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Abstract: Smarandache proposed NeutroAlgebra and AntiAlgebra. NeutroAlgebras and 

AntiAlgebras are a new research topic based on real-world scenarios. He investigated the concepts 

of neutro- and anti-structure. He demonstrated using NeutroAlgebra concepts that just because a 

statement is completely true in a classical Algebra does not imply that it is also completely true in a 

NeutroAlgebra or AntiAlgebra. It is determined by the operations and axioms on which it is based 

(whether they are completely true, partially true, totally false, or partially or completely 

indeterminate). This study examines the concepts of Generalised regular Neutro-Topological space 

and its properties. 
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1. Introduction 

Topology is a significant subject of Mathematics, hence it is surprising that topology's 

appreciation was delayed in the history of Mathematics. Topology is the study of space 

characteristics that are unaffected by continuous deformation.  

A key idea in mathematics, set theory, dates back to the work of Russian mathematician George 

Cantor (1877). We were able to investigate a variety of mathematical ideas thanks to set theory. 

However, there are a lot of unknowns in our life. The traditional logic of mathematics is frequently 

insufficient to resolve these difficulties. Then the idea of fuzzy sets was introduced by Zadeh [1]. It 

is a development of the traditional idea of a set. In his paper, he presented a hypothesis according to 

which fuzzy sets are sets with imprecise boundaries. In both directions, gradual changes from 

membership to non membership can be expressed using fuzzy sets. It offers meaningful 

representations of vague notions in everyday language in addition to a powerful and meaningful 

way to quantify uncertainties. a value in the discourse universe that indicates the fuzzy set's degree 

of membership. Real values in the closed range of 0 to 1 are used to represent these membership 

classifications. Chang [2] discovered and popularized the theory of fuzzy topological spaces. The 

concepts for creating fuzzy topological spaces were provided by Lowen [3]. He provided the idea of 

fuzzy compression and two new functions, which allowed for the evident observation of further 

relationships between fuzzy topological spaces and topological spaces. A unique fuzzy topological 

space called the product spaces was discussed by Cheng-Ming [4]. He established a type of fuzzy 

points neighbourhood formation, such as the Q-neighbourhood, which is a crucial idea in fuzzy 

topological spaces. He also demonstrated how each fuzzy topological space is isomorphic 

topologically by a specific space of topology. 
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Atanassov [5] introduced the concept of intuitionistic fuzzy sets as an extension of sets with better 

applicability. Coker [6] developed the idea of intuitionistic smooth fuzzy topological spaces using 

the concept of intuitionistic fuzzy sets. The definitions of the intuitionistic smooth fuzzy topological 

spaces were first presented by Samanta and Mondal [7]. 

Smarandache [8] introduced the concept of a neutrosophic set for the first time. These concepts 

have three different degrees: T for membership, I for uncertainty, and F for non-membership. In 

other words, a situation is treated in neutrosophy in accordance with its trueness, falsity, and 

uncertainty. As a result, neutrosophic sets and logic enable us to make sense of a variety of 

uncertainties in our daily lives. On this topic, numerous studies have been conducted. Sahin et al. 

recently discovered some operations for neutrosophic sets with interval values; Neutrosophic 

multigroups and applications were researched by Ulucay et al [9]; Q-neutrosophic soft expert set 

and its application were introduced by Hassan et al [10]. The acquisition of neutrosophic soft expert 

sets was introduced by Sahin et al [11]; Interval-valued refined neutrosophic sets and their 

applications were researched by Ulucay et al [12]. Neutosophic set importance on deep transfer 

learning techniques was obtained by Khalifa et al. [13]; Generalised Hamming similarity measure 

based on neutrosophic quadraple numbers and its applications were researched by Kargin et al. [14]; 

In order to assess the quality of online education, Sahin et al. [15] obtain Hausdorff Measures on 

generalised set valued neutrosophic quadraple numbers and decision-making applications. The 

foundation for a wide family of novel mathematical ideas, including both their crisp and fuzzy 

counterparts, was laid by neutrosophy. The concepts of neutrosophic crisp set and neutrosophic 

crisp topological space were first developed by Salama et al. and Alblowi [16]. Neutron structures 

and antistructures are defined by Smarandache [17]. An algebraic structure can be divided into three 

regions, similar to neutrosophic logic: A, the set of elements that satisfy the conditions of the 

algebraic structure, the truth region; Neutro A, the set of elements that do not meet the conditions of 

the algebraic structure, the uncertainty region; and anti-A, the set of elements that do not satisfy the 

conditions of the algebraic structure, the inaccuracy region. By eliminating neutrosophic sets and 

neutrosophic numbers, the structure of neutrosophic logic has been translated to the structure of 

classical algebras. The academic world has seen a rise in interest in neutrosophic set theory research 

in recent years. As a result, it is possible to generate neutro-algebraic structures, which are more 

broadly structured than classical algebras. Additionally, the region of elements that do not conform 

to any of the classical algebras is also considered to have anti-algebraic structures.  Recent research 

includes studies on neutro-algebra by Smarandache et al. [18], the neutrosophic triplet of BI-algebras 

by Razaei et al. [19], neutro-bck-algebra by Smarandache et al. [20], and neutro-hypergroups by 

Ibrahim et al. [21]. 

In this paper, we introduce new Generalization of Regular Neutro-open (briefly, GRN-open) sets 

and Generalised regulat Anti-open set. This new class shows stronger properties in general 

topological spaces that mean GRN-open sets exists in between the class of regular open sets and the 

class of open sets. Also, we investigate GRN-neighbourhood, GRN-interior and GRN-closure 

properties. 

 

 



Neutrosophic Sets and Systems, Vol. 73, 2024  

 

Bhimraj Basumatary. A Review on Recent Development of Neutro-Topology 

 

14 

2. Preliminaries 

Definition 2.1. The NeutroSophication of the Law [22] 

1. Let X be a non-empty set and ∗ be a binary operation. For some elements (a, b) ∈ (X, X), (a∗b) 

∈ X (degree of well defined (T)) and for other elements (x, y), (p, q) ∈ (X, X); [x∗y is 

indeterminate (degree of indeterminacy (I)), or p∗q ∉ X (degree of outer-defined (F)], where 

(T, I, F) is different from (1,0,0) that represents the Classical Law, and from (0,0,1) that 

represents the Anti Law. 

