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1. Introduction 

 

Zadeh [23], laid the foundation for fuzzy mathematics in 1965. This concept takes standard set 

theory to a higher level of analysis. After then, the idea received a number of proven improvements, 

and the reasoning has been used in a variety of scientific and engineering fields, including the study 

of approximation theory [1], linear systems [6] [17] and matrix theory. Several authors investigated 

at the theory with its topological aspects from their own angle and came to some important basic 

results that seem important when examining the idea in connection to different other generalized 

spaces.  

In 1992, Felbin [9] presented a new idea of fuzzy norms on linear spaces. Xiao and Zhu [22] 

expanded the concept of fuzzy norm by studying the topological properties of fuzzy normed linear 

spaces. Another fuzzy norm was established by Bag and Samanta [4]. Bag and Samanta [5] developed 

weak fuzzy boundedness, weak fuzzy continuity, strong fuzzy boundedness, fuzzy continuity, 

sequential fuzzy continuity, and the fuzzy norm of linear operators with respects to an associated 

fuzzy norm. Atanassov [2] developed the idea of an intuitionistic fuzzy set in 1984. He did this by 

designating a new kind of membership function that indicates how much an item does not belong 

in a particular set. Park [15] defined the notion of Intuitionistic Fuzzy Metric Space with the help of 

continuous t-norms and continuous. Amazing work was done on intuitionistic fuzzy topological 

spaces by sadati and park [18]. Many authors have since published their own works in the literature 

(see [12] [14] [16]). Among them are those who have made multiple important contributions to 

convergence theory and proposed convergent sequence spaces within the intuitionistic fuzzy 

normed space framework. Some important topological findings in fuzzy Banach spaces were studied 

in 2005 by Saadati and Vaezpour [19]. In 1998, Smarandache[21] developed the ideas of neutrosophic 

logic and Neutrosophic Set. Kirisci and Simsek [13] founded the concept of Neutrosophic Metric 

Spaces which addresses membership, non-membership and neutralness. The aim of this study is to 
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investigate topological characteristics of neutrosophic Banach space, building on the results of [19] 

earlier studies published in [19]. Furthermore, the information provides some unresearched results. 

 

2. Preliminaries 

 

Definition 2.1[10]:  A binary operation ∗ ∶   [0, 1] × [0, 1] → [0, 1] is called a continuous t-norm if 

following conditions hold: 

(i) 𝔷 ∗ 𝜍̃ = 𝜍̃ ∗ 𝔷 for all 𝔷, 𝜍̃ ∈ [0, 1]; 

(ii) ∗ is continuous; 

(iii)  𝔷 ∗ 1 = 𝔷, for all 𝔷 ∈  [0, 1]; 

(iv) ∗  is associative; 

If 𝔷 ≤ 𝜍̃ and  𝔡 ≤ 𝜗, with  𝔷, 𝜍̃, 𝔡, 𝜗 ∈ [0,1], then 𝔷 ∗ 𝔡 ≤  𝜍̃ ∗  𝜗. 

 

Definition 2.2[10]:  A binary operation  ⨀:  [0, 1] × [0, 1] → [0, 1] is called a continuous t-conorm 

if it holds the followings assertions: 

(i) 𝔷⨀𝜍̃ = 𝜍̃⨀𝔷 for all 𝔷, 𝜍̃ ∈ [0, 1];    

(ii) ⨀  is continuous; 

(iii) 𝔷⨀ 0 = 0 ; 

(iv) ⨀ is associative; 

(v) If 𝔷 ≤ 𝜍̃ and 𝔡 ≤   𝜗, with 𝔷, 𝜍̃, 𝔡, 𝜗 ∈ [0,1], then 𝔷⨀ 𝔡 ≤  𝜍̃⨀  𝜗.  

Definition 2.3:  The 6-tuple (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄)  is said to be a Neutrosophic Normed Linear Space 

[NNLS], if �̃� is a vector space over a field ℝ, ⋆ is a continuous t-norm, ⋄ is a continous t-conorm, and 

𝜂, 𝜐, 𝜍 are functions from �̃� × ℝ → [0, 1] meets the following conditions for every 𝔢, 𝔴 ∈ �̃� and ℴ, 𝔨 ∈

 ℝ  
   (n1)      0 ≤ 𝜂(𝔢, 𝔨) ≤ 1; 0 ≤ 𝜐(𝔢, 𝔨) ≤ 1;  0 ≤ 𝜍(𝔢, 𝔨) ≤ 1;    

   (n2)      𝜂(𝔢, 𝔨) +  𝜐(𝔢, 𝔨) + 𝜌(𝔢, 𝔨) ≤ 3; 

   (n3)       𝜂(𝔢, 𝔨) > 0; 

   (n4)      𝜂(𝔢, 𝔨) = 1 ⇔ 𝔳 =  0; 

   (n5)      𝜂(𝜎𝔢, 𝔨) = 𝜂 (𝔢,
 𝔨

|𝜎|
) for 𝜎 ≠ 0; 

   (n6)     𝜂(𝔢, ℴ) ⋆ 𝜂(𝔴, 𝔨) ≤ 𝜂(𝔢 + 𝔴, ℴ + 𝔨 ); 

   (n7)     𝜂(𝔢, 𝔨) ∶ (0, ∞) → [0, 1] is continuous; 

   (n8)     lim
 𝔨→∞

𝜂(𝔢, 𝔨) = 1 and lim
 𝔨→0

𝜂(𝔢, 𝔨) = 0;  

   (n9)     𝜐(𝔢, 𝔨) < 1; 

   (n10)   𝜐(𝔢, 𝔨) = 0 ⇔ 𝔳 = 0; 

   (n11)   𝜐(𝜎𝔢, 𝔨) = 𝜐 (𝔢,
 𝔨

|𝜎|
) for 𝜎 ≠ 0; 

   (n12)    𝜐(𝔢, ℴ) ⋄ 𝜐(𝔴, 𝔨) ≥ 𝜐(𝔢 + 𝔴, ℴ + 𝔨); 

   (n13)    𝜐(𝔢, 𝜏) ∶ (0, ∞) → [0, 1] is continuous; 

   (n14)    lim
 𝔨→∞

𝜐(𝔢, 𝔨) = 0 and lim
 𝔨→0

𝜐(𝔢, 𝔨) = 1;  

   (n15)    𝜍(𝔢, 𝔨) < 1; 

   (n16)    𝜍(𝔢, 𝔨) = 0 ⇔ 𝔢 = 0; 

   (n17)    𝜍(𝜎𝔢, 𝔨) = 𝜍 (𝔢,
 𝔨

|𝜎|
) for 𝜎 ≠ 0; 

   (n18)    𝜍(𝔢, ℴ) ⋄ 𝜍(𝔴, 𝔨) ≥ 𝜍(𝔢 + 𝔴, ℴ + 𝔨); 

   (n19)    𝜍(𝔢, 𝔨) ∶ (0, ∞) → [0, 1] is continuous; 

   (n20)    lim
 𝔨→∞

𝜍(𝔢, 𝔨) = 0  and lim
 𝔨→0

 𝜍(𝔢, 𝔨) = 1. 

