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Abstract: This paper introduces and explores the concept of lacunary statistical convergence of 

double sequence within the framework neutrosophic normed spaces. Neutrosophic normed spaces 

extend classical normed spaces by incorporating neutrosophic numbers, which account for the 

inherent uncertainty, indeterminacy, and vagueness present in real - world data. The study begins 

by defining lacunary statistical convergence for double sequences in this extended context and 

proceeds to establish fundamental theorems and properties related to this new notion. In addition, 

we present a new idea in this context: statistical completeness. We demonstrate that, while 

neutrosophic normed space is statistically complete, it is not complete. 

 

Keywords: Neutrosophic Normed Spaces; Lacunary Statistical Convergence and Cauchyness; 

Statistical Completeness.  

1. Introduction 

 

Fuzzy theory has been a hot topic of study in a number of scientific domains in the last few years. 

Many studies have been published on this theory since Zadeh originally put it forth in 1965. Saadati 

and Park introduced the idea of intuitionistic fuzzy normed space initially. Smarandache introduced 

the concept of neutrosophic sets as an extension of the intuitionistic fuzzy set. The requirement can 

be met when the component sum is equal to one by using neutronosophic set operators. While 

indeterminacy is treated by neutrosophic operators on the same plane as truth-membership and 

falsehood-nonmembership, intuitionistic fuzzy operators disregard indeterminacy and may 

produce different results.  

Using the idea of density of positive natural numbers, Fast and Steinhaus separately created 

statistical convergence in 1951. Mursaleen and Edely have defined and studied double sequence 

statistical convergence. Karakus et al.'s recent study examined statistical convergence in intuitionistic 

fuzzy normed space. Rough statistical convergence and statistical △𝑚 convergence were recently 

established in neutrosophic normed spaces by Jeyaraman and Jenifer.  

Lacunary statistical convergence was first proposed by Fridy and Orhan. The lacunary statistical 

Cauchy and convergence for double sequences in neutrosophic normed space will be examined in 

this paper. The results presented in this paper contribute to the growing field of neutrosophic 

mathematics and provide a deeper understanding of convergence behavior in spaces characterized 

by uncertainty and indeterminacy. 
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2. Preliminaries 

  

Some of the fundamental notions and definitions that are needed in the following sections are 

presented in this section.  

Let 𝔍 represent a subset of the natural number set ℕ. Next, we define the asymptotic density of 

𝔍, represented by 𝛿(𝔍), as follows: 𝛿(𝔍) = lim
𝑛

1

𝑛
|{𝑘 ≤  𝑛 ∶  𝑘 ∈  𝔍}|. The cardinality of the contained 

set is indicated by the vertical bars. The sequence of numbers 𝔵 =  (𝔵𝑘) is statistically convergent to 

ℓ  if, for any 𝜖 > 0 , the set 𝔍(𝜖)  =  {𝑘 ≤  𝑛 ∶  |𝔵𝑘 − ℓ| > 𝜖}  has asymptotic density zero, that is, 

lim
n

1

𝑛
|{𝑘 ≤  𝑛 ∶  |𝔵𝑘 −  ℓ| ≥ 𝜖}|  =  0.In this instance, 𝔰𝔱 − lim 𝔵 = ℓ  is written. It should be noted 

that while the converse may not always be true, any convergent sequence approaches the same limit 

statistically.  

If, for any 𝜖 > 0, the set {(𝑗, 𝑘), 𝑗 ≤  𝑚  𝑎𝑛𝑑  𝑘 ≤  𝑛 ∶|𝔵𝑗𝑘 −  ℓ |≥ 𝜖} has double natural density 

zero, then the real double sequence 𝔵 =  (𝔵𝑗𝑘) is statistically convergent to the number ℓ .  We 

indicate the set of all statistically convergent double sequences by ℵ2 in this instance, and the set of 

all limited statistically convergent double sequences byℵ2
∞. In this example, we write 𝔰𝔱2 − lim 𝔵 =

ℓ. 

Definition 2.1 Let (𝔛, 𝜏, 𝜑,𝜔 ∗,⋄,⊛) be an 𝔑𝔑𝔖. Here, 𝔛 is a vector space, ∗ is a continuous t-

norm, ⋄ and⊛ are continuous t-conorm, and  𝜏, 𝜑 and 𝜔 are fuzzy sets on 𝔛 × (0,∞) satisfy the 

following conditions. For every 𝔵, 𝔶 ∈  𝔛 and 𝜁, 𝜆 >  0, 

 

(i) 𝜏(𝔵, 𝜆) +  𝜈(𝔵, 𝜆) +  𝜔(𝔵, 𝜆) ≤  1; 

(ii) 𝜏(𝔵, 𝜆)  >  0; 

(iii) 𝜏(𝔵, 𝜆)  =  1 iff 𝔵 =  0; 

(iv) 𝜏(𝛼𝔵, 𝜆)  =  𝜏 (𝔵,
𝜆

|𝛼|
) for each 𝛼 ≠  0; 

(v) 𝜏(𝔵, 𝜆)  ∗  𝜏(𝔶 , 𝜁)  ≤  𝜏(𝔵 +  𝔶, ); 

(vi) 𝜏(𝔵,·) ∶  (0,∞)  →  [0,1] is continuous; 

(vii) lim
𝜆→∞

𝜏(𝔵, 𝜆)  =  1 and lim
 𝜆→0

𝜏(𝔵, 𝜆) =  0; 

