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Abstract. In this paper, we introduce the neutrosophic I-convergent difference sequence spaces I
(Y)

(∆)(f) and

I
0(Y)

(∆) (f) defined by modulus function. Also, we define an open ball B(x, ϵ, γ)(f) in neutrosophic norm space

defined by modulus function. Furthermore, We construct new topological spaces and look into various topolog-

ical aspects in neutrosophic I-convergent difference sequence spaces I
(Y)

(∆)(f) and I
0(Y)

(∆) (f) defined by modulus

function
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1. Introduction

Dr. Florentin Smarandache created the idea of neutrosophy in the 1990s as a reaction to

these difficulties, providing a broader perspective on uncertainty. Neutrosophy aims to analyse

and portray systems, phenomena, and concepts that involve ambiguity, incompleteness, and

indeterminacy.

The Neutrosophic Set [1], a mathematical structure that expands on the idea of fuzzy sets [2]

and conventional crisp sets, is one of the core ideas of Neutrosophy. Three different elements

can occur in a neutrosophic set’s membership: truth, falsity, and indeterminacy. Neutosophic

sets are used in a variety of real-world contexts, including decision-making, artificial intel-

ligence, medical diagnosis, image processing, and pattern identification. By considering the

interplay between truth, falsity, and indeterminacy, neutrosophic sets offer a more robust and

flexible approach to modeling real-world uncertainties, making it a valuable tool for addressing

complex and contradictory data.
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In 2006, [10] F. Samarandache and W.B. Vasantha Kanasamy introduced the concept of

neutrosophic algebraic structures. Mahapatra and Bera [7] were the first to introduce the

neutrosophic soft linear space. Neutrosophic soft norm linear space, metric, convexity [11],

and Cauchy sequence were examined by Bera and Mahapatra [8]. The purpose of the current

paper is to change the intuitionistic fuzzy normed space of the structure into neutrosophic

normed space. The Cauchy sequence has been studied on neutrosophic normed space in an

attempt to investigate some beautiful results in this structure.

Mursaleen [14] introduced and presented the concept of statistical convergence with regard

to the intuitionistic fuzzy normed (Saadati and Park [15]). Khan [12] recently defined I-

convergence and I-Cauchy sequence in intuitionistic fuzzy normed. Kirişci and Şimşek [4] inves-

tigated the statistical convergence in neutrosophic normed space.. Since neutrosophic normed

space is a generalisation of intuitionistic fuzzy normed (IFNS), this statistical convergence is

an important area for research. This piqued our interest in studying I-convergence in neutro-

sophic normed space. For further detail on ideal and statistical convergence, see [13, 16–18].

Other important aspects of the neutrosophic norm can be found in [4, 5, 7, 8].

Kizmaz [20] developed the concept of difference sequence spaces by studying the difference

sequence spaces X = l∞(∆), c(∆), c0(∆).

Some novel sequence spaces were introduce by means of varius matrix transformation in

[19, 21, 22] and [23–25]. As seen below, Kizmaz [20] defines the difference sequence spaces

using the difference matrix.

X(∆) = {ζ = ζn : ∆ζ ∈ X}

for X = c, l∞, c0, where ∆ζn = ζn − ζn+1 and ∆ shows the difference matrix ∆ = (∆nm)

defined by

∆nm =

(−1)n−m, if n ≤ m ≤ n+ 1

0 , if 0 ≤ m < n.
(1.1)

Definition 1.1. [28] A function f : [0,∞) → [0,∞) is called a modulus function if the

following conditions are met,

(a) f(ζ) = 0 ⇐⇒ ζ = 0,

(b) f(ζ1 + ζ2) ≤ f(ζ) + f(ζ2),

(c) f is non-decreasing, and

(d) f is continuous from the right at zero.

Since |f(ζ1) − f(ζ2)| ≤ f(|ζ1 − ζ2|), condition (4) implies that f is continuous on R+ ∪ {0}.
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1
n)).

Hence 1
nf(ζ) ≤ f( ζn) ∀n ∈ N.

It is possible for the modulus function to be either bounded or unbounded. Consider the

following example: f(ζ) = ζ
1+ζ , then f(ζ) is bounded. If f(ζ) = ζd , 0 < d < 1, then the

modulus function f(ζ) is unbounded.

In this study, we present the neutrosophic I-convergent difference sequence spaces I
(Y)
(∆)(f)

and I
0(Y)
(∆) (f) defined by modulus function and investigate some of its topological properties.