 

Remark 2.4 [15]: 

(i) For every pair 0 < 𝔷1, 𝔷2< 1 we can find 0 < 𝜍1̃, 𝜍̃2 < 1 such that  𝔷1≤ 𝔷2 ∗ 𝜍̃2 and 𝔷2≥ 𝜍1̃ ⋄ 𝔷1.  

(ii) For every 0 < 𝜇 < 1 we can find 0 < 𝜍1̃, 𝜍̃2 < 1 such that 𝜇 ≤ 𝔷1 ∗ 𝔷2 and 𝔷1 ⋄ 𝔷2 ≥ 𝜇. 
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Definition 2.5:  In neutrosophic normed linear space, the open ball ℬ𝔳(𝜀, 𝔨) centred at 𝔢 is 

defined as ℬ𝔢(𝔯, 𝔨) = { 𝔢 ∈ �̃� ∶  1 − 𝜂(𝔢 − 𝔴, 𝔨) < 𝔯, 𝜐(𝔢 − 𝔴, 𝔨) > 𝜀 and 𝜍(𝔢 − 𝔴, 𝔨) > 𝔯 } where 0< 𝔯 < 1 

and 𝔨 > 0.  Similarly, the closed ball centred at 𝔢 is defined as 

 ℬ𝔢[𝔯, 𝔨] = { 𝔢 ∈ �̃� ∶  1 − 𝜂(𝔢 − 𝔴, 𝔨) ≤ 𝔯, 𝜐(𝔢 − 𝔴, 𝔨) ≥ 𝜀 and 𝜍(𝔢 − 𝔴, 𝔨) ≥ 𝔯 } where 0< 𝔯 < 1 and 𝔨 >

0. 

 

Remark 2.6 [15]:   Every open ball is an open set in neutrosophic normed linear space. 

 

Lemma 2.7:  Let (𝜂, 𝜐, 𝜍) be neutrosophic norm on (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄)  then  

(i)  𝜂(𝔢, 𝔨) is a non decreasing, 𝜐(𝔢, 𝔨) is non a non increasing and 𝜍(𝔢, 𝔨) is decreasing but not strictly 

with respect to 𝔨 for each 𝔢 ∈ �̃�. 

(ii) 𝜂(𝔢 − 𝔴, 𝔨) = 𝜂(𝔴 − 𝔢, 𝔨), 𝜐(𝔢 − 𝔴, 𝔨) = 𝜐(𝔴 − 𝔢, 𝔨) and 𝜍(𝔢 − 𝔴, 𝔨) = 𝜍(𝔴 − 𝔢, 𝔨). 

Proof:  Let  𝔨1 <  𝔨2, and 𝜃 = 𝔨2 −  𝔨1 or 𝔨2 = 𝜃 +  𝔨1, then  

(i)   𝜂(𝔢,  𝔨1) = 𝜂(𝔢,  𝔨1)  ⋆ 1 = 𝜂(𝔢,  𝔨1 ) ⋆ 𝜂(0, 𝜃) ≤ 𝜂(𝔢 + 0,  𝔨1 + 𝜃) = 𝜂(𝔢,  𝔨2)         ….  (1) 
⟹  𝜂(𝔢,  𝔨1) ≤  𝜂(𝔢,  𝔨2). 
       𝜐(𝔢,  𝔨1) = 𝜐(𝔢,  𝔨1)   ⋄ 0 = 𝜐(𝔢,  𝔨1) ⋆ 𝜐(0, 𝜃) ≥ 𝜐(𝔢 + 0,  𝔨1 + 𝜃) = 𝜐(𝔢,  𝔨2)          ….  (2) 

⟹  𝜐(𝔢,  𝔨1) ≥ 𝜐(𝔢,  𝔨2) and 

       𝜍(𝔢,  𝔨1) = 𝜍(𝔢,  𝔨1)   ⋄ 0 = 𝜍(𝔢,  𝔨1) ⋆ 𝜍(0, 𝜃) ≥ 𝜍(𝔢 + 0,  𝔨1 + 𝜃) = 𝜍(𝔢,  𝔨2)            ….  (3) 
⟹  𝜍(𝔢,  𝔨1) ≥ 𝜍(𝔢,  𝔨2). 

(ii) 𝜂(𝔢 − 𝔴, 𝔨) = 𝜂(−(𝔴 − 𝔢), 𝔨) =  𝜂 (𝔴 − 𝔢,
 𝔨

|−1|
) = 𝜂(𝔴 − 𝔢, 𝔨)                               ….   (4) 

      𝜐(𝔢 − 𝔴, 𝔨) = 𝜐(−(𝔴 − 𝔢), 𝔨) =  𝜐 (𝔴 − 𝔢,
 𝔨

|−1|
) = 𝜐(𝔴 − 𝔢, 𝔨)                               ….   (5)   

      𝜍(𝔢 − 𝔴, 𝔨) = 𝜍(−(𝔴 − 𝔢), 𝔨) =  𝜍 (𝔴 − 𝔢,
 𝔨

|−1|
) = 𝜍(𝔴 − 𝔢, 𝔨).                                ….  (6)        

 

 Definition 2.8   A point  𝔢 ∈ (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄) is said to be an interior point if there exist an open ball 

centred at 𝔢 is contained in (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄). 

 

Definition 2.9 Let ℐ ⊆ (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄) then the interior of the set ℐ of all the interior point of  ℐ with 

regard to neutrosophic norm (𝜂, 𝜐, 𝜍). 

 

Definition 2.10 A set ℐ ⊆ (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄) is said to be nowhere dense in (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄) if the closure 

of ℐ has no interior point. 

 

Definition 2.11 A neutrosophic normed space (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄) is called first category if  �̃� = ⋃ ℐ𝑖
∞
𝑖 , 

for each i, ℐ𝑖 is nowhere dense in (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄). 

 A neutrosophic normed space which is not first category is said to be second category. 