(viii) 𝜈(𝔵, 𝜆) <  1;  

(ix) 𝜈(𝔵, 𝜆)  =  0 iff 𝔵 =  0; 

(x) 𝜈(𝛼𝔵, 𝜆)  =  𝜈 (𝔵,
𝜆

|𝛼|
) for each 𝛼 ≠ 0;  

(xi) 𝜈(𝔵, 𝜆)  ⋄  𝜈(𝔶 , 𝜁)  ≥  𝜈(𝔵 +  𝔶, 𝜆 + 𝜁); 

(xii) 𝜈(𝔵,·) ∶  (0,∞)  →  [0,1] is continuous; 

(xiii) lim
𝜆→∞

 𝜈(𝔵, 𝜆)  =  0 and lim
𝜆→0
𝜈(𝔵, 𝜆) =  1; 

(xiv) 𝜔(𝔵, 𝜆)  <  1;  

(xv) 𝜔(𝔵, 𝜆)  =  0 iff 𝔵 =  0; 

(xvi) 𝜔(𝛼𝔵, 𝜆)  =  𝜔 (𝔵,
𝜆

|𝛼|
) for each 𝛼 ≠ 0;  

(xvii) 𝜔(𝔵, 𝜆)  ⊛  𝜔(𝔶 , 𝜁)  ≥  𝜔(𝔵 +  𝔶, 𝜆 + 𝜁); 

(xviii) 𝜔(𝔵,·) ∶  (0,∞)  → [0,1] is continuous; 

(ixx) lim
𝜆→∞

 𝜔(𝔵, 𝜆)  =  0 and lim
𝜆→0

𝜔(𝔵, 𝜆) =  1. 

In this case, (µ, 𝜈,𝜔) is called an 𝔑𝔑𝔖. 

 

Definition 2.2. Let a 𝔑𝔑𝔖 be (𝔛, µ, 𝜈, 𝜔,∗,⋄,⊛). According to the 𝔑𝔑  (µ, 𝜈,𝜔), 𝔵 =  (𝔵𝑘) is said 

to be convergent to ℓ ∈ 𝔛 if, ∀ 𝜖 >  0 and 𝜆 >  0, ∃ 𝑘0 ∈ ℕ : 𝜇(𝔵𝑘 − ℓ, 𝜆)  > 1 − 𝜖, 𝜈(𝔵𝑘 − ℓ, 𝜆)  <

𝜖 and 𝜔(𝔵𝑘 − ℓ, 𝜆)  < 𝜖 ∀ 𝑘 ≥  𝑘0. In this instance, we write  𝔵𝑘
 (𝜇,𝜈,𝜔)
→    ℓ as 𝑘 →  ∞ or (µ, 𝜈,𝜔) −

lim𝔵 = ℓ. 
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Definition 2.3. Let a 𝔑𝔑𝔖 be (𝔛, µ, 𝜈, 𝜔,∗,⋄,⊛). Then, for every 𝜖 > 0 and 𝜆 >  0, ∃ 𝑘0 ∈ ℕ such 

that 𝜇(𝔵𝑘 − 𝔵ℓ, 𝜆)  >  1 – 𝜖 , 𝜈(𝔵𝑘 − 𝔵ℓ, 𝜆)  < 𝜖  and 𝜔(𝔵𝑘 − 𝔵ℓ, 𝜆)  < 𝜖  ∀  𝑘, ℓ ≥  𝑘0.  This indicates 

that 𝔵 =  (𝔵𝑘) is a Cauchy sequence with respect to the 𝔑𝔑 (µ, 𝜈, 𝜔).  

 

Remark 2.4 [13]. The real normed linear space (𝔛, ‖⋅‖) has the following properties: 𝜇(𝔵, 𝜆):=
𝜆

𝜆+‖𝔵‖
 , 𝜈(𝔵, 𝜆):=

‖𝔵‖

𝜆+‖𝔵‖
 and 𝜔(𝔵, 𝜆):=

‖𝔵‖

𝜆
for all 𝔵 ∈ 𝔛 and 𝜆 >  0.Subsequently, 𝔵𝑛

‖⋅‖
→ 𝔵 iff 𝔵𝑛

(µ,𝜈,𝜔)
→    𝔵. 

 

3. Lacunary Statistical Convergence (𝕷𝓢𝓽𝕮) of double sequences in 𝕹𝕹𝕾  

 

The idea of 𝔏𝒮𝓉ℭ sequences in 𝔑𝔑𝔖 is examined in this section. First, let's define what we mean 

by θ-density:  

 

Definition 3.1 A 𝔏𝒮 is an ascending integer sequence 𝜃 =  (𝔍𝔯) such that 𝔥𝔯 ∶=  𝔍𝔯 − 𝔍𝔯−1  →  ∞ 

as 𝔯 →  ∞ and 𝔍0  =  0 are considered.  

In this study, the intervals identified by 𝜃 will be represented as 𝐼𝔯: = (𝔍𝔯−1, 𝔍𝔯], and the 𝔍𝔯/𝔍𝔯−1 

ratio will be shortened to 𝔔𝔯. Allow 𝑁 to ⊆ ℕ. Assuming the limit exists, the 𝜃 -density of 𝔍 is 

given by the number 𝛿𝜃(𝑁) = lim
𝔯

1

𝔥𝔯
|{𝔍 ∈  𝐼𝔯: 𝔍 ∈  𝑁}|. 