Definition 1.2. [5] A binary operation ⋆ on [0, 1] is referred to as CTN if (a) ⋆ is associative,

commutative and continuous, (b) µ = µ ⋆ 1 for any µ ∈ [0, 1] and (c) for each µ1, µ2, µ3, µ4 ∈
[0, 1], if µ3 ≥ µ1 and µ4 ≥ µ2 then µ3 ⋆ µ4 ≥ µ1 ⋆ µ2.

A binary operation ◦ on [0, 1] is referred to as CTCN if (a) ◦ is associative, commutative and

continuous, (b) µ = µ ◦ 0 for any µ ∈ [0, 1] and (c) for each µ1, µ2, µ3, µ4 ∈ [0, 1], if µ3 ≥ v1

and µ4 ≥ µ2 then µ3 ◦ µ4 ≥ µ1 ◦ µ2.

Definition 1.3. [1] Let X ̸= ϕ and Y ⊂ X Then,

YNS = {< ζ,U(ζ),V(ζ),W(ζ) >: ζ ∈ X},

where U(ζ),V(ζ),W(ζ) : X → [0, 1], U(ζ) = Truth, V(ζ) = Indeterminacy, and W(ζ) =

Falsehood respectively.

0 ≤ U(ζ) + V(ζ) +W(ζ) ≤ 3.

The components of neutrosophic are U(ζ),V(ζ) and W(ζ) independent of each other.

Definition 1.4. [4,27] AssumeX is a real vector space, ⋆ and ⋄ are CTN and CTCN, respectively,

and Y = {< ζ,U(ζ),V(ζ),W(ζ) >: ζ ∈ X} be a neutrosophic set s.t Y : X × (0,∞) → [0, 1].

The four-tuple (X,Y, ⋆, ⋄) is called a neutosophic normed space (NNS) if the subsequent terms

holds; ∀ ζ, y ∈ X and s, r > 0

(i) 0 ≤ U(ζ, s) ≤ 1, 0 ≤ V(ζ, s) ≤ 1, 0 ≤ W(ζ, s) ≤ 1, s ∈ R+,

(ii) U(ζ, s) + V(ζ, s) +W(ζ, s) ≤ 3, for s ∈ R+,

(iii) U(ζ, s) = 1 iff ζ = 0

(iv) U(λζ, s) = U(ζ, s
|λ|),

(v) U(ζ, s) ⋆ U(y, r) ≤ U(ζ + y, s+ r),

Moreover, from condition (2) we have f(nζ) ≤ n f(ζ), ∀n ∈ N, and so f(ζ) = f(nζ(
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(vii) lim
s→∞

U(ζ, s) = 1

(viii) V(ζ, s) = 0 iff ζ = 0

(ix) V(λζ, s) = V(ζ, s
|λ|),

(x) V(ζ, s) ⋄ V(y, s) ≥ V(ζ + y, s+ r),

(xi) V(ζ, ⋄) is continuous non-increasing function,

(xii) lim
s→∞

V(ζ, s) = 0,

(xiii) W(ζ, s) = 0 iff ζ = 0

(xiv) W(λζ, s) = W(ζ, s
|λ|),

(xv) W(ζ, s) ⋄W(y, s) ≥ W(ζ + y, s+ r),

(xvi) W(ζ, ⋄) is continuous non-increasing function,

(xvii) lim
s→∞

W(ζ, s) = 0,

(xviii) If s ≤ 0, then U(ζ, s) = 0, V(ζ, s) = 1, W(ζ, s) = 1.

In such case, Y = (U ,V,W) is called a neutrosophic normed (NN).

Example 1.1. [27] Suppose (X, ∥ . ∥) be a normed space, where ||y|| = |y|, ∀y ∈ R. Give the

function as ζ ◦ y = ζ + y − ζy and define ζ ⋆ y = min(ζ, y), For s > ||y||,

U(ζ, s) = s

s+ ||ζ||
, V(ζ, s) = ζ

s+ ||ζ||
, W(ζ, s) =

||ζ||
s

(1.2)

∀ ζ, y ∈ X and s > 0.

If we take s ≤ ||ζ||, then

U(ζ, s) = 0,V(ζ, s) = 1 and W(ζ, s) = 1.