2. In Neutro Algebra, the classical well-defined for binary operation ∗ is divided into three 

regions: degree of well-defined (T), degree of indeterminacy (I) and degree of outer-defined 

(F) similar to neutrosophic set and neutrosophic logic. 

Definition 2.2. [23] 

Let X be the non-empty set and τ be a collection of subsets of X. Then τ is said to be a Neutro 

Topology on X and the pair (X, τ) is said to be a Neutro Topological space, if at least one of the 

following conditions hold good: 

1. [(∅𝑁 ∈ 𝜏, 𝑋𝑁 ∉ 𝜏) 𝑜𝑟 (𝑋𝑁 ∈ 𝜏, ∅𝑁 ∉ 𝜏)  ] or [∅𝑁, 𝑋𝑁 ∈~ 𝜏] 

2. For some n elements 𝑎1, 𝑎2, … 𝑎𝑛 ∈ 𝜏, ⋂ 𝑎𝑖
𝑛
𝑖=1 ∈ 𝜏 [degree of truth T] and for other n elements 

𝑏1, 𝑏2, … 𝑏𝑛 ∈ 𝜏, 𝑝1, 𝑝2, … 𝑝𝑛 ∈ 𝜏; [( ⋂ 𝑏𝑖
𝑛
𝑖=1 ∉ 𝜏 ) [degree of falsehood F] or ( ⋂ 𝑝𝑖

𝑛
𝑖=1  is 

indeterminate (degree of indeterminacy I)], where n if finite; ; [where (T, I, F) is different from 

(1,0,0) that represents the Classical Axiom, and from (0,0,1) that represents the Anti Axiom]. 

3. For some n elements 𝑎1, 𝑎2, … 𝑎𝑛 ∈ 𝜏, ⋃ 𝑎𝑖𝑖=1 ∈ 𝜏 [degree of truth T] and for other n elements 

𝑏1, 𝑏2, … 𝑏𝑛 ∈ 𝜏 , 𝑝1, 𝑝2, … 𝑝𝑛 ∈ 𝜏 ; [( ⋃ 𝑏𝑖𝑖=𝐼 ∉ 𝜏)  [degree of falsehood F] or ( ⋃ 𝑝𝑖𝑖=𝐼  is 

indeterminate (degree of indeterminacy I)], where n is finite; [where (T, I, F) is different from 

(1,0,0) that represents the Classical Axiom, and from (0,0,1) that represents the Anti Axiom]. 

 

Definition 2.3. [23] 

 

Let X be the non-empty set and τ be a collection of subsets of X. Then τ is said to be an Anti 

Topology on X and the pair (X, τ) is said to be an Anti Topological space, if at least one of the 

following conditions hold good: 

1. ∅𝑁, 𝑋𝑁 ∉ 𝜏 
2. For n elements 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝜏, ⋂ 𝑎𝑖

𝑛
𝑖=1 ∉ 𝜏 [degree of falsehood F] where n is finite. 

3. For some n elements 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝜏, ⋃ 𝑎𝑖
𝑛
𝑖=1 ∉ 𝜏 [degree of falsehood F] where n is finite. 

 

Remark 2.1. [23] 

 

The symbol “∈_∼” will be used for situations where it is an unclear appurtenance (not sure if an 

element belongs or not to a set). For example, if it is not certain whether “a” is a member of the set 

P, then it is denoted by a ∈_∼ P. 

Main Works 

3. GR-NeutroOpen sets and their properties 

We introduce GR-NeutroOpen sets and investigate some of relationships between existed classes. 
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Definition 3.1. A NeutroSubset M of space P is called Generalized Regular Neutrosphic Open 

(briefly, GR-NeutroOpen) set if M = NeuInt(g-NeuCl(M)). We denote the class of sets as GRNO(P). 

Firstly we have to prove the existence of new class GR-NeutroOpen sets in topological spaces. 

Theorem 3.1. Every regular NeutroOpen set is GR-NeutroOpen set. 

Proof. Let M be a regular NeutroOpen set in P. To prove that M is GR- NeutroOpen in P.  

We know that 

M ⊆ g-NeuCl(M) ⊆ NeuCl(M) that is NeuInt(M) ⊆ NeuInt(g-NeuCl(M)) ⊆ NeuInt(cl(M)).  

As M is regular NeutroOpen, M = NeuInt(cl(M)) and NeuInt(M) = M. 

Hence M ⊆ NeuInt(g-NeuCl(M)) ⊆ NeuInt(NeuCl(M)) = M,  

Thus NeuInt(g-NeuCl(M)) = M. Therefore M is GR- NeutroOpen in P. 

The converse of above theorem need not be true. 

Example 3.1. Let P = {1,2,3,4} with the topology on it τ = {P,Ø,{1},{2},{1,2},{2,3},{1,2,3}}, then sets 

{2}, {1,2} are NeutroOpen sets but not regular NeutroOpen sets in P. 

Theorem 3.2. Every GR-NeutroOpen set is NeutroOpen set. 

Proof. Let M be a GR- NeutroOpen set in P. That is M = NeuInt(g- NeuCl(M)). As interior of any 

subset of P is an NeutroOpen set, therefore M is a NeutroOpen in P. 

The converse of above theorem need not be true.  

Example 3.2. Let P = {1,2,3,4} with the topology on it 

 τ ={P,Ø,{1},{2},{1,2},{2,3},{1,2,3}}.  

Then the set {1,2,3} is NeutroOpen set but not GR- NeutroOpen in P. 

Remark 3.1. From Theorem 3.2, we know that every GR- NeutroOpen set is a NeutroOpen set 

but not conversely. We know that every NeutroOpen set is semi- NeutroOpen but not conversely. 

Hence every GR- NeutroOpen set is a semi- NeutroOpen set but not conversely. 

Remark 3.2. From Theorem 3.2, we know that every NeutroOpen set is a NeutroOpen set but not 

conversely. We know that every NeutroOpen set is g- NeutroOpen but not conversely. Hence every 

GR- NeutroOpen set is a g- NeutroOpen set but not conversely. 

Theorem 3.3. Intersection of two GR-NeutroOpen sets is a GR- NeutroOpen set in topological spaces. 