 

Definition 3.2 Consider the  𝜃. If, for each 𝜖 > 0, the set 𝔍(𝜖) has 𝜃-density zero, where 𝔍(𝜖) ∶

=  {𝑘 ∈  𝐼𝔯: |𝔵𝑘 −  ℓ| ≥ 𝜖}, then a sequence 𝔵 = (𝔵𝑘) is said to be ℵ𝜃-convergent to the number ℓ. 

ℵ𝜃 − lim 𝔵 = ℓ or 𝔵𝑘 → ℓ(ℵ𝜃) is written in this instance.  

 

Now we define the ℵ𝜃-convergence of double sequences with respect to 𝔑𝔑𝔖.  

 

Definition 3.3 Let 𝜃 be a 𝔏𝒮 and (𝔛, µ, 𝜈, 𝜔,∗,⋄,⊛) be a 𝔑𝔑𝔖. Then, ∀𝜖 > 0and 𝜆 > 0, 

 𝛿𝜃({(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜇(𝔵𝑗𝑘 −  ℓ, 𝜆) ≤  1 – 𝜖  or  𝜈(𝔵𝑗𝑘 − ℓ, 𝜆) ≥ 𝜖, 𝜔(𝔵𝑗𝑘 − ℓ, 𝜆) ≥ 𝜖})  =  0   

or equivalently 

𝛿𝜃 ({(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜇(𝔵𝑗𝑘 −  ℓ, 𝜆) >  1 – 𝜖, 𝜈(𝔵𝑗𝑘 − ℓ, 𝜆) < 𝜖 and 𝜔(𝔵𝑗𝑘 − ℓ, 𝜆) < 𝜖}) =  1.   

Here, we write ℵ𝜃
(µ,𝜈,𝜔)

− lim 𝔵 = ℓ or 𝔵𝑗𝑘
(µ,𝜈,𝜔)
→    ℓ(ℵ𝜃), where ℓ is referred to as ℵ𝜃

(µ,𝜈,𝜔)
− lim 𝔵, 

and We signify the collection of all ℵ𝜃-convergent sequences with regard to the 𝔑𝔑(µ, 𝜈,𝜔) by 

ℵ𝜃
(µ,𝜈,𝜔)

.  

 

Lemma 3.4 Consider a 𝔑𝔑𝔖 (𝔛, µ, 𝜈,𝜔,∗,⋄,⊛). Let θ be a 𝔏𝒮 . Then, ∀ 𝜖 > 0 and 𝜆 >  0, the 

statements that follow are comparable:  

ℵ𝜃
(µ,𝜈,𝜔)

− lim 𝔵 = ℓ. 

𝛿𝜃({(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜇(𝔵 𝑗𝑘 −  ℓ, 𝜆) ≤  1 − 𝜖}) =  𝛿𝜃({(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜈(𝔵 𝑗𝑘 −  ℓ, 𝜆) ≥

𝜖 and 𝜔(𝔵 𝑗𝑘 −  ℓ, 𝜆) ≥ 𝜖} ) = 0. 

𝛿𝜃({(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜇(𝔵𝑗𝑘 −  ℓ, 𝜆) >  1 − 𝜖 , 𝜈(𝔵𝑗𝑘 −  ℓ, 𝜆) < 𝜖 and 𝜔(𝔵𝑗𝑘 −  ℓ, 𝜆) < 𝜖}) = 1. 

𝛿𝜃({(𝑗, 𝑘) ∈ ℕ × ℕ ∶ 𝜇(𝑥𝑗𝑘 −  ℓ, 𝜆) > 1 – 𝜖}) = 𝛿𝜃({𝑘 ∈ : 𝜈(𝑥𝑗𝑘 −  ℓ, 𝜆) < 𝜖}) = 𝛿𝜃({𝑘 ∈ : 𝜔(𝑥𝑗𝑘 −

 ℓ, 𝜆) < 𝜖}) = 1. 

ℵ𝜃 − lim𝜇(𝔵𝑗𝑘 −  ℓ, 𝜆) = 1, ℵ𝜃 − lim𝜈(𝔵𝑗𝑘 −  ℓ, 𝜆) =  0 and ℵ𝜃 − lim 𝜔(𝔵𝑗𝑘 −  ℓ, 𝜆)  =  0. 

 

Theorem 3.5 Let θ be a 𝔏𝒮  and (𝔛, µ, 𝜈, 𝜔,∗,⋄,⊛)  be a 𝔑𝔑𝔖. ℵ𝜃
(𝜇,𝜈,𝜔)

-limit is unique if  𝔵 =

 (𝔵𝑗𝑘) is 𝔏𝒮𝓉ℭ with regard to the 𝔑𝔑(𝜇, 𝜈,𝜔).  

 

Proof. Assume that ℵ𝜃
(𝜇,𝜈,𝜔)

− lim 𝔵 = ℓ1 and ℵ𝜃
(𝜇,𝜈,𝜔)

− lim 𝔵 = ℓ2. Consider  𝜖 >  0 and choose 

>  0  : (1 −  𝔡)  ∗  (1 −  𝔡)  >  1 – 𝜖 , 𝔡 ⋄ 𝔡 < 𝜖 and  𝔡⊛ 𝔡 < 𝜖  . Next, define the following sets as 

follows for every 𝜆 >  0:  
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𝔍𝜇,1(𝔡, 𝜆)  =  {(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜇(𝔵𝑗𝑘 − ℓ1, 𝜆) ≤ 1 − 𝔡},   

𝔍𝜇,2(𝔡, 𝜆)  =  {(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜇(𝔵𝑗𝑘 − ℓ2, 𝜆) ≤ 1 − 𝔡}, 

𝔍𝜈,1(𝔡, 𝜆)  =  {(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜈(𝔵𝑗𝑘 − ℓ1, 𝜆) ≥ 𝔡}, 

𝔍𝜈,2(𝔡, 𝜆)  =  {(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜈(𝔵𝑗𝑘 − ℓ2, 𝜆) ≥ 𝔡}. 