Hence, (X,Y, ◦, ⋆) is neutrosophic norm space s.t Y : X ×R+ → [0, 1].

vi) U(ζ, ⋆) is continuous non-decreasing function
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n} in X is said to

convergent to α1 with regard to NN-Y ⇐⇒ for each γ > 0, ϵ ∈ (0, 1), ∃ N ∈ N s.t

U(xn − α1, γ) > 1− ϵ,V(xn − α1, γ) < ϵ,W(xn − α1, γ) < ϵ, ∀ n ∈ N.

i.e, γ > 0, we have

lim
n→∞

U(xn − α1, γ) = 1, lim
n→∞

V(xn − α1, γ) = 0 and lim
n→∞

W(xn − α1, γ) = 0.

We specify Y − limxn = α1.

Theorem 1.1. Let (X,Y, ⋆, ⋄) be a NNS. Then, a sequence x = {xn} in X is convergent to

α ∈ X if and only if lim
n→∞

U(xn−α, γ) = 1 , lim
n→∞

V(xn−α, γ) = 0 and lim
n→∞

W(xn−α, γ) = 0.

Definition 1.6. [3,6,9] Assemblage of subsets I ⊆ 2N is known as an ideal in N if I satisfies

these condition;

(1) ∅ ∈ I

(2) H,K ∈ I ⇒ H∪K ∈ I, (additive);

(3) H ∈ I,K ⊆ H ⇒ K ∈ I. (hereditary);

If I ̸= 2N, then I ⊆ 2N is called nontrivial [13]. A nontrivial ideal I ⊆ 2N is said to be

admissible if I includes every singleton subset of N.
If there isn’t a non-trivial ideal K ̸= I, then I is the maximum non-trivial ideal such that

I ⊂ K.

Definition 1.7. [27] Assemblage of subsets F ⊆ 2N is known as a filter in N if I satisfies

these condition:

(1) ∅ ̸∈ F ,

(2) For H,K ∈ F =⇒ H∩K ∈ F ,

(3) If H ∈ F and K ⊃ H implies K ∈ F .

Definition 1.8. [27] Suppose {xn} be a sequence in (X,Y, ⋆, ⋄). A sequence {xn} is said to

be ideally convergent to α with regard to NN-Y, if, for every ϵ > 0 and γ > 0

P = {n ∈ N : U(xn − α, γ) ≤ 1− ϵ or V(xn − α, γ) ≥ ϵ,W(xn − α, γ) ≥ ϵ} ∈ I (1.3)

It is denoted by IY − limxn = α or xn → α.

Definition 1.9. [27] Suppose {xn} be a sequence in (X,Y, ⋆, ⋄). A sequence {xn} is said to

ideally Cauchy sequence with regard to NN-Y, if, for every ϵ > 0 and γ > 0, ∃ k ∈ N s.t

Q = {n ∈ N : U(xn − xk, γ) ≤ 1− ϵ or V(xn − xk, γ) ≥ ϵ, W(xn − xk, γ) ≥ ϵ} ∈ I.

Definition 1.5. [5, 29] Let (X,Y, ⋆, ⋄) be a NNS. A sequence x = {x
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In this study, we created and examined various topological aspects of neutrosophic ideal con-

vergent difference sequence spaces defined by modulus function, a variant of ideal convergent

sequence spaces. Let ω be the space containing all real sequences.

I
0(Y)
(∆) (f) =

{
x = {xn} ∈ ω : {n ∈ N : f

(
U(∆xn, γ)

)
≤ 1− ϵ or f

(
V(∆xn, γ)

)
≥ ϵ, f

(
W(∆xn, γ)

)
≥ ϵ} ∈ I

}
(2.1)

I
(Y)
(∆)(f) :=

{
x = {xn} ∈ ω : {n ∈ N : for some γ ∈ R , f

(
U(∆xn − α, γ)

)
≤ 1− ϵ or f

(
V(∆xn − α, γ)

)
≥ ϵ,

f
(
W(∆xn − α, γ)

)
≥ ϵ} ∈ I

}
(2.2)

We describe an open ball with a radius ϵ ∈ (0, 1) and a center at x with regard to the

neutrosophic γ > 0 parameter, indicated by B(x, ϵ, γ) as follows:

B(x, ϵ, γ) =
{
y = {yn} ∈ I

(Y)
(∆)(f) : {n ∈ N : f

(
U(∆xn −∆yn, γ)

)
≤ 1− ϵ or f

(
V(∆xn −∆yn, γ)

)
≥ ϵ,

f
(
W(∆xn −∆yn, γ)

)
≥ ϵ, } ∈ I

}
(2.3)

Theorem 2.1. The inclusion relation I
0(Y)
(∆) (f) ⊂ I

(Y)
(∆)(f) holds.