Definition 2.12  (𝔢𝑛) is said to be a Cauchy sequence in (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄) if for all 0 < 𝜀 < 1 there 

exist 𝔪 ∈ ℕ such that 1 − 𝜂(𝔢𝒾 − 𝔢𝒿 , 𝔨) ≤ 𝜀, 𝜐(𝔢𝒾 − 𝔢𝒿 , 𝔨) < 𝜀 and 𝜍(𝔢𝒾 − 𝔢𝒿 , 𝔨) < 𝜀 for all 𝒾, 𝒿 ≥ 𝔪 and 𝔨 >

0. 

 

Definition 2.13 A neutrosophic normed linear space (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄) is said to be complete, if every 

Cauchy sequence (𝔢𝑛) in (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄) converges in (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄). 

 

Definition 2.14 Let (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄) and (ℳ̃, 𝜂, 𝜐, 𝜍,⋆,⋄) are neutrosophic normed linear space. The 

linear operator Ψ ∶  ℭ → ℳ̃, where ℭ ⊆ �̃� is closed ⇔ it satisfies the following condition that Ψ(𝔢𝑛) →

Ψ(𝔢) whenever 𝔢𝑛 → 𝔢 and 𝔢 ∈ ℭ for all n. 

 

3. Main Results 

 

Theorem 3.1    A complete neutrosophic normed linear space (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄) is of second category 

space. 
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Proof: Suppose the statement is not true. i.e  (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄) is not of second category and hence 

 �̃� = ⋃ (𝔉𝑖
∞
𝑖=1 , 𝜂, 𝜐, 𝜍,⋆,⋄) for each 𝑖, (𝔉𝑖, 𝜂, 𝜐, 𝜍,⋆,⋄) is nowhere dense in �̃� = (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄). 

 Now for 𝑖 = 1, 𝔉1 is nowhere dense in �̃�. So the closure of 𝔉1 is not an open set, this implies 𝔉1
̅̅ ̅𝑐

 

contains an interior point, let 𝔢1 ∈ 𝔉1
̅̅ ̅𝑐

 such that for 𝔨 > 0 and every 0< 𝔯1 <
1

2
  there exists a ball 

centred at 𝔢1, ℬ1 =  ℬ𝔢1
(𝔯, 𝔨) = { 𝜉 ∈ 𝔑 ∶ 1 − 𝜂(𝔢1 − 𝜉, 𝔨) < 𝜀, 𝜐(𝔢1 − 𝜉, 𝔨) < 𝜀 and 𝜍(𝔢1 − 𝜉, 𝔨) < 𝜀} ⊆ 𝔉1

̅̅ ̅𝑐
. 

Again 𝔉2
̅̅̅̅ 𝑐

 is not open in �̃� therefore 𝔉2
̅̅̅̅ 𝑐

∩ ℬ𝔢1
(

𝔯1

2
, 𝔨) = ∅; where 𝔯1 <

𝔯

2
, on the other hand, 𝔉2

̅̅̅̅ 𝑐
 

intersect the ball ℬ𝔢1
(

𝔯1

2
, 𝔨). Now let 𝔉2

̅̅̅̅ 𝑐
∩ ℬ𝔢1

(𝔯2, 𝔨) contains a ball ℬ2 = ℬ𝔢2
(

𝔯1

2
, 𝔨) where 𝔯2 <

𝔯1

2
, 

continuing this process of forming the ball ℬ𝑛 = ℬ𝔢𝑛
(𝔯𝑛 , 𝔨), we shall have ℬ𝑛+1 ⊆ ℬ𝑛 

Where 𝔯𝑛+1 <
𝔯𝑛

2
 and 𝔯𝑛 <

1

2𝑛 . We get (𝔢𝑛) of the centres of the balls ℬ𝑛. Now we show that (𝔢𝑛) is 

a Cauchy sequence. Let 𝑛𝔯 ∈ ℕ and let 𝓃 > 𝓂 > 𝓃𝔯 ⇒ ℬ𝑛 ⊆ ℬ𝑚, take 𝜛 ∈ ℬ𝑚, then  

1- 𝜂 (𝔢𝑛 −  𝜛,
  𝔨

2
) <

1

2𝑛,   𝜐 (𝔢𝑛 −  𝜛,
  𝔨

2
) <

1

2𝑛 and 𝜍 (𝔢𝑛 −  𝜛,
  𝔨

2
) <

1

2𝑛                                             

(3.1.1) 

1- 𝜂 (𝔢𝑚 −  𝜛,
  𝔨

2
) <

1

2𝑚,   𝜐 (𝔢𝑚 −  𝜛,
  𝔨

2
) <

1

2𝑚 and 𝜍 (𝔢𝑚 −  𝜛,
  𝔨

2
) <

1

2𝑚.                                        (3.1.2) 

Now, 𝜂(𝔢𝑛 − 𝔢𝑚 , 𝔨) = 𝜂(𝔢𝑛 − 𝜛 + 𝜛 −  𝔢𝑚 , 𝔨) 

                                     ≥ 𝜂 (𝔢𝑛 − 𝜛,
  𝔨

2
) ⋆ 𝜂 (𝜛 − 𝔢𝑚 ,

  𝔨

2
) > (1 −

1

2𝑛) ⋆ (1 −
1

2𝑚) > 1 − 𝔯′                 (3.1.3) 

                                                                                                                             
 𝜐(𝔢𝑛 −  𝔢𝑚 , 𝔨) = 𝜐(𝔢𝑛 − 𝜛 + 𝜛 −  𝔢𝑚 , 𝔨) 

                           ≤ 𝜐 (𝔢𝑛 − 𝜛,
  𝔨

2
) ⋄ 𝜐 (𝜛 − 𝔢𝑚 ,

  𝔨

2
) <

1

2𝑛 ⋄
1

2𝑚 < 𝔯′                                                         (3.1.4) 

𝜍(𝔢𝑛 −  𝔢𝑚 , 𝔨) = 𝜍(𝔢𝑛 − 𝜛 + 𝜛 −  𝔢𝑚 , 𝔨) 

                            ≤ 𝜍 (𝔢𝑛 − 𝜛,
  𝔨

2
) ⋄ 𝜍 (𝜛 − 𝔢𝑚 ,

  𝔨

2
) <

1

2𝑛 ⋄
1

2𝑚 < 𝔯′.                                                    (3.1.5) 

Since for every 𝑛 and 𝑚 we can 0<𝔯′ < 1 such that (1 −
1

2𝑛) ⋆ (1 −
1

2𝑚) > 1 − 𝔯′ and 
1

2𝑛 ⋄
1

2𝑚 < 𝔯′. 