Proof. Let M and N be two GR- NeutroOpen sets in space P. To prove that M ∩ N is GR-

NeutroOpen set in space P, that is to prove that M∩N = NeuInt(g-NeuCl(M∩N)). As M and N are GR- 
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NeutroOpen sets in P,M = NeuInt(g-NeuCl(M)), N = NeuInt(g-NeuCl (N)). We know that M∩N ⊆ M, 

g-NeuCl(M∩N) ⊆ g-NeuCl(M) also M∩N ⊆ N, g-NeuCl(M∩N) ⊆ g-NeuCl(N). Which implies 

NeuInt(g-NeuCl (M ∩ N)) ⊆ NeuInt(g-NeuCl (M)) and NeuInt(g-NeuCl (M ∩ N)) ⊆ NeuInt(g-NeuCl 

N)). This implies NeuInt(g-NeuCl(M ∩ N))∩ NeuInt(g-NeuCl (M∩N)) ⊆ NeuInt(g-NeuCl (M))∩ 

NeuInt(g-NeuCl (N)) That is NeuInt(g-NeuCl (M ∩N)) ⊆ NeuInt(g-NeuCl (M))∩ NeuInt(g-NeuCl 

(N)) = M∩N...(i) M∩N = NeuInt(M)∩NeuInt(N) = NeuInt(M∩N) [M = NeuInt(M) and N = NeuInt(N) 

because of if M and N are NeutroOpen sets, then every NeutroOpen is NeutroOpen in P] 

NeuInt(M∩N) ⊆ NeuInt(g-cl(A∩B)). M∩N ⊆ NeuInt(g-NeuCl(M ∩N))...(ii) From (i) and (ii), M ∩N = 

NeuInt(g-NeuCl (M ∩N)). Hence M ∩N is GR- NeutroOpen set in P. 

Remark 3.3. The union of two GR- NeutroOpen sets is generally not a GR- NeutroOpen set in 

topological spaces. 

Example 3.3. Let P = {1,2,3,4} with topology on it  

τ = {P,Ø,{1},{2},{1,2},{2,3},{1,2,3}}.If M = {1,2} and 

N = {2,3} are GR-open sets in P but M ∩ N = {1,2,3} is not GR- NeutroOpen set in P. 

Theorem 3.4. If M is a GR- NeutroOpen then NeuInt(M) = M. 

Proof. Let M is GR-NeutroOpen. To prove NeuInt(M) = M. We know that every GR- NeutroOpen 

set is NeutroOpen, that is M is NeutroOpen set then NeuInt(M) = M. The converse of above theorem 

need not be true. 

Example 3.4. Let P = {1,2,3,4} with topology on it τ = {P,Ø,{1},{2},{1,2},{1,2,3}}, then GRNO(P) = 

{P,Ø,{1},{2},{1,2}}. Then the Neutro-set M = {1,2,3}, Note that NeuInt(M) = {1,2,3} is not a GR- 

NeutroOpen set, but it is NeutroOpen set of P. 

Theorem 3.5. If M is g-closed and NeutroOpen in P, then M is GR- NeutroOpen in P. 

Proof. Let M is g-closed and NeutroOpen in P. To prove that M is GR- NeutroOpen i.e. to prove 

M = NeuInt(g-NeuCl (M)). Now g-NeuCl(M) = M, because M is g- NeutroOpen set. As NeuInt(g-

NeuCl(M)) = NeuInt(M) this implies NeuInt(g-NeuCl (M)) = M, because M is NeutroOpen set. Then 

M is GR- NeutroOpen in P. 

Remark 3.4. Complement of a GR-NeutroOpen set need not be GR- NeutroOpen set. 

Example 3.5. Let P={1,2,3,4} with topology on it τ={P,Ø,{1},{2},{1,2},{2,3},{1,2,3}}. Note that {1,2} is 

a  

GR- NeutroOpen set. But P − {1,2} = {3} is not a GR- NeutroOpen set in P. 

4. GR-NeutroCNeutroClosed sets and their properties 

We introduce GR-NeutroClosed sets and investigate some of their properties. 
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Definition 4.1. A subset M of space P is called Generalized Regular Neutrosophic Closed (briefly, 

GR-NeutroClosed) set if P − M is GR- NeutroClosed in P. Then its family is denoted as GRNC(P). 

This new class of sets properly lies between the class of regular NeutroClosed sets and the class 

of NeutroClosed sets 

Theorem 4.1. A subset M of P is GR- NeutroClosed if and only if M = NeuCl(g-NeuInt(M)). 

Proof. (i) Suppose M is GR- NeutroClosed. To prove M = NeuCl(g-Neu¬Int(M)). As M is GR- 

NeutroClosed, P − Mis GR-NeutroOpen in P, which implies P−M=NeuInt(g-NeuCl(P−M)). P−M = 

NeuInt(P−g-NeuInt(M)). [because g-NeuCl(P − M) = P − g-NeuCl(M))] = P − NeuCl(g-NeuInt(M)). So 

(P−M)c = [P−NeuCl(g-NeuInt(M))]c. That is M = NeuCl(g-NeuInt(M)). (ii) Suppose M = NeuCl(g-

Int(M)). To prove M is GR- NeutroClosed, [That is to prove P−M is GR-NeutroOpen set]. That is P−M 

= NeuInt(g¬NeuCl(M). Now given M = NeuCl(g-NeuInt(M)). P − M = P − NeuCl(g--NeuInt(M)). P − 

M = NeuInt(g-NeuCl(P − M)).implies that P − M is GR-NeutroOpen set that is M is GR- NeutroClosed 

in P. 

Theorem 4.2. Every regular NeutroClosed set is GR- NeutroClosed set. 

Proof. Let M be a regular NeutroClosed set in space P. Then Mc is a regular NeutroOpen set. By 

Theorem 3.1, Mc is GR- NeutroOpen set. Therefore M is a GR- NeutroClosed set in P. 

The converse of above theorem need not be true. 

Example 4.1. From Example 3.1, the set {3,4} and {1,3,4} are GR- NeutroClosed sets but not regular 

NeutroClosed in P. 

Theorem 4.3. Every GR- NeutroClosed set is NeutroClosed set. 

Proof. Let M be a GR- NeutroClosed set in P. Then Mc is a GR- NeutroOpen in P. By Theorem 

3.2, Mc is an NeutroOpen set in P. Therefore M is a NeutroClosed set in P. 

The converse of above theorem need not be true. 

Example 4.2. From Example 3.1, the set {4} is NeutroClosed set but not GR- NeutroClosed set in 

P. 