The inverse of an inclusion relation is not true. To defend our claim, take a look at the

examples below.

Example 2.1. Suppose (R, ∥.∥) be a normed space s.t ∥x∥ = sup
k

|xk|, and x1 ∗ x2 =

min{x1, x2} and x1 ⋄ x2 = max{x1, x2}, ∀x1, x2 ∈ (0, 1). For β > ||x||, now define norms

Y = (U ,V,W) on R2 × (0,∞) as follows;

U
(
x, β) =

β

β + ∥x∥
, V

(
x, β) =

∥x∥
β + ∥x∥

and W
(
x, β) =

∥x∥
β

.

Then (R,Y, ⋆, ⋄) is a NNS. Consider the sequence (xk)={1}. It is easy to observe that (xk) ∈

I
(Y)
(∆)(f) and xk

I(Y)−−→ 1, but xk /∈ I
0(Y)
(∆) (f).

Lemma 2.1. Let x = {xn} ∈ I
(Y)
(∆)(f). Then ∀ ϵ ∈ (0, 1) and γ > 0, the following claims are

equivalent ,

(a) I
(Y)
(∆)(f)– lim(x) = α,

(b)
{
n ∈ N : f

(
U(∆xn−α, γ)

)
≤ 1−ϵ or f

(
V(∆xn−α, γ)

)
≥ ϵ, f

(
W(∆xn−α, γ)

)
≥ ϵ

}
∈ I,

(c)
{
n ∈ N : f

(
U(∆xn−α, γ)

)
> 1− ϵ and f

(
V(∆xn−α, γ)

)
< ϵ, f

(
W(∆xn−α, γ)

)
< ϵ

}
∈

F (I)

2. Main Results
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(d) I– lim f
(
U(∆xn − α, γ)

)
= 1, I– lim f

(
V(∆xn − α, γ)

)
= 0 and I– lim f

(
W(∆xn −

α, γ)
)
= 0.

Theorem 2.2. The spaces I
(Y)
(∆)(f) and I

0(Y)
(∆) (f) are linear spaces.

Proof. We know that I
0(Y)
(∆) (f) ⊂ I

(Y)
(∆)(f). Then we show the outcome for I

(Y)
(∆)(f). The proof

of linearity of the space I
0(Y)
(∆) (f) follows similarly.

Let {xk}, {yk} ∈ I
(Y)
(∆)(f) and α1, α2 be scalars. The proof is trivial for α1 = 0 and α2 = 0.

Now we take α1 ̸= 0 and α2 ̸= 0. For a given ϵ > 0, take r > 0 s.t (1− ϵ) ∗ (1− ϵ) > (1− r)

and ϵ ⋄ ϵ < r.

P1 =

{
n ∈ N : f

(
U(∆xn−α1,

γ

2|µ|
)
)
≤ 1−ϵ or f

(
V(∆xn−α1,

γ

2|µ|
)
)
≥ ϵ, f

(
W(∆xn−α1,

γ

2|µ|
)
)
≥ ϵ

}
∈ I,

P2 =

{
n ∈ N : f

(
U(∆xn−α2,

γ

2|ν|
)
)
≤ 1−ϵ or f

(
V(∆xn−α2,

γ

2|ν|
)
)
≥ ϵ, f

(
W(∆xn−α2,

γ

2|ν|
)
)
≥ ϵ

}
∈ I.

Now, we take the complement of P1 and P2

P c
1 =

{
n ∈ N : f

(
U(∆xn−α1,

γ

2|µ|
)
)
> 1−ϵ and f

(
V(∆xn−α1,

γ

2|µ|
)
)
< ϵ, f

(
W(∆xn−α1,

γ

2|µ|
)
)
< ϵ

}
∈ F (I),

P c
2 =

{
n ∈ N : f

(
U(∆xn−α2,

γ

2|ν|
)
)
> 1−ϵ and f

(
V(∆xn−α2,

γ

2|ν|
)
)
< ϵ, f

(
W(∆xn−α2,

γ

2|ν|
)
)
< ϵ

}
∈ F (I);

Consequently, set P = P1∪P2 produces P ∈ I. Thus, P c is a set that is not empty in F(I).