Thus from equations (3.1.3), (3.1.4) and (3.1.5), we conclude that (𝔢𝑛) is a Cauchy sequence with 

respect to neutrosophic norm (𝜂, 𝜐, 𝜍), let (𝔢𝑛) converges at 𝔢 ∈ �̃�. 𝔢 lies in some 𝔉𝑖
̅̅̅, because �̃� is 

complete, 𝔢 ∈ 𝔉𝑡
̅̅ ̅  for a particular 𝑡, therefore 𝔉𝑡

̅̅ ̅ contains some open ball ℬ𝔢(𝔢, 𝔨) which contradict 

that 𝔉𝑡
̅̅ ̅ is nowhere dense in �̃�. Thus theorem is concluded. 

 

Theorem: 3.2:  Let (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄) and (ℳ̃, 𝜂1, 𝜐1, 𝜍1,⋆,⋄) be Neutrosophic Banach spaces and  

Ψ  be a continuous linear oprator from(�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄) onto (ℳ̃, 𝜂1, 𝜐1, 𝜍1,⋆,⋄). Then Ψ is an open 

mapping. 

Proof. 

Step- I. Let 𝔓 be a ball centred at 0 in �̃� =(�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄), we shall show that 0∈ 𝑖𝑛𝑡(Ψ(�̅�)), let 𝔉 is 

a neighbourhood of 0 such that 𝔉 + 𝔉 ⊂  𝔓, now ℳ̃ =  Ψ(�̃�), since Ψ is a surjective mapping, then 

by Theorem (3.1) we obtain that if ℳ̃ =  ⋃ Ψ( 𝔉𝑛𝑛≥1 ) then there exist 𝓅0 ∈ ℕ such that 

 𝑖𝑛𝑡(Ψ( 𝔉0
̅̅ ̅̅ ) ) is empty, therefore 0 = Ψ(0) ∈ int (Ψ(ℨ̅)) −  int (Ψ(ℨ̅)) ⊆ Ψ(ℨ̅) − Ψ(ℨ̅) =  Ψ(ℨ) −

Ψ(𝔷) = Ψ(ℨ − 𝔷) ⊂ Ψ(ℨ̅). This shows that Ψ −image of the neighbourhood of 0 belongs to �̃� contains 

a neighbourhood of 0 in ℳ̃. 𝜌𝑛 

Step II.  Let 0∈ 𝔓 and 𝔓 is open then 𝔓 contains a ball ℬ0(𝛿, 𝔨0) for some 0 < 𝛿 < 1 and 𝔨0 > 0,  a 

sequence (𝔢𝑛) can be find, where 0 < 𝔢𝑛 < 1, such that 𝔢𝑛 → 0 as 𝑛 → ∞ and by remark (2.4) we have  

lim
𝑛

[(1 − 𝔢1) ⋆ (1 − 𝔢2) … (1 − 𝔢𝑛)] > 1 − 𝛿.                                                                                       (3.2.1) 

However, if we construct a sequence of neighborhoods ℬ0(𝔢𝑛 , 𝜏𝑛) = ℬ𝑛 (say), where 𝜏𝑛 =
𝔨0

2𝑛 then 

by step-I, Ψ(ℬ𝑛) contains a neighbourhood 𝔚𝑛= ℬ0(𝜆𝑛 , 𝜌𝑛) ⊂ Ψ(ℬ𝑛), where 

 0 < 𝜆𝑛 < 1 and 𝔨0 > 0, we have 𝜏𝑛 → 0 as 𝑛 → ∞ this lead us to choose 𝜆𝑛 and 𝜌𝑛 such that 

𝜆𝑛 , 𝜌𝑛 → 0 as 𝑛 → ∞. We get  𝔚1 ⊂ 𝑖𝑛𝑡( Ψ(𝔓)), take 𝓀 ∈ 𝔚1 then 𝓀 ∈ Ψ(ℬ1), we now form a ball 

centred at 𝓀, ℬ𝓀(𝜆2, 𝜌2) such that ℬ𝓀(𝜆2, 𝜌2) ⋂ Ψ(ℬ1) ≠ ∅, there there exist 𝔡1 ∈ ℬ1 such that Ψ(𝔡1) ∈

Ψ(ℬ1). 
𝜂1(𝓀 − Ψ(𝔡1)), 𝜌2) > 1 − 𝜆2, 𝜐1(𝓀 − Ψ(𝔡1)), 𝜌2) < 𝜆2 and 𝜍1(𝓀 − Ψ(𝔡1)), 𝜌2) < 𝜆2                   (3.2.2) 
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⇒  𝓀 − Ψ(𝔡1) ∈ 𝔚2 and 𝔚2 ⊂ Ψ(ℬ2) then there exists 𝔡2 ∈ ℬ2 such that Ψ(𝔡2) ∈ Ψ(ℬ2) and  

𝜂1(𝓀 − Ψ(𝔡1) − Ψ(𝔡2)), 𝜌3) > 1 − 𝜆3, 𝜐1(𝓀 − Ψ(𝔡1) − Ψ(𝔡2)), 𝜌3) < 𝜆3 and  

𝜍1(𝓀 − Ψ(𝔡1) − Ψ(𝔡2)), 𝜌3) < 𝜆3.                                                                                                         (3.2.3)   

⇒ 𝓀 − Ψ(𝔡1) − Ψ(𝔡2) ∈ 𝔚3, keeping up this procedure, we get a sequence (𝔡𝑛) such that 𝔡𝑛 ∈ ℬ𝑛 

and  𝜂1(𝓀 − ∑ Ψ(𝑛−1
𝑖= 𝔡𝑖), 𝜌𝑛) >1-𝜆𝑛 ,  𝜐1(𝓀 − ∑ Ψ(𝑛−1

𝑖= 𝔡𝑖), 𝜌𝑛)<𝜆𝑛 and 

       𝜍1(𝓀 − ∑ Ψ(𝑛−1
𝑖= 𝔡𝑖), 𝜌𝑛)< 𝜆𝑛.                                                                                                            (3.2.4) 

 Now we demonstrate that  (𝔊𝑛) to be a Cauchy sequence, where 𝔊𝑛 = ∑ 𝔡𝑖 .𝑛
𝑖=1  When 𝑛 → ∞ , 