Remark 4.1. From Theorem 4.3, we have, every GR- NeutroClosed set is a NeutroClosed set but 

not conversely. Also, every NeutroClosed set is semi- NeutroClosed set but not conversely. Hence 

every GR- NeutroClosed set is a semi- NeutroClosed set but not conversely. 

Remark 4.2. From Theorem 4.3, we have, every GR- NeutroClosed set is a NeutroClosed set but 

not conversely. Every NeutroClosed set is NeutroClosed but not conversely. Hence every GR- 

NeutroClosed set is NeutroClosed set but not conversely. 

Remark 4.3. From Theorem 4.3, we know that every GR- NeutroClosed set is a NeutroClosed set 

but not conversely. It is clear that every NeutroClosed set is g- NeutroClosed but not conversely. 

Hence every GR- NeutroClosed set is a g- NeutroClosed set but not conversely. 

Remark 4.4. The following example shows that GR- NeutroClosed sets are independent of ir- 

NeutroClosed sets, s-NeutroClosed sets and regular semi- NeutroOpen (=regular semi- 

NeutroClosed) sets. 

Example 4.3. Let P = {1,2,3,4,5} with topology on it 

 τ = {P,Ø,{1},{1,4},{2,3},{1,2,3},{1,2,3,4}}. Then 
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NeutroClosed sets in P are P,Ø,{5},{4,5},{1,4,5},{2,3,5}, {2,3,4,5}. 

GR- NeutroClosed sets in P are P,Ø,{4,5},{1,4,5},{2,3,5}, {2,3,4,5}. 

π- NeutroClosed sets in P are P,Ø,{5},{1,4,5},{2,3,5}. 

s- NeutroClosed sets in P are P,Ø,{5},{1,4,5},{2,3,5}. 

regular semi-NeutroOpen sets in P are P,Ø,{1,4},{2,3},{1,4 ,5},{2,3,5}. 

Theorem 4.4. Union of two GR- NeutroClosed sets is a GR- NeutroClosed set in topological spaces. 

Proof. Let M and N be two GR- NeutroClosed sets in P. To prove that M ∪N = NeuCl(g-NeuInt(M 

∪ N)). As M and N are GR- NeutroClosed sets in P, M = NeuCl(g-NeuInt(M)), N = NeuCl(g-

NeuInt(N)). We know thatM ⊆ M∪N, g-NeuInt(M) ⊆ g-NeuInt(M∪N) also N ⊆ M∪N, g-¬NeuInt(N) 

⊆ g-NeuInt(M ∪N). Which implies NeuCl(g-NeuInt(M)) ⊆ NeuCl(g-NeuInt (M ∪ N)) and NeuCl(g-

NeuInt(N)) ⊆ NeuCl(g-NeuInt (M ∪ N)). This implies NeuCl(g-NeuInt (M)) ∪ NeuCl(g-NeuInt (N)) 

⊆ NeuCl(g-NeuInt (M ∪N)) ∪ NeuCl(g-NeuInt (M∪N)). That is  

NeuCl(g-NeuInt (M))∪ NeuCl(g-NeuInt (N)) ⊆ NeuCl(g-NeuInt (M ∪N))...(i) 

M ∪N = NeuCl(M)∪ NeuCl(N) = NeuCl(M ∪N) [M = NeuCl(M) and N = NeuCl(N) and M, N are 

NeutroClosed sets, because every GR- NeutroClosed is NeutroClosed set] NeuCl(M∪N) ⊇ NeuCl(g-

NeuInt (M ∪ N)) i.e. M ∪N ⊇ NeuCl(g-NeuInt (M ∪N))...(ii) 

From(i) and (ii), M ∪ N = NeuCl(g-NeuInt (M ∪N)). Hence M ∪N is GR- NeutroClosed set in P. 

Hence A∪ B is GR- NeutroClosed in X. 

Remark 4.5 The intersection of two GR- NeutroClosed sets in topological spaces is generally not 

a GR- NeutroClosed set. 

Example 4.4. From Example 3.1, then sets M = {1,4} and N = {3,4} are GR- NeutroClosed sets in P 

but M ∩N = {4} is not GR- NeutroClosed set in P. 

Theorem 4.5. If M is a GR- NeutroClosed if and only if NeuCl(M) = M. 

Proof. If M is GR- NeutroClosed. To prove NeuCl(M) = M. We know that every GR- NeutroClosed 

set is NeutroClosed set i.e. M is NeutroClosed then NeuCl(M) = M. 

The converse of above theorem need not be true. 

Example 4.5. Let P = {1,2,3,4} with topology on it τ = {P,Ø,{1},{2},{1,2},{1,2,3}}. Then 

GRNC(P)={P,Ø,{3,4} ,{1,3,4},{2,3,4}}. Then the set M = {4}. Note that NeuCl(M)= {4} is not a GR- 

NeutroClosed set, but it is a NeutroClosed set of P. 

Theorem 4.6. If M is g-NeutroOpen and NeutroClosed in P, then M is GR- NeutroClosed set in 

P. 

Proof. Let M is g-NeutroOpen and NeutroClosed set in P. To prove that 

M is GR- NeutroClosed set i.e. to prove M NeuCl(g-NeuInt (M)). Now g-NeuInt(M) = M, because 

M is g-NeutroOpen set. As NeuCl(g-NeuInt (M)) = NeuCl(M) this implies NeuCl(g-NeuInt (M)) = M, 

because M is NeutroClosed set. Then Mis GR- NeutroClosed set in P. 
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5. GR-NeutroNeighbourhoods and GR-NeutroInterior 

Definition 5.1. (i) Let P be a topological space and x ∈ P, A subset N of P is said to be a GR-

NeutroNeighbourhood (briefly, GR-NeuNhd) of x if and only if there exists a GR-NeutroOpen set G 

such that x ∈ G ⊆ N. 

(ii) The collection of all GR-NeutroNeighbourhood of x ∈ P is GR-NeutroNeighbourhood system 

at x and is denoted by GR-N(x).  

Definition 5.2. Let M be a subset of P. A point x ∈ M is said to be GR-NeutroInterior point of M if 

and only if P is a GR-NeutroNeighborhood of x. The set of all GR-NeutroInterior points of M is called 

the GR-NeutroInterior of M and is denoted as GR-int(M). 

Theorem 5.1. If M is a subset of P, then GR-NeutroInt(M) = ∪{G : G is GR-NeutroOpen set, G ⊆ 

M}. 