We’ll illustrate this for each {xn}, {yn} ∈ I
(Y)
(∆)(f).

P c ⊂
{
n ∈ N : f

(
U(µ∆xn + ν∆yn) − (µα1 + να2, γ)

)
> 1 − r and f

(
V(µ∆xn + ν∆yn) −

(µα1 + να2, γ)
)
< r, f

(
W(µ∆xn + ν∆yn)− (µα1 + να2, γ)

)
< r

}
Let i ∈ Pc. In this case,

f
(
U(∆xi − α1,

γ

2|µ|
)
)
> 1− ϵ and f

(
V(∆xi − α1,

γ

2|µ|
)
)
< ϵ, f

(
W(∆xi − α1,

γ

2|µ|
)
)
< ϵ

f
(
U(∆yi − α2,

γ

2|ν|
)
)
> 1− ϵ and f

(
V(∆yi − α2,

γ

2|ν|
)
)
< ϵ, f

(
W(∆yi − α2,

γ

2|ν|
)
)
< ϵ

Consider

f
(
U(µ∆xi + ν∆yi)− (µα1 + να2, γ)

)
≥ f

(
U(µ∆xi − µα1,

γ

2
)
)
⋆ f

(
U(ν∆yi − να2,

γ

2
)
)

= f
(
U(∆xi − α1,

γ

2|µ|
)
)
⋆ f

(
U(∆yi − α2,

γ

2|ν|
)
)

> (1− ϵ) ∗ (1− ϵ) > 1− r
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=⇒ f
(
U(µ∆xi + ν∆yi)− (µα1 + να2, γ)

)
> 1− r

and

f
(
V(µ∆xi + ν∆yi)− (µα1 + να2, γ)

)
≤ f

(
V(µ∆xi − µα1,

γ

2
)
)
⋄ f

(
V(ν∆yi − να2,

γ

2
)
)

= f
(
V(∆xi − α1,

γ

2|µ|
)
)
⋄ f

(
V(∆yi − α2,

γ

2|ν|
)
)

< ϵ ⋄ ϵ < r

=⇒ f
(
V(µ∆xi + ν∆yi)− (µα1 + να2, γ)

)
< r

and

f
(
W(µ∆xi + ν∆yi)− (µα1 + να2, γ)

)
≤ f

(
W(µ∆xi − µα1,

γ

2
)
)
⋄ f

(
W(ν∆yi − να2,

γ

2
)
)

= f
(
W(∆xi − α1,

γ

2|µ|
)
)
⋄ f

(
W(∆yi − α2,

γ

2|ν|
)
)

< ϵ ⋄ ϵ < r

=⇒ f
(
W(µ∆xi + ν∆yi)− (µα1 + να2, γ)

)
< r

Thus

P c ⊂
{
n ∈ N : f

(
U(µ∆xn + ν∆yn) − (µα1 + να2, γ)

)
> 1 − r and f

(
V(µ∆xn + ν∆yn) −

(µα1 + να2, γ)
)
< r, f

(
W(µ∆xn + ν∆yn)− (µα1 + να2, γ)

)
< r

}
Since P c ∈ F(I), Thus By the properties of F (I) we have,{
n ∈ N : f

(
U(µ∆xn + ν∆yn) − (µα1 + να2, γ)

)
> 1 − r and f

(
V(µ∆xn + ν∆yn) − (µα1 +

να2, γ)
)
< r, f

(
W(µ∆xn + ν∆yn)− (µα1 + να2, γ)

)
< r

}
∈ F(I). Hence I

(Y)
(∆)(f) is a linear

space.

Theorem 2.3. Every closed ball Bc(x, ϵ, γ) is an open in I
(u,v,w)
(∆) (f), where neutrosophic

parameter γ > 0 with centre at x and radius 0 < ϵ < 1.

Proof. Suppose that B(x, γ, ϵ) is an open ball with a radius of 0 < ϵ < 1 and a neutrosophic

parameter γ > 0, with its centre at x = (xn) ∈ I
(Y)
(∆)(f).