𝜏𝑛 → 0, this implies that there exist some 𝑛0 ∈ ℕ such that o< 𝜏𝑛 < 𝔨′ for all 𝑛 ≥ 𝑛0 where 𝔨′ =

min {𝔨1, 𝔨2, … 𝔨𝑖}. Let 𝔭 > 𝔮 > 𝑛0 and then    

𝜂( 𝔊𝑛 − 𝔊𝑚 , 𝔨) = 𝜂( ∑ 𝔡𝑗 ,
𝔮+𝑖
𝑗=𝔮+1 𝔨) ≥ 𝜂(𝔡𝔮+1, 𝔨1) ⋆ 𝜂(𝔡𝔮+2, 𝔨2) ⋆ … ⋆ 𝜂(𝔡𝔮+𝑖, 𝔨𝑖) > 1 −  𝔢             (3.2.5) 

𝜐( 𝔊𝑛 − 𝔊𝑚 , 𝔨) = 𝜐( ∑ 𝔡𝑗 ,
𝔮+𝑖
𝑗=𝔮+1 𝔨) ≤ 𝜐(𝔡𝔮+1, 𝔨1) ⋄ 𝜐(𝔡𝔮+2, 𝔨2) ⋄ … ⋄ 𝜐(𝔡𝔮+𝑖, 𝔨𝑖) <  𝔢                   (3.2.6) 

𝜍( 𝔊𝑛 − 𝔊𝑚 , 𝔨) = 𝜍( ∑ 𝔡𝑗 ,
𝔮+𝑖
𝑗=𝔮+1 𝔨) ≤ 𝜍(𝔡𝔮+1, 𝔨1) ⋄ 𝜍(𝔡𝔮+2, 𝔨2) ⋄ … ⋄ 𝜍(𝔡𝔮+𝑖, 𝔨𝑖) <  𝔢 .                      (3.2.7) 

Since, we had (see remark (2.4) and lemma (2.7)) 

𝜂(𝔡𝔮+1, 𝔨1) ⋆ 𝜂(𝔡𝔮+2, 𝔨2) ⋆ … ⋆ 𝜂(𝔡𝔮+𝑖 , 𝔨𝑖) ≥  𝜂(𝔡𝔮+1, 𝔨′) ⋆ 𝜂(𝔡𝔮+2, 𝔨′) ⋆ … ⋆ 𝜂(𝔡𝔮+𝑖, 𝔨′) 

                                                             ≥ 𝜂(𝔡𝔮+1, 𝜏𝔮+1) ⋆ 𝜂(𝔡𝔮+2, 𝜏𝔮+2) ⋆ … ⋆ 𝜂(𝔡𝔮+𝑖 , 𝜏𝔮+𝑖) 

                                                                >(1 − 𝔢𝔮+1) ⋆ (1 − 𝔢𝔮+1) ⋆ … ⋆ (1 − 𝔢𝔮+𝑖) > 1 −  𝔢          (3.2.8) 

𝜐(𝔡𝔮+1, 𝔨1) ⋄ 𝜐(𝔡𝔮+2, 𝔨2) ⋄ … ⋄ 𝜐(𝔡𝔮+𝑖 , 𝔨𝑖) ≤  𝜐(𝔡𝔮+1, 𝔨′) ⋄ 𝜐(𝔡𝔮+2, 𝔨′) ⋄ … ⋄ 𝜐(𝔡𝔮+𝑖, 𝔨′) 

                                                            ≤ 𝜐(𝔡𝔮+1, 𝜏𝔮+1) ⋄ 𝜐(𝔡𝔮+2, 𝜏𝔮+2) ⋄ … ⋄ 𝜐(𝔡𝔮+𝑖 , 𝜏𝔮+𝑖) 

                                                                   < 𝔢𝔮+1 ⋄ 𝔢𝔮+1 ⋄ … ⋄ 𝔢𝔮+𝑖 <  𝔢                                            (3.2.9) 

𝜍(𝔡𝔮+1, 𝔨1) ⋄ 𝜍(𝔡𝔮+2, 𝔨2) ⋄ … ⋄ 𝜍(𝔡𝔮+𝑖, 𝔨𝑖) ≤  𝜍(𝔡𝔮+1, 𝔨′) ⋄ 𝜍(𝔡𝔮+2, 𝔨′) ⋄ … ⋄ 𝜍(𝜂, 𝔨′) 

                                                        ≤ 𝜍(𝔡𝔮+1, 𝜏𝔮+1) ⋄ 𝜍(𝔡𝔮+2, 𝜏𝔮+2) ⋄ … ⋄ 𝜍(𝔡𝔮+𝑖, 𝜏𝔮+𝑖) 

                                                                  < 𝔢𝔮+1 ⋄ 𝔢𝔮+1 ⋄ … ⋄ 𝔢𝔮+𝑖 <  𝔢.                                        (3.2.10) 

Thus, from equations (3.2.5), (3.2.6) and (3.2.7) we obtain that  

𝜂(𝔊𝑛 − 𝔊𝑚 , 𝔨) → 1, 𝜐(𝔊𝑛 − 𝔊𝑚 , 𝔨) → 0 and 𝜍(𝔊𝑛 − 𝔊𝑚 , 𝔨) → 0 for every 𝔨 > 0, hence (𝔊𝑛) is a 

Cauchy sequence. Let (𝔊𝑛) converges to 𝔡 ∈ �̃�, since �̃� is Banach space, which implies 

 𝔡 = ∑ 𝔡𝑗𝑗≥1 , now 𝜌𝑛 → 0, so for a fix 𝜌 > 0 we can find 𝑛0 such that 𝜌 > 𝜌𝑛 for 𝑛 > 𝑛0, it follows 

𝜂1(𝓀 − Ψ(𝔊𝑛−1)), 𝜌) > 𝜂1(𝓀 − Ψ(𝔊𝑛−1)), 𝜌𝑛) > 1 − 𝜆𝑛                                                        (3.2.11) 

 𝜐1(𝓀 − Ψ(𝔊𝑛−1)), 𝜌) <  𝜐1(𝓀 − Ψ(𝔊𝑛−1)), 𝜌𝑛) < 𝜆𝑛                              (3.2.12) 

𝜍1(𝓀 − Ψ(𝔊𝑛−1)), 𝜌) < 𝜍1(𝓀 − Ψ(𝔊𝑛−1)), 𝜌𝑛) < 𝜆𝑛.        (3.2.13) 

⟹  𝓀 =  Ψ(𝔊𝑛−1) as 𝑛 → ∞ or 𝓀 = Ψ(∑ 𝔡𝑖
𝑛−1
𝑖= ) and 𝑛 → ∞, but it is known that 𝔡 =  lim