𝔍𝜔,1(𝔡, 𝜆)  =  {(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜔(𝔵𝑗𝑘 − ℓ1, 𝜆) ≥ 𝔡}, 

𝔍𝜔,2(𝔡, 𝜆)  =  {(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜔(𝔵𝑗𝑘 − ℓ2, 𝜆) ≥ 𝔡} 

We have to use Lemma 3.1 since ℵ𝜃
(𝜇,𝜈,𝜔)

− lim 𝔵 = ℓ1.  

𝛿𝜃 (𝔍𝜇,1(𝜖, 𝜆))  =  𝛿𝜃 (𝔍𝜈,1(𝜖, 𝜆))  =  𝛿𝜃 (𝔍𝜔,1(𝜖, 𝜆)) = 0 for all 𝜆 >  0.  

Additionally, using ℵ𝜇,𝜈,𝜔
𝜃 − lim𝔵 = ℓ2, we get 

𝛿𝜃 (𝔍𝜇,2(𝜖, 𝜆))  =  𝛿𝜃 (𝔍𝜈,2(𝜖, 𝜆))  =  𝛿𝜃 (𝔍𝜔,2(𝜖, 𝜆)) = 0 for all 𝜆 >  0. 

Let's now  

𝔍𝜇,𝜈,𝜔(𝜖, 𝜆) =  (𝔍𝜇,1(𝜖, 𝜆) ∪  𝔍𝜇,2(𝜖, 𝜆))  ∩  (𝔍𝜈,1(𝜖, 𝜆) ∪ 𝔍𝜈,2(𝜖, 𝜆)) ∩  (𝔍𝜔,1(𝜖, 𝜆) ∪ 𝔍𝜔,2(𝜖, 𝜆)).  

Next, note that 𝛿𝜃 (𝔍𝜇,𝜈,𝜔(𝜖, 𝜆))  =  0 which suggests  

𝛿𝜃 (ℕ \ 𝔍𝜇,𝜈,𝜔(𝜖, 𝜆))  =  1. If 𝑘 ∈ ℕ \ 𝔍𝜇,𝜈,𝜔(𝜖, 𝜆), hence, there are three scenarios that could occur. 

(a) 𝑘 ∈ ℕ \ (𝔍𝜇,1(𝜖, 𝜆) ∪  𝔍𝜇,2(𝜖, 𝜆)) and  

(b) 𝑘 ∈  𝑁 \ (𝔍𝜈,1(𝜖, 𝜆) ∪  𝔍𝜈,2(𝜖, 𝜆)).  

(c) 𝑘 ∈  𝑁 \ (𝔍𝜔,1(𝜖, 𝜆) ∪ 𝔍𝜔,2(𝜖, 𝜆)).  

We first consider that 𝑘 ∈  𝑁 \ (𝔍𝜇,1(𝜖, 𝜆) ∪  𝔍𝜇,2(𝜖, 𝜆)) . Then we have  

𝜇(ℓ1 − ℓ2, 𝜆)  ≥  𝜇 (𝔵𝑘 − ℓ1,
𝜆

2
) ∗ 𝜇 (𝔵𝑘 − ℓ2,

𝜆

2
) > (1 −  𝔡)  ∗  (1 −  𝔡).  

𝜇(ℓ1 − ℓ2, 𝜆)  >  1 − 𝜖 since (1 −  𝔡)  ∗  (1 −  𝔡)  >  1 − 𝜖.  

Since 𝜖 > 0 was random, we obtain 𝜇(ℓ1 − ℓ2, 𝜆)  =  1 for any 𝜆 >  0, which results in ℓ1 =  ℓ2.  

As an alternative, we can write  

𝜈(ℓ1 − ℓ2, 𝜆) ≤  𝜈 (𝔵𝑘 − ℓ1,
𝜆

2
) ⋄ 𝜈 (𝔵𝑘 − ℓ2,

𝜆

2
) <  𝔡 ⋄ 𝔡 if 𝑘 ∈  𝑁 \ (𝔍𝜈,1(𝜖, 𝜆) ∪  𝔍𝜈,2(𝜖, 𝜆)). 

Using the knowledge that 𝔡 ⋄ 𝔡 < 𝜖, we can now observe that 𝜈(ℓ1 − ℓ2, 𝜆)  < 𝜖.  

Thus, for any 𝜆 >  0, 𝜈(ℓ1 − ℓ2, 𝜆)  =  0, suggesting that ℓ1 = ℓ2. 

Also, if 𝑘 ∈  𝑁 \ (𝔍𝜔,1(𝜖, 𝜆) ∪  𝔍𝜔,2(𝜖, 𝜆)), after which we could write  

𝜔(ℓ1 − ℓ2, 𝜆) ≤  𝜔 (𝔵𝑘 − ℓ1,
𝜆

2
) ⊛𝜔 (𝔵𝑘 − ℓ2,

𝜆

2
) <  𝑠 ⊛ 𝑠.  