B(x, ϵ, γ)(f) =
{
y ∈ I

(Y)
(∆)(f) : f

(
U(∆x−∆y, γ)

)
≤ 1− ϵ or f

(
V(∆x−∆y, γ)

)
≥ ϵ,

f
(
W(∆x−∆y, γ)

)
≥ ϵ,∈ I

}
Then

Bc(x, ϵ, γ)(f) =
{
y ∈ I

(Y)
(∆)(f) : f

(
U(∆x−∆y, γ)

)
> 1− ϵ and f

(
V(∆x−∆y, γ)

)
< ϵ,

f
(
W(∆x−∆y, γ)

)
< ϵ,∈ F (I)

}
suppose y ∈ Bc(x, γ, ϵ). Then, For
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f
(
U(∆x−∆y, γ)

)
> 1− ϵ and f

(
V(∆x−∆y, γ)

)
< ϵ, f

(
W(∆x−∆y, γ)

)
< ϵ,

so there exists γ0 ∈ (0, γ) such that

f
(
U(∆x−∆y, γ0)

)
> 1− ϵ and f

(
V(∆x−∆y, γ0)

)
< ϵ, f

(
W(∆x−∆y, γ0)

)
< ϵ.

Let ϵ0 = f
(
U(∆x−∆y, γ0)

)
, we have ϵ0 > 1−ϵ. Then ∃ p ∈ (0, 1) such that ϵ0 > 1−p > 1−ϵ.

For ϵ0 > 1− p, we can have ϵ1, ϵ2, ϵ3 ∈ (0, 1) such that ϵ0 ∗ ϵ1 > 1− p , (1− ϵ0) ⋄ (1− ϵ2) < p.

and (1− ϵ0) ⋄ (1− ϵ3) < p.

Let ϵ4 = max{ϵ1, ϵ2, ϵ3}. Then (1−p) < ϵ0∗ϵ1 ≤ ϵ0∗ϵ4 and (1−ϵ0)⋄(1−ϵ4) ≤ (1−ϵ0)⋄(1−ϵ2) < p.

Consider the closed ball Bc(y, γ − γ0, 1− ϵ4) and Bc(x, γ, ϵ).

We prove that Bc(y, γ − γ0, 1− ϵ4) ⊂ Bc(x, γ, ϵ). Let z = {zn} ∈ Bc(y, γ − γ0, 1− ϵ4). Then

f
(
U(∆y−∆z, γ−γ0)

)
> ϵ4 and f

(
V(∆y−∆z, γ−γ0)

)
< 1−ϵ4, f

(
W(∆y−∆z, γ−γ0)

)
< 1−ϵ4

Therefore

f
(
U(∆x−∆z, γ)

)
≥ f

(
U(∆x−∆y, γ0)

)
⋆ f

(
U(∆y −∆z, γ − γ0)

)
≥ ϵ0 ⋆ ϵ4 ≥ ϵ0 ⋆ ϵ1

> (1− p) > (1− ϵ)

f
(
V(∆x−∆z, γ)

)
≤ f

(
V(∆x−∆y, γ0)

)
⋄ f

(
V(∆y −∆z, γ − γ0)

)
≤ (1− ϵ0) ⋄ (1− ϵ4) ≤ ϵ0 ⋄ ϵ2

< p < ϵ

and

f
(
W(∆x−∆z, γ)

)
≤ f

(
W(∆x−∆y, γ0)

)
⋄ f

(
W(∆y −∆z, γ − γ0)

)
≤ ϵ0 ⋄ ϵ4 ≤ ϵ0 ⋄ ϵ3

< p < ϵ

Therefore the set
{
f
(
U(∆x−∆z, γ)

)
> 1−ϵ and f

(
V(∆x−∆z, γ)

)
< ϵ , f

(
W(∆x−∆z, γ)

)
<

ϵ
}
∈ F(I).

=⇒ z = (zn) ∈ Bc(x, γ, ϵ)

=⇒ Bc
(
y, γ − γ0, 1− ϵ4

)
⊂ Bc

(
x, γ, ϵ

)
.

Remark 2.2. It is clear that I
(Y)
(∆)(f) is a neutrosophic normed space with respect to neutro-

sophic norms Y = (U ,V,W). Define

Now define a collection τ
(Y)
(∆)(f) of a subset of I

(Y)
(∆)(f) as follows:

τ
(Y)
(∆)(f) =

{
P ⊂ I

(Y)
(∆)(f) : for every x = (xn) ∈ P ∃ γ > 0 and ϵ ∈ (0, 1) s.t Bc(x, γ, ϵ) ⊂ P

}
.