Proof. Let M be a subset of P. x ∈ GR-NeuInt(A) implies that x is a GR-NeutroInterior point of P 

i.e. M is a GR-NeuNhd of point x. Then there exists a GR-NeutroOpen set G such that x ∈ G ⊆ A  

implies that x ∈ ∪{G : G is GR- NeutroOpen set, G ⊆ M}. Hence  

GR-NeuInt(M) = ∪{G : G is GR- NeutroOpen set, G ⊆ M}. 

Theorem 5.2. Let P be a topological space and M ⊆ P, then show that M is GR- NeutroOpen set if 

and only if GR-NeuInt(M) = M. 

Proof. Let M be a GR- NeutroOpen set in P. Then clearly the largest GR- NeutroOpen set 

contained in M, is itself M.  Hence GR-NeuInt(M) = M. 

Conversely, suppose that M ⊆ P and GR-NeuInt(M) = M. Since GR-NeuInt(M) is a GR- 

NeutroOpen set in P, it follows that M is a GR- NeutroOpen set in P. 

Theorem 5.3. Let M and N are subset of P. Then 

1. GR-NeuInt(P) = P and GR-NeuInt(Ø) = Ø. 

2. GR-NeuInt(M) ⊆ M. 

3. If N is any GR- NeutroOpen set contained in M, then N ⊆ GR-NeuInt(M). 

4. If M ⊆ N, then GR-NeuInt(M) ⊆ GR-NeuInt(N). 

5. GR-NeuInt(GR-NeuInt(M)=GR-NeuInt(M). 

Proof. (1) Since P and Ø are GR- NeutroOpen sets, by Theorem 5.3, GR-NeuInt(P) = ∪{G : G is GR- 

NeutroOpen set, G ⊆ P} = P ∪ { all GR- NeutroOpen sets } = P. That is GR-NeuInt(P) = P. Since Ø is 

the only GR-NeutroOpen set contained in Ø, GR-NeuInt(Ø) = Ø. 

(2) Let x ∈ GR-NeuInt(A) implies that x is a GR-NeutroInterior point of M. That is Mis a GR-

NeuNhd of x i.e. x ∈ M. Thus x ∈ GR-int(A) implies x ∈ A. Hence GR-NeuInt(M) ⊆ M. 
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(3) Let N be any GR- NeutroOpen set such that N ⊆ M. Let x ∈ N. Since N is a GR-NeutroOpen 

set contained in M, x is a GR-NeuInterior point of M. That is x ∈ GR-NeuInt(M). Hence N ⊆ GR-

NeuInt(M). 

(4) Let M and N be subsets of P such that M ⊆ N. Let x ∈ GR-NeuInt(M). Since GR-NeuInt(M) ⊆ 

M and M ⊆ N, we have GR-NeuInt(M) ⊆ N. Now GR-NeuInt(M) is a GR- NeutroOpen set and GR-

NeuInt(N) is the largest GR- NeutroOpen set contained in N, we have to find GR-NeuInt(M) ⊆ GR-

NeuInt(N). 

(5) Since GR-NeuInt(M) is a GR-NeutroOpen set in P, it follows that GR-NeuInt(GR-

NeuInt(M))=GR-NeuInt(M). 

Theorem 5.4. If M and N are subsets of P, then GR-NeuInt(M) ∪ GR-NeuInt(N) ⊆ GR-NeuInt(M 

∪N). 

Proof. We know that M ⊆ M ∪ N and N ⊆ M ∪ N. We have, by Theorem 5.5(iv), GR-NeuInt(A) ⊆ 

GR- NeuInt(M ∪N) and GR- NeuInt (N) ⊆ GR- NeuInt (M ∪ N). This implies GR- NeuInt (M)∪ GR- 

NeuInt (N) ⊆ GR- NeuInt(M ∪N). 

Theorem 5.5. Let M and N are subsets of P, then GR- NeuInt(M)∩ GR- NeuInt (N)=GR- NeuInt 

(M ∩N). 

Proof. We know that M ∩N ⊆ M and M ∩N ⊆ N. We have, by Theorem 5.5(iv), GR- NeuInt (M ∩ 

N) ⊆ GR-NeuInt(M) and GR- NeuInt(M ∩ N) ⊆ GR- NeuInt(N).  

This implies GR- NeuInt(M ∩ N) ⊆ GR- NeuInt (M)∩ GR- NeuInt(N)...(i) 

Again, let x ∈ GR- NeuInt(M)∩GR- NeuInt(N). Then x ∈ GR- NeuInt(M) and x ∈ GR- NeuInt(N).  

Hence x is a NeutroInterior point of each of NeutroSets M and N. It follows that M and N are GR-

NeuNhd of x, so that their intersection M∩N is also a GR-NeuNhd of x. Hence x ∈ GR NeuInt (M ∩ 

N). Thus x ∈ GR- NeuInt(M)∩ GR- NeuInt (N) implies that x ∈ GR- NeuInt (M ∩ N). Therefore GR- 

NeuInt(M)∩ GR- NeuInt(N) ⊆ GR- NeuInt (M ∩N)...(ii) 

From (i) and (ii), we get GR- NeuInt (M)∩ GR- NeuInt (N)=GR- NeuInt(M∩ N). 

6. GRN-closure and their properties 

Using the GR-NeutroClosed sets we can introduce the concept of GR-NeutroClosure operator in 

topological spaces. 

Definition 6.1. Let M be a subset of a space P. We define the GR-NeutroClosure of M to be the 

intersection of all GR-NeutroClosure sets containing M. Mathematically, GR-cl(M) = ∩ {F M ⊆ F ∈ 

GRC(P)}. 

Theorem 6.1. Let P be any topological space and M ⊆ P, then show that M is GR-NeutroClosure 

set if and only if GR-cl(M) = M. 
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Proof. Let M be a GR-NeutroClosed set in P. Then clearly the smallest GR-NeutroClosed set 

contained in M, is itself M. Hence GR-NeuCl(M) = M. 

Conversely, suppose that M ⊆ P and GR-NeuCl(M) = M. Since GR-NeuCl(M) is a GR-NeutroOpen 

set in P, it follows that M is a GR-NeutroClosed set in P. 

Theorem 6.2. Let M and N are subset of P. Then 

 GR-NeuCl(P) = P and GR-cl(Ø) = Ø. 

 M ⊆ GR-NeuCl(M). 

 If N is any GR-NeuClosed set contained in M, then GR-NeuCl(M) ⊆ N. 