We can observe that 𝜔(ℓ1 − ℓ2, 𝜆)  < 𝜖 by using the information that 𝔡⊛ 𝔡 < 𝜖.  

Thus, for any 𝜆 >  0, 𝜔(ℓ1 − ℓ2, 𝜆)  =  0 implies ℓ1 =  ℓ2.  

Hence, we deduce that ℵ𝜃
(𝜇,𝜈,𝜔)

-limit is unique in each case. 

Hereby, the theorem's proof is concluded. 

 

Theorem 3.6 Let 𝜃  be any 𝔏𝒮  and (𝔛, µ, 𝜈, 𝜔,∗,⋄,⊛)  be a 𝔑𝔑𝔖 . If (𝜇, 𝜈, 𝜔) − lim 𝔵 = ℓ , 

then ℵ𝜃
(𝜇,𝜈,𝜔)

− lim 𝔵 = ℓ. 

 

Proof. Let (𝜇, 𝜈, 𝜔) − lim 𝔵 = ℓ. Then for every 𝜖 > 0 and 𝜆 >  0, there is a number 𝑘0 ∈ ℕ such 

that 𝜇(𝔵𝑘 − ℓ, 𝜆)  >  1 − 𝜖 and 𝜈(𝔵𝑘 −  ℓ, 𝜆) < 𝜖 and  𝜔(𝔵𝑘 −  ℓ, 𝜆) < 𝜖 for all 𝑘 ≥  𝑘0.  

Hence the set {(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜇(𝔵𝑗𝑘 − ℓ, 𝜆) ≤  1 – 𝜖 or 𝜈(𝔵𝑗𝑘 −  ℓ, 𝜆) ≥ 𝜖, 𝜔(𝔵𝑗𝑘 −  ℓ, 𝜆) ≥ 𝜖} 

possesses certain number of terms. Given that each finite subset of ℕ has a density of zero,  

𝛿𝜃({(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜇(𝔵𝑗𝑘 −  ℓ, 𝜆) ≤ 1 – 𝜖   or  𝜈(𝔵𝑗𝑘 −  ℓ, 𝜆) ≥ 𝜖, 𝜔(𝔵𝑗𝑘 −  ℓ, 𝜆) ≥ 𝜖})  =  0,  

that is, ℵ𝜃
(𝜇,𝜈,𝜔)

− lim 𝔵 = ℓ. This concludes the theorem's proof. 

 

Example 3.7  Let (𝔛, ‖⋅‖) denote the space of all real numbers with the usual norm, and let 𝑎 ∗

𝑏 = 𝑎𝑏  , 𝑎 ⋄ 𝑏 = min {𝑎 + 𝑏, 1}  and 𝑎 ⊛ 𝑏 = min {𝑎 + 𝑏, 1} for all 𝑎, 𝑏 ∈ [0,1] . For all 𝑥 ∈ ℝ  and 

𝜆 > 0, consider 𝜇(𝔵, 𝜆):=
𝜆

𝜆+‖𝔵‖
, 𝜈(𝔵, 𝜆):=

‖𝔵‖

𝜆+‖𝔵‖
 and 𝜔(𝔵, 𝜆):=

‖𝔵‖

𝜆
. Then (𝔛, µ, 𝜈, 𝜔,∗,⋄,⊛) be a 𝔑𝔑𝔖.  
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Now we define a sequence 𝔵 = (𝔵𝑗𝑘) by  

𝔵𝑗𝑘 = {
(𝑗, 𝑘); for  𝑗𝑟 − [𝔥𝔯] + 1 ≤ 𝑗 ≤ 𝑗𝔯, 𝑘𝑟 − [𝔥𝔯] + 1 ≤ 𝑘 ≤ 𝑘𝔯, 𝔯 ∈ ℕ   

0; otherwise.
  

 

Let for 𝜖 > 0, 𝜆 > 0. 

𝔍𝔯(𝜖, 𝜆)   = {(𝑗, 𝑘) ∈ ℕ × ℕ:
𝜆

𝜆+‖𝔵𝑗𝑘‖
 ≤ 1 − 𝜖 or

‖𝔵𝑗𝑘‖

𝜆+‖𝔵𝑗𝑘‖
≥ 𝜖,

‖𝔵𝑗𝑘‖

𝜆
≥ 𝜖 },  

= {(𝑗, 𝑘) ∈ ℕ × ℕ: ‖𝔵𝑗𝑘‖ ≥
𝜖𝜆

1−𝜖
> 0 }, 

= {(𝑗, 𝑘) ∈ ℕ ×ℕ: ‖𝔵𝑗𝑘‖ = (𝑗, 𝑘) }, 

= {(𝑗, 𝑘) ∈ ℕ ×ℕ: 𝑗𝑟 − [√𝔥𝔯] + 1 ≤ 𝑗 ≤ 𝑗𝔯, 𝑘𝑟 − [√𝔥𝔯] + 1 ≤ 𝑘 ≤ 𝑘𝔯, 𝔯 ∈ ℕ}, 

and so, we get 

 
1

𝔥𝔯
|𝔍𝔯(𝜖, 𝜆)| ≤

1

𝔥𝔯
|{(𝑗, 𝑘) ∈ ℕ × ℕ: 𝑗𝑟 − [√𝔥𝔯] + 1 ≤ 𝑗 ≤ 𝑗𝔯, 𝑘𝑟 − [√𝔥𝔯] + 1 ≤ 𝑘 ≤ 𝑘𝔯, 𝔯 ∈ ℕ}| ≤

√𝔥𝔯

𝔥𝔯
,  

which implies that lim
𝔯

1

𝔥𝔯
|𝔍𝔯(𝜖, 𝜆)| = 0. Hence 

𝛿𝜃(𝔍𝔯(𝜖, 𝜆)) = lim
√𝔥𝔯

𝔥𝔯
= 0 as 𝔯 → ∞ implies that 𝔵𝑗𝑘 → 0(ℵ𝜃).  