Then τ
(Y)
(∆)(f) is a topolopgy on I

(Y)
(∆)(f)
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Theorem 2.4. The topology τ
(Y)
(∆)(f) on the space I

(Y)
(∆)(f) is first countable.

Proof. For every x = {xn} ∈ I
(Y)
(∆)(f), suppose the set B = {Bc(x, 1

n ,
1
n)} : n =

1, 2, 3, 4, ...
}
,which is a local countable basis at x ∈ I

(Y)
(∆)(f). As a result, the topology τ

(Y)
(∆)(f)

on the space I
0(Y)
(∆) (f) is first countable.

Theorem 2.5. The spaces I
(Y)
(∆)(f) and I

0(Y)
(∆) (f) are Hausdorff spaces.

Proof. We know that I
0(Y)
(∆) (f) ⊂ I

(Y)
(∆)(f), We will only show the solution for I

(Y)
(∆)(f)

Let x = (xn), y = (yn) ∈ I
(Y)
(∆)(f) such that x ̸= y. Then

0 < f
(
U(∆x−∆y, γ)

)
< 1 ,0 < f

(
V(∆x−∆y, γ)

)
< 1 and 0 < f

(
W(∆x−∆y, γ)

)
< 1

Putting ϵ1 = f
(
U(∆x−∆y, γ)

)
, ϵ2 = f

(
V(∆x−∆y, γ)

)
, ϵ3 = f

(
W(∆x−∆y, γ)

)
and ϵ = max{ϵ1, 1− ϵ2, 1− ϵ3}. Then for each ϵ0 ∈ (ϵ, 1) there exist ϵ4, ϵ5, ϵ6 ∈ (0, 1) such that

ϵ4 ∗ ϵ4 ≥ ϵ0 , (1− ϵ5) ⋄ (1− ϵ5) ≤ (1− ϵ0) and (1− ϵ6) ⋄ (1− ϵ6) ≤ (1− ϵ0).

Once again putting ϵ7 = max{ϵ4, 1− ϵ5, 1− ϵ6, }, think about the closed balls. Bc(x, 1− ϵ7,
γ
2

)
and Bc(y, 1− ϵ7,

γ
2

)
respectively centred at x and y.

Then it is obvious that Bc(x, 1− ϵ7,
γ
2

)
∩ Bc(y, 1− ϵ7,

γ
2

)
= ϕ.

If possible let z = {zn} ∈ Bc(x, 1− ϵ7,
γ
2

)
∩ Bc(y, 1− ϵ7,

γ
2

)
. Then we have,

ϵ1 = f
(
U(∆x−∆y, γ)

)
≥ f

(
U(∆x−∆z,

γ

2
)
)
⋆ f

(
U(∆z −∆y,

γ

2
)
)

> ϵ7 ⋆ ϵ7 ≥ ϵ4 ⋆ ϵ4 ≥ ϵ0 > ϵ1

(2.4)

ϵ2 = f
(
V(∆x−∆y, γ)

)
≤ f

(
V(∆x−∆z,

γ

2
)
)
⋄ f

(
V(∆z −∆y,

γ

2
)
)

< (1− ϵ7) ⋄ (1− ϵ7) ≤ (1− ϵ5) ⋄ (1− ϵ5)

≤ (1− ϵ0) < ϵ2

(2.5)

and

ϵ3 = f
(
W(∆x−∆y, γ)

)
≤ f

(
W(∆x−∆z,

γ

2
)
)
⋄ f

(
W(∆z −∆y,

γ

2
)
)

< (1− ϵ7) ⋄ (1− ϵ7) ≤ (1− ϵ6) ⋄ (1− ϵ6)

≤ (1− ϵ0) < ϵ3

(2.6)
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c(x, 1− ϵ7,
γ
2

)
∩

Bc(y, 1− ϵ7,
γ
2

)
= ϕ. Hence the space I

(Y)
(∆)(f) is a Hausdorff space.

Theorem 2.6. Suppose τ
(Y)
(∆)(f) be a topology on a neutrosophic norm spaces I

(Y)
(∆)(f) , then

a sequence x = {xn} ∈ I
(Y)
(∆)(f) such that (xn) is ∆-convergent to ∆x0 with regard to NN-

(Y),if and only if f
(
U(∆xn − ∆x0, γ)

)
−→ 1,f

(
V(∆xn − ∆x0, γ)

)
−→ 0 and f

(
W(∆xn −

∆x0, γ)
)
−→ 0 as n −→ ∞.