𝑛→∞
∑ 𝔡𝑖

𝑛−1
𝑖=  

was in ℬ0(𝛿, 𝔨0). Because 𝜂(𝔡, 𝔨0) ≥ lim
𝑛→∞

𝜂(∑ 𝔡𝑖 ,𝑛
𝑖= 𝔨0) ≥ lim

𝑛→∞
[𝜂(𝔡1, 𝜏1) ⋆ 𝜂(𝔡2, 𝜏2) ⋆ … ⋆ 𝜂(𝔡𝑛 , 𝜏𝑛) 

                                                        > lim
𝑛→∞

(1 − 𝔢1) ⋆ (1 − 𝔢2) ⋆ … ⋆ (1 − 𝔢𝑛) > 1 − 𝛿               (3.2.14) 

                                        𝜐(𝔡, 𝔨0) ≤ lim
𝑛→∞

𝜐(∑ 𝔡𝑖 ,

𝑛

𝑖=

𝔨0) ≤ lim
𝑛→∞

[𝜐(𝔡1, 𝜏1) ⋄ 𝜐(𝔡2, 𝜏2) ⋄ … ⋄ 𝜐(𝔡𝑛 , 𝜏𝑛) 

                                                   < lim
𝑛→∞

𝔢1 ⋄ 𝔢2 ⋄ … ⋄ 𝔢𝑛 < 𝛿                                                              (3.2.15) 

    ∈                                   𝜍(𝔡, 𝔨0) ≤ lim
𝑛→∞

𝜍(∑ 𝔡𝑖 ,

𝑛

𝑖=

𝔨0) ≤ lim
𝑛→∞

[𝜍(𝔡1, 𝜏1) ⋄ 𝜍(𝔡2, 𝜏2) ⋄ … ⋄ 𝜍(𝔡𝑛 , 𝜏𝑛) 

                                                       < lim
𝑛→∞

𝔢1 ⋄ 𝔢2 ⋄ … ⋄ 𝔢𝑛 < 𝛿.                                                        (3.2.16) 

Since, 𝔨0 = ∑ 𝜏𝑛 = ∑
𝔨0

2𝑛
∞
𝑛=1

∞
𝑛=1 = 𝔨0 ∑

1

2𝑛
∞
𝑛=1 . Thus it is shown that Ψ − image of  ℬ0(𝛿, 𝔨0) contains a 

neighbourhood of 0 = Ψ(0) ∈ ℳ̃. 

Step-III        We will demonstrate that Ψ(ℱ) is open in ℳ̃ if ℱ is open in �̃�.  Let 𝓀 = Ψ(𝔡) this 

implies 𝔡 ∈ ℱ, since ℱ is open, therefore ℱ contains ℬ𝔡(𝔯, 𝔨), a neighbourhood of 𝔡. We have already 

proved that if 𝔡0 ∈ ℬ0(𝛿, 𝔨0) ⊂ 𝔓 then Ψ(𝔡0) ∈  𝔚1 ⊆ 𝑖𝑛𝑡Ψ(𝔓). Hence if 𝔡 ∈ ℱand ℬ𝔡(𝔯, 𝔨) ⊂ ℱ then 

Ψ(𝔡) ∈ 𝑖𝑛𝑡(Ψ(ℱ)). Consequently Ψ(ℱ) is open. 

 

Example 3.3:   Let �̃� = ℳ̃ =  ℝ, and (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄ ) (ℳ̃, 𝜂1, 𝜐1, 𝜍1,⋆,⋄ ) be Neutrosophic Banach 

spaces. Also 𝜂, 𝜐, 𝜍 are defined by 𝜂(𝔡, 𝔨) =
|𝔡|

|𝔡|+𝔨
, 𝜐(𝔡, 𝔨) =

|𝔨|

|𝔡|+𝔨
  and 𝜍(𝔡, 𝔨) =

|𝔡|

𝔨
 . 
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Similarly for ℳ̃ the norms are by 𝜂1(𝔡, 𝔨) =
|𝔡|

|𝔡|+𝔨
, 𝜐1(𝔡, 𝔨) =

|𝔨|

|𝔡|+𝔨
  and 𝜍1(𝔡, 𝔨) =

|𝔡|

𝔨
. 

The continuous linear operator  Ψ from(�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄) onto (ℳ̃, 𝜂1, 𝜐1, 𝜍1,⋆,⋄) defined by Ψ(𝔡) = 
𝔡

2
. 

Then Ψ is an open mapping 

Proof. 

Let 𝔓 be an open set in (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄ ), the image of 𝔓 under  Ψ is Ψ(𝔓) = {
𝔡

2
/𝔡 ∈ 𝔓}. 

To Prove Ψ is an open map, it is enough to show that Ψ(𝔓) is open. 

Let 𝑝 ∈  Ψ(𝔓). Therefore, there exists 𝔡 ∈ 𝔓 such that 𝑝 =  Ψ(𝔡) = 
𝔡

2
. 

Since 𝔡 ∈ 𝔓 and 𝔓 is open, therefore there exist 0< 𝔯 < 1 such that open ball centered at 𝔡, with 

respect to the norm 𝜂, 𝜐, 𝜍 ,  ℬ𝜂,𝜐,𝜍(𝔡, 𝔯) (say) is contained in 𝔓. 

ℬ𝜂,𝜐,𝜍(𝔡, 𝔯) ⊂ 𝔓. 

 Since, Ψ(ℬ𝜂(𝔡, 𝔯)) =  ℬ𝜂1,𝜐1,𝜍1
(

𝔡

2
,

𝔯

2
) and ℬ𝜂(𝔡, 𝔯) ⊂ 𝔓 

⟹ Ψ(ℬ𝜂,𝜐,𝜍(𝔡, 𝔯)) ⊂ Ψ(𝔓) 

⟹ ℬ𝜂1,𝜐1,𝜍1
(

𝔡

2
,

𝔯

2
) ⊂ Ψ(𝔓) 

⟹ ℬ𝜂1,𝜐1,𝜍1
( 𝑝,

𝔯

2
) ⊂ Ψ(𝔓). 

Therefore there exists a open ball centered at 𝑝 is contained in  Ψ(𝔓). 

Since 𝑝 belongs to Ψ(𝔓) is arbitrary, there every point of  Ψ(𝔓) in an interior point. 

Hence Ψ(𝔓) is open. Therefore Ψ is an open mapping. 