On the other hand 𝔵𝑗𝑘 ↛ 0, since 

𝜇(𝔵𝑗𝑘, 𝜆) =
𝜆

𝜆+‖𝔵𝑗𝑘‖
= {

𝜆

𝜆+‖𝑗𝑘‖
; for 𝑗𝑟 − [𝔥𝔯] + 1 ≤ 𝑗 ≤ 𝑗𝔯, 𝑘𝑟 − [𝔥𝔯] + 1 ≤ 𝑘 ≤ 𝑘𝔯, 𝔯 ∈ ℕ   

1; otherwise.
 ≤ 1, and  

𝜈(𝔵𝑗𝑘, 𝜆) =
‖𝔵𝑗𝑘‖

𝜆+‖𝔵𝑗𝑘‖
= {

‖𝑗𝑘‖

𝜆+‖𝑗𝑘‖
; for 𝑗𝑟 − [𝔥𝔯] + 1 ≤ 𝑗 ≤ 𝑗𝔯, 𝑘𝑟 − [𝔥𝔯] + 1 ≤ 𝑘 ≤ 𝑘𝔯, 𝔯 ∈ ℕ   

0               ; otherwise.
 ≥ 0, also  

𝜔(𝔵𝑗𝑘, 𝜆) =
‖𝔵𝑗𝑘‖

𝜆+‖𝔵𝑗𝑘‖
= {

‖𝑗𝑘‖

𝜆+‖𝑗𝑘‖
; for 𝑗𝑟 − [𝔥𝔯] + 1 ≤ 𝑗 ≤ 𝑗𝔯, 𝑘𝑟 − [𝔥𝔯] + 1 ≤ 𝑘 ≤ 𝑘𝔯, 𝔯 ∈ ℕ   

0               ; otherwise.
 ≥ 0. 

This completes the proof. 

 

4. Lacunary statistically(𝕷𝓢𝓽) Cauchy double sequences in 𝕹𝕹𝕾  

 

This section introduces a new notion of statistical completeness and defines lacunary statistically 

Cauchy double sequences with regard to a 𝔑𝔑𝔖.  

 

Definition 4.1 Let 𝜃 be a 𝔏𝒮 and (𝔛, µ, 𝜈, 𝜔,∗,⋄,⊛) be a 𝔑𝔑𝔖. Then, ∀ 𝜖 > 0 and 𝜆 > 0, ∃ 𝑛 =

𝑛(𝜖) and 𝑚 =  𝑚(𝜖) such that  

𝛿𝜃({(𝑗, 𝑘) ∈ ℕ × ℕ: 𝜇(𝔵𝑗𝑘 − 𝔵𝑚𝑛, 𝜆) ≤ 1 − 𝜖  𝑜𝑟  𝜈(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆), 𝜔(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆) ≥ 𝜖}) = 0.  

This indicates that the sequence 𝔵 =  (𝔵𝑗𝑘) is 𝔏𝒮𝓉 − Cauchy (or ℵ𝜃-Cauchy) with regard to the  

(𝜇, 𝜈, 𝜔). 

 

Theorem 4.2 Consider a 𝔑𝔑𝔖 (𝔛, µ, 𝜈, 𝜔,∗,⋄,⊛) with any 𝔏𝒮 θ. If a sequence 𝔵 =  (𝔵𝑗𝑘) is ℵ𝜃-

Cauchy with regard to the  (𝜇, 𝜈,𝜔), then it is ℵ𝜃-convergent. 

 

Proof. Let 𝔵 =  (𝔵𝑘) be ℵ𝜃-convergent to ℓ with respect to the 𝔑𝔑(𝜇, 𝜈,𝜔), i.e., ℵ𝜃
(𝜇,𝜈,𝜔)

− lim 𝔵 =

ℓ. Then 

𝛿𝜃 ({(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜇 (𝔵𝑗𝑘 −  ℓ,
𝜆

2
 ) ≤ 1 – 𝜖  𝑜𝑟  𝜈 (𝔵𝑗𝑘 − ℓ,

𝜆

2
) ≥ 𝜖, 𝜔 (𝔵𝑗𝑘 − ℓ,

𝜆

2
) ≥ 𝜖})  = 0.  

Specifically, for 𝑘 =  𝑁 

𝛿𝜃 ({(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜇 (𝔵𝑚𝑛 −  ℓ,
𝜆

2
)  ≤  1 – 𝜖  𝑜𝑟  𝜈 (𝔵𝑚𝑛 −  ℓ,

𝜆

2
) ≥ 𝜖,𝜔 (𝔵𝑚𝑛 −  ℓ,

𝜆

2
) ≥ 𝜖}) = 0.  