 If M ⊆ N, then GR-NeuCl(M) ⊆ GR-NeuCl(N). 

 GR-NeuCl(GR-NeuCl(A))=GR-NeuCl(M) 

Proof. (1) Obviously. 

(2) By the definition of GR-NeuClosure of M, it is obvious that M ⊆ GR-NeuCl(M). 

(3) Let N be any GR-NeutroClosed set containing M. Since GR-NeuCl(M) is the intersection of all 

GR-NeutroClosed sets containing M i.e GR-NeuCl(M) is contained in every GR-NeutroClosed set 

containing M. Hence GR-NeuCl(M) ⊆ N. 

(4) Let M and N are NeutroSubsets of P such that M ⊆ N. By the definition of GR-NeutroClosure, 

GR-NeuCl(N) = ∩{F N ⊆ F ∈ GRC(P)}. If N ⊆ F ∈ GRNC(P), then GR-NeuCl(N) ⊆ F. Since M ⊆ N, M 

⊆ N ⊆ F ∈ GRNC(P), we have GR-NeuCl(M) ⊆ F. Therefore GR-NeuCl(M) ⊆ ∩{F N ⊆ F ∈ 

GRNC(P)}=GR-NeuCl(P). That is GR-NeuCl(M) ⊆ GR-NeuCl(N). 

Since GR-NeuCl(M) is a GR-NeutroClosed set in P. It follows that GR-NeuCl(GR-NeuCl(P)) = P. 

Theorem 6.3. Let M and N are subsets of P, then GR-NeuCl(M∪ N)= GR-cl(M)∪ GR-NeuCl(N). 

Proof. Let M and N are subsets of P. Clearly M ⊆ M ∪N and N ⊆ M ∪ N. We have by the Theorem 

6.3(iv), GR-NeuCl(M) ⊆ GR-NeuCl(M ∪N) and GR-NeuCl(N) ⊆ GR-NeuCl(M ∪N). This implies GR-

NeuCl(M)∪ GR-NeuCl(N) ⊆ GR-NeuCl(M ∪ N)...(i). 

Now to prove that GR-NeuCl(M ∪ N) ⊆ GR-NeuCl(M)∪ GR-NeuCl(N). Let x ∈ GR-NeuCl(M ∪N) 

and x ∉ GR-NeuCl(M)∪ GR-NeuCl(N). Then there exists GR-NeutroClosed sets M1 and N1 with M 

⊆ M1, N ⊆ N1 and x ∉ M1 ∪N1. We have M ∪ N ⊆ M1 ∪N1 and M1 ∪N1 is a GR-NeutroClosed set 

by Theorem 6.3, such that x ∉ M1 ∪N1. Thus x ∉ GR-NeuCl(M ∪ N) which is contradiction to x ∈ GR-

NeuCl(M ∪ N).  

Hence GR-NeuCl(M ∪N) ⊆ GR-NeuCl(M)∪ GR-NeuCl(N)...(ii). 

From (i) and (ii), we have GR-NeuCl(M ∪N)= GR-NeuCl(M)∪ GR-NeuCl(N). 
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Theorem 6.4. Let M and N are subsets of P, then GR- NeuCl (M∩ N) ⊆ GR- NeuCl (M)∩ GR- NeuCl 

(N). 

Proof. Let M and N are subsets of P. Clearly M∩N ⊆ M and M ∩N ⊆ N. We have, by Theorem 

6.3(iv), GR- NeuCl (M ∩N) ⊆ GR- NeuCl(M) and GR- NeuCl (M ∩N) ⊆ GR- NeuCl(N). This implies 

GR- NeuCl(M ∩N) ⊆ GR- NeuCl(M)∩ GR- NeuCl (N). 

Remark 6.1. In general GR- NeuCl (M)∩ GR- NeuCl (N) ≠ GR- NeuCl (M∩ N), as seen from the 

following example. 

Example 6.1. Consider P = {1,2,3,4}, topology on it τ= {P,Ø,{1},{2},{1,2},{2,3},{1,2,3}}, M = {2,3}, and 

N= {3,4}, M∩N = {3}, GR- NeuCl (M) = {2,3,4}, GR- NeuCl (N) = {3,4}, GR- NeuCl (M ∩ N) = {3} and 

GR- NeuCl (M)∩ GR- NeuCl (N) = {3,4}. Therefore GR- NeuCl (M)∩ GR- NeuCl (N) Z GR- NeuCl(M 

∩N). 

Theorem 6.5. Let M be a subset of P and x ∈ P. Then x ∈ GR- NeuCl (M) if and only if V ∩M ≠ Ø 

for every GR-NeutroOpen set V containing x. 

Conclusion  

In this study, new Generalization of Regular Neutro-open sets and Generalized regular Neutro-

open set has been studied. Some properties of Regular Neutro-open sets and are studied. Also, 

properties of GRN-neighbourhood, GRN-interior and GRN-closure properties are investigated. 

Hope this work will give more benefits for further studies of Neutro-Topology. 

References 

1. Zadeh, L. A. Fuzzy sets and Information Control 1965, 8, 338-353. 

2. Chang, C.L. Fuzzy Topological spaces. J Math and Application 1968. 

3. Lowen. Topology and Its Applications 1981, 12(1), 65-74. 

4. Cheng-Ming. Fuzzy topological space. Journal of mathematical analysis and applications 

1985, 110(1), 141-178. 

5. Atannosov, K. Intuitionistic fuzzy sets. Fuzzy Sets System 1996, 20, 87-96. 

6. Coker, E.G. Fuzzy sets and system 1997, 88(1), 81-89. 

7. Samanta, K.S.; Mondal, K.T. Intuitionistic gradation of openness. intuitionistic fuzzy 

topology 1997, 8-17. 

8. Smarandache, F. Neutrosophy: Neutrosophic Probability, Set and Logic. Rehoboth, Amer, 

Research Press 1998. 

9. Ulucay, V.; Sahin, M. Neutrosophic Multigroups and Applications. Mathematics 2019, 7(1), 

95. 

10. Hassan, N.; Ulucay, V.; Sahin, M. Q-neutrosophic soft expert set and its application in 

decision making. International Journal of Fuzzy System Applications (IJFSA) 2018, 7(4), 37-

61. 

11. Sahin, M.; Alkhazaleh, S.; Ulucay, V. Neutrosophic soft expert sets. Applied Mathematics 

2015, 6(1), 116. 