 

Theorem 3.4: Let (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄) and (ℳ̃, 𝜂1, 𝜐1, 𝜍1,⋆,⋄) be Neutrosophic Banach space and 

Ψ be a linear oprator from (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄)  to (ℳ̃, 𝜂1, 𝜐1, 𝜍1,⋆,⋄). Moreover if for every sequence (𝔡𝑛) of 

the elements of �̃� converges to 𝔡 ∈ �̃�, the sequence Ψ(𝔡𝑛) converges to 𝓀 ∈ ℳ̃ with the property 

𝓀 = Ψ(𝔡) then Ψ is continuous 

 

Proof:    We firstly define Neutrosophic norm (𝛾, 𝜗, 𝛽) on �̃� × ℳ̃ defined as 

 𝛾(((𝔡, 𝓀), 𝔨) = 𝛾(𝔡, 𝔨) ⋆ 𝛾1(𝓀, 𝔨) 

𝜗(((𝔡, 𝓀), 𝔨) = 𝜗(𝔡, 𝔨) ⋄ 𝜗1(𝓀, 𝔨)  and  

𝛽(((𝔡, 𝓀), 𝔨) = 𝛽(𝔡, 𝔨) ⋄ 𝛽(𝓀, 𝔨). Let (𝔡𝑛) be a Cauchy sequence in �̃�, then we prove that Ψ(𝔡𝑛) will 

be Cauchy in ℳ̃, for this, it is enough  to show that �̃� × ℳ̃ is complete with respect to Neutrosophic 

norms (𝛾, 𝜗, 𝛽). Let (𝔡𝑛 , 𝓀𝑛) ∈ �̃� × ℳ̃ be a Cauchy, then for all 0 < 𝔯 < 1 and 𝔨 > 0 there exists a 𝑛0 ∈

ℕ such that 𝛾((𝔡𝑛 , 𝓀𝑛) − (𝔡𝑚 , 𝓀𝑚), 𝔨) > 1 − 𝔯, 𝜗((𝔡𝑛 , 𝓀𝑛) − (𝔡𝑚 , 𝓀𝑚), 𝔨) < 𝔯 and 𝛽((𝔡𝑛 , 𝓀𝑛) −

(𝔡𝑚 , 𝓀𝑚), 𝔨) < 𝔯  for all 𝑛, 𝑚 > 𝑛0. 

𝛾((𝔡𝑛 , 𝓀𝑛) − (𝔡𝑚 , 𝓀𝑚), 𝔨) = 𝛾((𝔡𝑛 − 𝔡𝑚  ) − (𝓀𝑛 −  𝓀𝑚), 𝔨) 

                                                  = 𝛾((𝔡𝑛 − 𝔡𝑚 ), 𝔨) ⋆ 𝛾((𝓀𝑛 −  𝓀𝑚), 𝔨) > 1 −  𝔯,    (3.4.1) 

⇒  𝛾((𝔡𝑛 − 𝔡𝑚 ), 𝔨) > 1 −  𝔯1 and 𝛾((𝓀𝑛 −  𝓀𝑚), 𝔨) > 1 −  𝔯2. 

𝜗((𝔡𝑛 , 𝓀𝑛) − (𝔡𝑚 , 𝓀𝑚), 𝔨) = 𝜗((𝔡𝑛 − 𝔡𝑚  ) − (𝓀𝑛 −  𝓀𝑚), 𝔨) 

                                                  = 𝜗((𝔡𝑛 − 𝔡𝑚 ), 𝔨) ⋄ 𝜗((𝓀𝑛 − 𝓀𝑚), 𝔨) <  𝔯       (3.4.2) 

⇒  𝜗((𝔡𝑛 − 𝔡𝑚 ), 𝔨) <  𝔯1 and 𝜗((𝓀𝑛 −  𝓀𝑚), 𝔨) <  𝔯2. 

𝛽((𝔡𝑛 , 𝓀𝑛) − (𝔡𝑚 , 𝓀𝑚), 𝔨) = 𝛽((𝔡𝑛 − 𝔡𝑚 ) − (𝓀𝑛 −  𝓀𝑚), 𝔨) 

                                                  = 𝛽((𝔡𝑛 − 𝔡𝑚 ), 𝔨) ⋄ 𝛽((𝓀𝑛 −  𝓀𝑚), 𝔨) <  𝔯.  (3.4.3) 

⇒  𝛽((𝔡𝑛 − 𝔡𝑚 ), 𝔨) <  𝔯1 and 𝛽((𝓀𝑛 −  𝓀𝑚), 𝔨) <  𝔯2 for every 0 < 𝔯 < 1, we can find 0 <  𝔯1 < 1 

and 0 <  𝔯2 < 1, such that (1 −  𝔯1) ⋆( 1 −  𝔯2) > 1 −  𝔯 and  𝔯1 ⋄  𝔯2 < 𝔯. Consequently, for equations 

(3.3.1) (3.32) and (3.3.3) we get that (𝔡𝑛) converges at 𝔡 ∈ �̃� and (𝓀𝑛) converges at 𝓀 ∈ ℳ̃, this implies 

that  (𝔡𝑛 , 𝓀𝑛) converges at (𝔡, 𝓀) ∈ �̃� × ℳ̃ which establish the property that the sequence Ψ(𝔡𝑛) is 

Cauchy in ℳ̃ whenever (𝔡𝑛) is a Cauchy sequence in �̃�.  Hence Ψ is continuous. 

 

 Remark 3.5 [15]   Every open ball is an open set in neutrosophic normed space. 
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Example 3.6: Let �̃� = ℳ̃ =  ℝ, and (�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄ ) (ℳ̃, 𝜂, 𝜐, 𝜍,⋆,⋄ ) be Neutrosophic Banach spaces. 

Also 𝜂, 𝜐, 𝜍 are defined by 𝜂(𝔡, 𝔨) =
|𝔡|

|𝔡|+𝔨
, 𝜐(𝔡, 𝔨) =

|𝔨|

|𝔡|+𝔨
  and 𝜍(𝔡, 𝔨) =

|𝔡|

𝔨
 The 

continuous linear oprator Ψ from(�̃�, 𝜂, 𝜐, 𝜍,⋆,⋄) onto (ℳ̃, 𝜂1, 𝜐1, 𝜍1,⋆,⋄) defined by Ψ(𝔡) = 
𝔡

8
. If (𝔡𝑛) 

convergesat𝔡 ∈ �̃� imples the sequence    Ψ(𝔡𝑛)    converges  to  𝓀 ∈ ℳ̃ with  the property 
 𝓀 =  Ψ(𝔡). then Ψ is continuous. 