Since  

𝜇(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆)  =  𝜇 (𝔵𝑗𝑘 − ℓ − 𝔵𝑚𝑛 + ℓ,
𝜆

2
+
𝜆

2
) ≥  𝜇 (𝔵𝑗𝑘 − ℓ,

𝜆

2
)  ∗  𝜇 (𝔵𝑚𝑛 − ℓ,

𝜆

2
)  

and since  
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𝜈(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆)  ≤  𝜈 (𝔵𝑗𝑘 − ℓ,
𝜆

2
) ⋄ 𝜈 (𝔵𝑚𝑛 −  ℓ,

𝜆

2
) , 𝜔(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆)  ≤  𝜔 (𝔵𝑗𝑘 − ℓ,

𝜆

2
)⊛ 𝜔 (𝔵𝑚𝑛 −

 ℓ,
𝜆

2
), 

 

we have 

𝛿𝜃({(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜇(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆) ≤ 1 – 𝜖  𝑜𝑟  𝜈(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆)  ≥ 𝜖,𝜔(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆)  ≥ 𝜖}) = 0,  

that is, with regard to the 𝔑𝔑 (𝜇, 𝜈, 𝜔), 𝔵 is ℵ𝜃-Cauchy. 

 

In contrast, let 𝔵 =  (𝔵𝑗𝑘)  be ℵ𝜃 -Cauchy, but with respect to the 𝔖  (𝜇, 𝜈, 𝜔) , it is not ℵ𝜃 -

convergent.   

Consequently, 𝑁 exists such that 𝛿𝜃(𝔄(𝜖, 𝜆))  =  0,            

(3) 

𝛿𝜃(𝔅(𝜖, 𝜆))  =  0,     𝑖. 𝑒.  𝛿𝜃(𝔅
𝐶(𝜖, 𝜆))  =  1;              

(4) 

where 

𝔄(𝜖, 𝜆)  =  {(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜇(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆)  ≤  1 − 𝜖  or  𝜈(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆) ≥ 𝜖, 𝜔(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆) ≥

𝜖}, 

𝔅(𝜖, 𝜆)  =  {(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜇 (𝔵𝑗𝑘 −  ℓ,
𝜆

2
)  >

1−𝜖

2
  ,   𝜈 (𝔵𝑗𝑘 − ℓ,

𝜆

2
)  <

𝜖

2
 and 𝜔 (𝔵𝑗𝑘 − ℓ,

𝜆

2
)  <

𝜖

2
}. 

Since 

𝜇(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆)  ≥ 2𝜇 (𝔵𝑗𝑘 − ℓ,
𝜆

2
) > 1 − 𝜖,     

𝜈(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆) ≤ 2𝜈 (𝔵𝑗𝑘 − ℓ,
𝜆

2
) < 𝜖 and   

𝜔(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆) ≤ 2𝜔 (𝔵𝑗𝑘 − ℓ,
𝜆

2
) < 𝜖 

if (𝔵𝑗𝑘 − ℓ,
𝜆

2
)  >

1 −𝜖

2
 , 𝜈 (𝔵𝑗𝑘 − ℓ,

𝜆

2
) <

𝜖

2
 and 𝜔 (𝔵𝑗𝑘 − ℓ,

𝜆

2
) <

𝜖

2
.  

Therefore, 

𝛿𝜃({(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜇(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆) > 1 − 𝜖 , 𝜈(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆)  < 𝜖 and 𝜔(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆)  < 𝜖}) = 0,  

since 𝔵 was ℵ𝜃-Cauchy with respect to 𝔑𝔑 (𝜇, 𝜈,𝜔), 𝛿𝜃(𝔄(𝜖, 𝜆))  =  1, which defies (3).  

Hence, with regard to  (𝜇, 𝜈, 𝜔), 𝔵 must be  ℵ𝜃-convergent. 

 

Definition 4.3 If all of the Cauchy sequences in (𝔛, 𝜏, 𝜑,𝜔,∗,⋄,⊛), then the 𝔑𝔑𝔖 (𝔛, 𝜏, 𝜑,𝜔,∗,⋄,⊛) 

is considered complete. 

 

Definition 4.4 If every ℵ𝜃- Cauchy sequence in relation to 𝔑𝔑 (𝜏, 𝜑, 𝜔), is ℵ𝜃- convergent in 

relation to 𝔑𝔑 (𝜏, 𝜑, 𝜔), then a 𝔑𝔑𝔖 (𝔛, 𝜏, 𝜑, 𝜔,∗,⋄,⊛) is statistically complete (ℵ𝜃- complete). 

 

Theorem 4.5 Let any 𝔏𝒮 be represented by 𝜃. In that case, any 𝔑𝔑𝔖 (𝔛, 𝜏, 𝜑, 𝜔,∗,⋄,⊛) is ℵ𝜃- 

complete, but not necessarily complete. 

 

Proof. Given a 𝔑𝔑 (𝜏, 𝜑, 𝜔), let 𝔵 =  (𝔵𝑗𝑘) be ℵ𝜃- Cauchy but not ℵ𝜃- convergent.  

Assuming 𝜖 > 0 and 𝜆 > 0, select 𝔡 >  0: (1 −  𝜖) ∗  (1 −  𝜖) > 1 − 𝔡, 𝜖 ⋄ 𝜖 < 𝔡 and 𝜖 ⊛ 𝜖 < 𝔡. 

