 90% 

Altwaijry et al. [11] AHCD 97% 97% 97% 97% 

El-Sawy et al. [10] AHCD 94.9% - - - 

Nayef et al., [12] AHCD 99% - - - 

Bin Durayhim et al. [23] AHCD 
Train 98% 99% 99% 99% 

Test 95.5% 95% 95% 95% 

M.G. Mahdi et al. (LSTM[24] AHCD Train 99.7% 99% 99% 99% 
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Test 94.9% 95% 95% 95% 

M.G. Mahdi et al. (GRU)[24] AHCD 
Train 99.8% 99% 99% 99% 

Test 93.1% 93% 93% 93% 

M.G. Mahdi et al. (Bi-LSTM) [24] AHCD 
Train 99.8% 99% 99% 99% 

Test 94.9% 95% 95% 95% 

M.G. Mahdi et al. (Bi-GRU) [24] AHCD 
Train 99.9% 99% 99% 99% 

Test 95.7% 96% 96% 96% 

CNN_Bi-LSTM AHCD 
Train 99.37% 99% 99% 99% 

Test 96.16% 96% 96% 96% 

CNN_Bi-GRU AHCD 
Train 99.78% 99% 99% 99% 

Test 97.05% 97% 97% 97% 

Proposed NS_CNN_Bi-LSTM AHCD 
Train 99.99% 99% 99% 99% 

Test 97.14% 97% 97% 97% 

Proposed NS_CNN_Bi-GRU AHCD 
Train 99.9% 99% 99% 99% 

Test 97.38% 97% 97% 97% 

7. Conclusions 

This research article introduces and evaluates two new deep learning models for Arabic 

handwriting recognition: CNN_Bi-LSTM and CNN_Bi-GRU. Additionally, the models were 

enhanced by integrating Neutrosophic sets (NS), resulting in two more models: NS_CNN_Bi-LSTM 

and NS_CNN_Bi-GRU. The models were designed to classify Arabic letters into 28 and 29 classes, 

with evaluations conducted using two datasets: AHCD and Hijjaa. The performance of the four 

models was compared among themselves and against existing methods in the literature. 

The experimental results demonstrate the effectiveness of the proposed hybrid deep learning 

models in Arabic handwriting recognition. The NS_CNN_Bi-GRU model achieved a state-of-the-

art accuracy of 97.38% on the AHCD dataset, while the NS_CNN_Bi-LSTM model reached 92.38% 

accuracy on the Hijjaa dataset, surpassing previous techniques. These results underscore the 

advantage of combining convolutional and bidirectional recurrent networks for capturing both 

spatial and temporal features in Arabic handwriting.  

8. Limitation and Future work 

The limitations of this research include the need for further improvements in the recognition 

accuracy of the hybrid models, particularly when handling noisy or complex Arabic handwriting. 

The models were only tested on two datasets (AHCD and Hijjaa), limiting the understanding of 

their generalization across more diverse datasets or real-world applications. Additionally, the 

focus was on overall accuracy, with little analysis of errors, failure cases, or the interpretability of 

the models' decisions. 

To address these limitations, future research should explore alternative architectures, such as 

attention mechanisms or transformers, to enhance accuracy and robustness. More detailed 

component analysis, advanced data augmentation techniques, and evaluations on broader datasets 

could improve generalization. Real-world application testing in document processing and transfer 

learning to other languages or handwriting styles should also be considered. Efforts to optimize 

computational efficiency, model size, and inference speed would enable deployment in resource-

constrained environments. Enhancing interpretability and expanding the scope to other Arabic 

language processing tasks could further extend the models' practical utility.  
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