                           

Theorem 3.7: Let �̃� and ℳ̃ are two Neutrosophic normed linear spaces. If  Ψ1, Ψ2 ∶ �̃� ⟶ ℳ̃ are 

two linear operators,  Ψ1 is closed and Ψ2 is bounded then  Ψ1 + Ψ2 is closed with respect to 

neutrosophic norm (𝜂, 𝜐, 𝜍). 

Proof:  Let (𝔡𝑛) be a sequence in  �̃� such that 𝔡𝑛 ⟶ 𝔡 with respect to neutrosophic norm (𝜂, 𝜐, 𝜍), 

i.e. for every 0 < 𝛿 < 1 and 𝔨 > 0 there exists 𝑛0 ∈ ℕ such that fir all 𝑛 ≥ 𝑛0 we have 𝜂(𝔡𝑛) − 𝔡, 𝔨) >

1 − 𝛿, 𝜐(𝔡𝑛 − 𝔡, 𝔨) < 𝛿 and 𝜍(𝔡𝑛 − 𝔡, 𝔨) < 𝛿.                (3.7.1) 

Now, by hypothesis  Ψ1(𝔡𝑛)  ⟶ Ψ(𝔡) with respect to neutrosophic norm (𝜂, 𝜐, 𝜍) and 𝔡 ∈ �̃�. 

Therefore, for every 0 < 𝜆 < 1 and 𝔨 > 0 there exists 𝑛1 ∈ ℕ such that for all 𝑛 > 𝑛1 

𝜂( Ψ1(𝔡𝑛) −  Ψ1(𝔡), 𝔨) > 1 − 𝜆, 𝜐( Ψ1(𝔡𝑛) −  Ψ1(𝔡), 𝔨) < 𝜆 and 𝜍( Ψ1(𝔡𝑛) −  Ψ1(𝔡), 𝔨) < 𝜆.  (3.7.2) 

Futhermore, Ψ2 is bounded therefore there exists  Κ > 0,  such that ‖Ψ2‖ ≤ 𝐾. Now we prove that 

( Ψ1 + Ψ2)(𝔡𝑛) ⟶ ( Ψ1 + Ψ2)(𝔡) with respect to neutrosophic norm (𝜂, 𝜐, 𝜍) and 𝔡 ∈ �̃�. Let 𝑛𝔯 =

max {𝑛0, 𝑛1} and for every 0 < 𝜆, 𝛿 < 1 there exists 0 < 𝔯 < 1 such that 

 (1- 𝜆) ⋆ (1 − 𝛿) > 1 −  𝔯 and 𝜆 ⋄ 𝛿 < 𝔯, then for every  𝑛 ≥ 𝑛𝔯 we get  

𝜂(( Ψ1 + Ψ2)(𝔡𝑛) − ( Ψ1 + Ψ2)(𝔡), 𝔨) =  𝜂(( Ψ1(𝔡𝑛) −  Ψ1(𝔡) +  Ψ2(𝔡𝑛) −  Ψ2(𝔡), 𝔨) 

                                                                        ≥  𝜂(( Ψ1(𝔡𝑛) −  Ψ1(𝔡),
 𝔨

2
) ⋆  𝜂(( Ψ2(𝔡𝑛) −  Ψ2(𝔡),

 𝔨

2
) 

                                                                        ≥ (1 − 𝜆) ⋆  𝜂(𝔡𝑛 − 𝔡,
 𝔨

2‖Ψ2‖
)≥ (1 − 𝜆) ⋆  𝜂(𝔡𝑛 − 𝔡, 𝔨) 

                                                      > (1 −  𝜆) ⋆ (1 − 𝛿) > 1 −  𝔯,          (3.7.3)          

𝜐(( Ψ1 + Ψ2)(𝔡𝑛) − ( Ψ1 + Ψ2)(𝔡), 𝔨) =  𝜐(( Ψ1(𝔡𝑛) −  Ψ1(𝔡) +  Ψ2(𝔡𝑛) −  Ψ2(𝔡), 𝔨) 

                                                                        ≤  𝜐(( Ψ1(𝔡𝑛) −  Ψ1(𝔡),
 𝔨

2
) ⋄  𝜐(( Ψ2(𝔡𝑛) −  Ψ2(𝔡),

 𝔨

2
) 

                                                                        ≤  (1 − 𝜆) ⋄  𝜐(𝔡𝑛 − 𝔡,
 𝔨

2‖Ψ2‖
) ≤  (1 − 𝜆) ⋄  𝜐(𝔡𝑛 − 𝔡, 𝔨) 

                                                               <  𝜆 ⋄ 𝛿 < 𝔯                      (3.7.4) 

 𝜍(( Ψ1 + Ψ2)(𝔡𝑛) − ( Ψ1 + Ψ2)(𝔡), 𝔨) =  𝜍(( Ψ1(𝔡𝑛) −  Ψ1(𝔡) +  Ψ2(𝔡𝑛) −  Ψ2(𝔡), 𝔨) 

                                                                        ≤  𝜍(( Ψ1(𝔡𝑛) −  Ψ1(𝔡),
 𝔨

2
) ⋄  𝜍(( Ψ2(𝔡𝑛) −  Ψ2(𝔡),

 𝔨

2
) 

                                                                        ≤  (1 − 𝜆) ⋄  𝜍(𝔡𝑛 − 𝔡,
 𝔨

2‖Ψ2‖
) ≤  (1 − 𝜆) ⋄  𝜍(𝔡𝑛 − 𝔡, 𝔨) 

                                                                        <  𝜆 ⋄ 𝛿 < 𝔯.      (3.7.5) 

We use 𝜏 = 
𝔨

2𝐾
  in the above equations. Now equations (3.7.3), (3.7.4) and (3.7.5) simultaneously 

conclude that ( Ψ1 + Ψ2)(𝔡𝑛) ⟶ ( Ψ1 + Ψ2)(𝔡) with respect to neutrosophic norm (𝜂, 𝜐, 𝜍). Also it 

should to noted that  Ψ1 is  closed, then we obtain 𝔡 ∈ �̃�, by the definition (2.12). 

Conclusion 

 

In this paper, we have developed open mapping and closed graph theorem in neutrosophic 

Banach space and we have presented some suitable examples that support our main results. We 

hope that the result proved in this paper will form new connection for those who are working in the 

in neutrosophic Banach space and this work opens a new path for researchers in the concerned field. 
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