Now, 

𝜏(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆) ≥ 𝜏 (𝔵𝑗𝑘 − ℓ,
𝜆

2
)  ∗  𝜏 (𝔵𝑚𝑛 − ℓ,

𝜆

2
) > (1 −  𝜖) ∗ (1 −  𝜖) > 1 − 𝔡, 

𝜑(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆) ≤ 𝜑 (𝔵𝑗𝑘 − ℓ,
𝜆

2
)  ∗  𝜑 (𝔵𝑚𝑛 − ℓ,

𝜆

2
) < 𝜖 ⋄ 𝜖 < 𝔡 and  

𝜔(𝔵𝑗𝑘 − 𝔵𝑚𝑛 , 𝜆) ≤ 𝜔 (𝔵𝑗𝑘 − ℓ,
𝜆

2
)  ∗  𝜔 (𝔵𝑚𝑛 − ℓ,

𝜆

2
) < 𝜖 ⊛ 𝜖 < 𝔡, as 𝔵 is not ℵ𝜃- convergent. 

As a result, 𝛿𝜃(ℌ
𝐶(𝜖, 𝜆))  =  0, where  

ℌ(𝜖, 𝜆) = {(𝑗, 𝑘) ∈ ℕ × ℕ ∶  𝜑𝔵𝑗𝑘− 𝔵𝑚𝑛(𝜖) ≤ 1 − 𝔯, 𝜔𝔵𝑗𝑘− 𝔵𝑚𝑛(𝜖) ≤ 1 − 𝔯}.  
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Consequently, 𝛿𝜃(ℌ(𝜖, 𝜆)) = 1, which is a contradiction, since 𝔵 was ℵ𝜃- Cauchy with regard to 

𝔑𝔑 (𝜏, 𝜑, 𝜔). Thus, 𝔵 needs to be ℵ𝜃- convergent in relation to 𝔑𝔑 (𝜏, 𝜑,𝜔). As a result, each 𝔑𝔑𝔖 

is ℵ𝜃- complete. 

 

We can observe from the following example that a 𝔑𝔑𝔖 is not complete in general. 

 

Example 4.6 For 𝔛 = (0,1],  let 𝜏(𝔵, 𝜆):=
𝜆

𝜆+‖𝔵‖
,  𝜑(𝔵, 𝜆):=

‖𝔵‖

𝜆+‖𝔵‖
 and 𝜔(𝔵, 𝜆):=

‖𝔵‖

𝜆
. When the 

sequence (
1

𝑛
) is Cauchy sequence with respect to 𝔑𝔑 (𝜏, 𝜑, 𝜔) but not convergent with respect to 

𝔑 (𝜏, 𝜑, 𝜔), then (𝔛, 𝜏, 𝜑, 𝜔,𝑚𝑖𝑛,𝑚𝑎𝑥,𝑚𝑎𝑥) is 𝔑𝔑𝔖 but not complete.  

 

This concludes the theorem's proof. 

 

Funding: “This research received no external funding”. 

Conflicts of Interest: “The authors declare no conflict of interest.”  

 

References 

 

1. Aytar. S, Statistical limit points of sequences of fuzzy numbers, Inform Sci. 2004; 165: 129-

138. 

2. Fang. J. X, A note on the completions of fuzzy metric spaces and fuzzy normed spaces, 

Fuzzy Sets and Systems 2002; 131: 399-407. 

3. Fast. H, Sur la convergence statistique, Colloq Math 1951; 2: 241-244. 

4. Felbin. C, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems 1992; 48: 

239-248. 

5. Fridy. J. A, On statistical convergence, Analysis 1985; 5: 301-313. 

6. Fridy. J. A, Orhan. C, Lacunary statistical convergence, Pacific J. Math. 1993; 160: 43-51. 

7. Fridy. J. A, Lacunary statistical summability, J. Math. Anal. Appl. 1993; 173: 497-504. 

8. Giles. R. A, Computer program for fuzzy reasoning, Fuzzy Sets and Systems, 1980; 4: 221-

234. 

9. Karakus. S, Demirci. K, Duman. O, Statistical convergence on intuitionistic fuzzy normed 

spaces, Chaos Solitons & fractals 2008; 35: 763-769. 

10. Mursaleen. M, Edely Osama. H. H, Statistical convergence of double sequences, J. Math. 

Anal Appl. 2003; 288: 223-231. 

11. Mursaleen. M and Mohiuddine. S. A, On lacunary statistical convergence with respect to 

the intuitionistic fuzzy normed space, Journal of Computational and Applied 

Mathematics, 233, (2009), 142-149. 

12. Park. J. H, Intuitionistic fuzzy metric spaces, Chaos Solitons & Fractals, 2004; 22: 1039-1046. 

13. Saadati. R, Park. J. H, On the intuitionistic fuzzy topological spaces, Chaos Solitons & 

fractals 2006; 27: 331-344. 

14. Savas. E, Mursaleen. M, On statistically convergent double sequences of fuzzy numbers, 

Inform Sci. 2004; 162: 183-192. 

15. Schweizer. B, Sklar. A, Statistical metric spaces, Pacific J. Math. 1960; 10: 313-334. 

16. Sencimen. C, Pehlivan. S, Statistical convergence in fuzzy normed linear space, Fuzzy Sets 

and Systems 2008; 159: 361-370. 

17. Xiao. J, Zhu. X, On linearly topological structure and property of fuzzy normed linear 

space, Fuzzy Sets and Systems 2002; 125: 153-161. 

18. Zadeh. L. A, Fuzzy sets, Inform Control 1965; 8: 338-353. 

Received: June 17, 2024. Accepted: August 9, 2024 

 