 

Neutrosophic Sets and Systems, Vol. 73, 2024 

 

 

Bhimraj Basumatary. A Review on Recent Development of Neutro-Topology 

 

23 

12. Ulucay, V. Some concepts on interval-valued refined neutrosophic sets and their 

applications. J Ambient Intell Human Comput 2020. https://doi.org/10.1007/s12652-020-

02512-y. 

13. Khalifa, E. M.N.; Smarandache, F.; Manogaran, G.; Loney, M. A study of the neutrosophic 

set significance on deep transfer learning models: An experimental case on a limited covid-

19 chest x-ray dataset. Cognitive Computation 2021, 1-10. 

14. Kargın, A.; Dayan, A.; Sahin, M. N. Generalized Hamming Similarity Measure Based on 

Neutrosophic Quadruple Numbers and Its Applications to Law Sciences. Neutrosophic 

Sets and Systems 2021, 40(1), 4. 

15. Sahin, S.; Kargın, A.; Yu¨cel, M. Hausdorff Measures on Generalized Set Valued 

Neutrosophic Quadruple Numbers and Decision Making Applications for Adequacy of 

Online Education. Neutrosophic Sets and Systems 2021, 40(1), 6. 

16. Salama, A. A.; Smarandache, F.; Alblowi, A. S. New neutrosophic crisp topological 

concepts. Neutrosophic sets and systems 2014, 4, 50-54. 

17. Smarandache, F. Introduction to Neutro Algebraic Structures and Anti Algebraic 

Structures, in Advances of Standard and Nonstandard Neutrosophic Theories. Pons 

Publishing House Brussels, Belgium, 2019, Ch. 6, 240-265. 

18. Smarandache, F. Introduction to Neutro Algebraic Structures and Anti Algebraic 

Structures (revisited). Neutrosophic Sets and Systems 2020, 31, 1-16, DOI: 

10.5281/zenodo.3638232. 

19. Rezaei, A.; Smarandache, F. The Neutrosophic Triplet of BI-algebras. Neutrosophic Sets 

and Systems 2020, 33, 313-321. 

20. Smarandache, F.; Hamidi, M. Neutro-bck-algebra. International Journal of Neutrosophic 

Science 2020, 8(2), 110. 

21. Ibrahim, A.M.; Agboola, A. A. A. Introduction to Neutro Hyper Groups. Neutrosophic Sets 

and Systems 2020, 38(1), 2. 

22. Smarandache, F. Neutro Algebra is a generalization of partial algebra. International Journal 

of Neutrosophic Science 2020, 2, 8-17. 

23. Şahin, M.; Kargın, A.; Yücel, M. Neutro-Topological space and Anti-Topological space. 

Neutro Algebra Theory 2021, Volume I, 16. 

24. Agboola, A.A.A.; Ibrahim, A.M.; Adeleke, E.O. Elementary Examination of Neutro 

Algebras and Anti Algebras viz-a-viz the Classical Number Systems International Journal 

of Neutrosophic Science 2020, 4(1), 16-19. 

25. Agboola, A.A.A. Introduction to Neutro Rings. International Journal of Neutrosophic 

Science 2020, 7(2), 62-73. 

26. Al – Hamido, K.; Gharibah, T.; Jafari, S.; Smarandache, F. On Neutrosophic Crisp Topology 

via N – Topology. Neutrosophic Set and Systems 2018, 23, 96 – 109. 

27. Al-Nafee, A. B.; Al – Hamido, K.R.; Smarandache, F. Separation axioms in neutrosophic 

crisp topological spaces. Neutrosophic Set and Systems 2019, 25, 25 – 32. 



Neutrosophic Sets and Systems, Vol. 73, 2024  

 

Bhimraj Basumatary. A Review on Recent Development of Neutro-Topology 

 

24 

28. Bakbak D.; Ulucay, V. A Theoretic Approach to Decision Making Problems in Architecture 

with Neutrosophic Soft Set. Quadruple Neutrosophic Theory and Applications 2020, 01, 

113-126. 

29. Basumatary, B.; Talukdar, A. A study on Neutro-Topological-Neighbourhood and Neutro-

Topological-Base. NeutroGeometry, NeutroAlgebra, and SuperHyperAlgebra in Today’s 

World, IGI Gobal Publisher of timely knowledge, 2023, 187-201.  

30. Broumi, S.; Bakali, A.; Talea, M.; Smarandache, F.; Ulucay, V. Minimum spanning tree in 

trapezoidal fuzzy neutrosophic environment. In International Conference on Innovations 

in Bio Inspired Computing and Applications, Springer, Cham, 2017, 25-35.  

31. Chandran, K.; Sundaramoorthy, S. S.; Smarandache, F.; Jafari, S. On Product of Smooth 

Neutrosophic Topological Spaces, Symmetry, 2020, 12(9), 1557. 

32. Dhavaseelan, R.; Jafari, S.; Smarandache, F. Compact open topology and evaluation map 

via neutrosophic sets. Neutrosophic Set and Systems 2017, 16, 35 – 38. 

33. Ecemis, O.; Sahin, M.; Kargın, A. Single valued neutrosophic number valued generalized 

neutrosophic triplet groups and its applications for decision making applications. Asian 

Journal of Mathematics and Computer Research 2018, 24(5), 205 – 218. 

34. Ibrahim, A.M.; Agboola, A. A. A. Neutro Vector Spaces I. Neutrosophic Sets and Systems 

2020, 36, 328-351. 

35. Kargın, A.; Dayan, A.; Yıldız, I.; Kılıc¸, A. Neutrosophic Triplet m-Banach Spaces. 

Neutrosophic˙ Set and Systems 2020, 38, 383-398. 

36. Mohammed, F. M.; Wadei, A. O. Continuity and contra continuity via preopen sets in new 

construction fuzzy neutrosophic topology. In Optimization Theory Based on Neutrosophic 

and Plithogenic Sets, Academic Press, 2020, 215-233. 

37. Rezaei, A; Smarandache, F. On Neutro-BE-algebras and Anti-BE-algebras (revisited). 

International Journal of Neutrosophic Science 2020, 4(1), 8-15. 

38. Sahin, M.; Kargın, A. Neutrosophic triplet normed space. Open Physics 2017, 15,697-704. 

39. Sahin, M.; Olgun, N.; Ulucay, V.; Kargın A.; Smarandache, F. A new similarity measure on 

falsity value between single valued neutrosophic sets based on the centroid points of 

transformed single valued neutrosophic numbers with applications to pattern recognition. 

Neutrosophic Sets and Systems 2017, 15, 31-48. 

40. Sahin, M.; Deli, I.; Ulucay, V. Extension principle based on neutrosophic multi-fuzzy sets 

and algebraic operations. Infinite Study 2017. 

41. Sahin, M.; Kargın, A. Neutrosophic Triplet v-Generalized Metric Space. Axioms 2018, 7(3), 

67. 

42. Sahin, M.; Kargın, A. Neutrosophic triplet normed ring space. Neutrosophic Set and 

Systems 2018, 21, 20-27. 

43. Sahin, M.; Ulucay, V.; Menekse, M. Some new operations of (𝛼, 𝛽, 𝛾) interval cut set of 

interval valued neutrosophic sets. Introsophic Journal of Mathematical and Sciences 2018, 

50(2), 103-120. 

44. Sahin, M.; Kargın, A.; Smarandache, F. Neutrosophic triplet topology. Neutrosophic 

Triplet Research 2019, 1(4), 43-54. 

45. Sahin, M.; Kargın, A. Neutrosophic triplet Lie algebras. Neutrosophic Triplet Research 

2019, 1(6), 68-78. 



 

Neutrosophic Sets and Systems, Vol. 73, 2024 

 

 

Bhimraj Basumatary. A Review on Recent Development of Neutro-Topology 

 

25 

46. Sahin, M.; Kargın, A. Neutrosophic Triplet Partial v-Generalized Metric Space. Quadruple 

Neutrosophic Theory And Applications 2019, Volume I. 

47. Sahin, M.; Kargın, A. Neutrosophic triplet metric topology. Neutrosophic Set and Systems 

2019, 27, 154-162. 

48. Sahin, M.; Kargın, A. Single valued neutrosophic quadruple graphs. Asian Journal of 

Mathematics and Computer Research 2019, 243-250. 

49. Sahin, M.; Kargın, A. Neutrosophic Triplet b-Metric Space. Neutrosophic Triplet Structures 

1 2019, 7, 79-89. 

50. Sahin, M.; Kargın, A. Neutrosophic Triplet Partial Inner Product Spaces. Neutrosophic 

Triplet Stuructures 1 2019, 1, 10 - 21. 

51. Sahin, M.; Kargın, A.; Neutrosophic triplet group based on set valued neutrosophic 

quadruple numbers. Neutrosophic Sets and Systems 2019, 30, 122 – 131. 

52. Sahin, M.; Ulucay, V.; Ecemi¸s O Cıngı B. An outperforming approach for multi-criteria 

decision making problems with interval-valued Bipolar neutrosophic sets. Neutrosophic 

Triplet Structures, Pons Publishing House Brussels , 2019, 108-123. 

53. Sahin, M.; Kargın, A.; Yu¨cel, M. Neutrosophic triplet g - metric space. Neutrosophic 

Quadruple Research 1 2020, 13, 181 – 202. 

54. Sahin, M.; Kargın, A.; Yıldız, I. Neutrosophic Triplet Field and Neutrosophic Triplet 

Vector˙ Space Based on Set Valued Neutrosophic Quadruple Number. Quadruple 

Neutrosophic Theory And Applications 2020, Volume I, 52. 

55. Sahin, M.; Kargın, A.; Yu¨cel, M. Neutrosophic Triplet Partial g-Metric Spaces. 

Neutrosophic Sets and Systems 2020, 33, 116-133. 

56. Sahin, M.; Ulucay, V. Soft Maximal Ideals on Soft Normed Rings. Quadruple Neutrosophic 

Theory And Applications 2020, Volume I, 203. 

57. Sahin, M.; Kargın, A.; Uz, M. S. Neutrosophic Triplet Partial Bipolar Metric Spaces. 

Neutrosophic Sets and Systems 2020, 33, 297-312. 

58. Sahin, M.; Kargın, A.; Kılıc A. Generalized neutrosophic quadruple sets and numbers. 

Quadruple Neutrosophic Theory and Applications 1 2020, 11 - 22. 

59. Sahin, M.; Kargın A.; Smarandache, F. Combined Classic–Neutrosophic Sets and Numbers, 

Double Neutrosophic Sets and Numbers. Quadruple Neutrosophic Theory And 

Applications 2020, Volume I, 254.  

60. Smarandache, F. Neutro Algebra is a Generalization of Partial Algebra. International 

Journal of Neutrosophic Science 2020, 2(1), 08-17 

61. Thivagar, L. M.; Jafari, S.; Devi, S.V.; Antonysamy, V. A novel approach to nano topology 

via neutrosophic sets. Neutrosophic Set and Systems 2018, 20, 86 – 94. 

62. Thivagar, L. M.; Jafari, S.; Devi, S. V. The ingenuity of neutrosophic topology N – Topology. 

Neutrosophic Set and Systems 2018, 19, 91 – 100. 

63. Ulucay, V.; Sahin, M.; Olgun, N.; Kilicman, A. On neutrosophic soft lattices. Afrika 

Matematika 2017, 28(3-4), 379-388. 

64. Ulucay, V.; Sahin, M.; Hassan, N. Generalized neutrosophic soft expert set for multiple-

criteria decision-making. Symmetry 2018, 10(10), 437. 



Neutrosophic Sets and Systems, Vol. 73, 2024  

 

Bhimraj Basumatary. A Review on Recent Development of Neutro-Topology 

 

26 

65. Ulucay, V.; Deli, I.; Sahin, M. Similarity measures of bipolar neutrosophic sets and their 

application to multiple criteria decision making. Neural Computing and Applications 

2018, 29(3), 739-748. 

66. Ulucay, V.; Sahin, M.; Olgun, N. Time-neutrosophic soft expert sets and its decision making 

problem. Matematika 2018, 34(2), 246-260. 

67. Ulucay, V.; Kılıc¸, A.; Sahin, M.; Deniz, H. A new hybrid distance-based similarity measure 

for refined neutrosophic sets and its application in medical diagnosis. Matematika 2019, 

35(1), 83-96. 

68. Ulucay, V.; Sahin, M. Decision-making method based on neutrosophic soft expert graphs. 

In Neutrosophic Graph Theory and Algorithms, IGI Global: Hershey, PA, USA, 2020, 33–

76. 

 

Received: June 15, 2024. Accepted: August 6, 2024 