Proof. Let B(x0, γ, ϵ) be an open ball with centre x0 ∈ I
(Y)
(∆)(f) and radius ϵ ∈ (0, 1) with

γ > 0, i.e.

B(x0, ϵ, γ)(f) =
{
x = {xn} ∈ I

(Y)
(∆)(f) : {n ∈ N : f

(
U(∆xn −∆x0, γ)

)
≤ 1− ϵ or f

(
V(∆xn −∆x0, γ)

)
≥ ϵ,

f
(
W(∆x0 −∆yn, γ)

)
≥ ϵ, } ∈ I

}
(2.7)

Consider a sequence {xn} ∈ I
(Y)
(∆)(f) is ∆-convergent to ∆x0 with respect to neutrosophic norm

(Y), then for ϵ ∈ (0, 1),γ > 0 ∃ n0 ∈ N such that {xn} ∈ Bc(x0, γ, ϵ), ∀ n ≥ n0. Thus

{
n ∈ N : f

(
U(∆xn−∆x0, γ)

)
> 1−ϵ, f

(
V(∆xn−∆x0, γ)

)
< ϵ, f

(
W(∆xn−∆x0, γ)

)
< ϵ

}
∈ F (I).

So

1−f
(
U(∆xn−∆x0, γ)

)
> ϵ, f

(
V(∆xn−∆x0, γ)

)
< ϵ, and f

(
W(∆xn−∆x0, γ)

)
< ϵ ∀n ≥ n0.

f
(
U(∆xn−∆x0, γ)

)
→ 1, f

(
V(∆xn−∆x0, γ)

)
→ 0, and f

(
W(∆xn−∆x0, γ)

)
→ 0 as n → ∞

Conversly, if ∀ γ > 0,

f
(
U(∆xn−∆x0, γ)

)
→ 1, f

(
V(∆xn−∆x0, γ)

)
→ 0, and f

(
W(∆xn−∆x0, γ)

)
→ 0 as n → ∞

Then for each ϵ ∈ (0, 1), ∃ n0 ∈ N s.t.

1−f
(
U(∆xn−∆x0, γ)

)
> ϵ, f

(
V(∆xn−∆x0, γ)

)
< ϵ, and f

(
W(∆xn−∆x0, γ)

)
< ϵ ∀n ≥ n0.

So,

f
(
U(∆xn −∆x0, γ)

)
> 1− ϵ, f

(
V(∆xn −∆x0, γ)

)
< ϵ, f

(
W(∆xn −∆x0, γ)

)
< ϵ ∀ n ≥ n0.

Hence {xn} ∈ Bc(x0, γ, ϵ)(f), ∀ n ≥ n0. This proves that a sequence (xn) is ∆-convergent to

∆x0 with regard to the NN-(Y).

Theorem 2.7. Let x = {xn} ∈ ω be a sequence. If ∃ a sequence y = {yn} ∈ I
(Y)
(∆)(f) such that

f(∆(xn)) = f(∆(yn)) for almost all n relative to neutrosophic I, then x ∈ I
(Y)
(∆)(f).

We have a contradiction from equations (2.4), (2.5) and (2.6). Therefore, B
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n)) = f(∆(yn)) for almost all n relative to neutrosophic I. Then{
n ∈ N : f(∆(xn)) ̸= f(∆(yn))

}
∈ I. This implies.

{
n ∈ N : f(∆(xn)) = f(∆(yn))

}
∈ F(I).

Therefore for n ∈ F(I) ∀ γ > 0,

f
(
U(∆xn −∆yn,

γ

2
)
)
= 1, f

(
V(∆xn −∆yn,

γ

2
)
)
= 0 and f

(
W(∆xn −∆yn,

γ

2
)
)
= 0

Since {yn} ∈ I
(Y)
(∆)(f), let (yn) is ∆-convergent to α. Then for any ϵ ∈ (0, 1) and γ > 0,

A1 =
{
n ∈ N : f

(
U(∆yn−α,

γ

2
)
)
> 1−ϵ and f

(
V(∆yn−α,

γ

2
)
)
< ϵ, f

(
W(∆yn−α,

γ

2
) < ϵ

)
∈ F(I).

Consider the set,

A2 =
{
n ∈ N : f

(
U(∆xn−α,

γ

2
)
)
> 1−ϵ and f

(
V(∆xn−α,

γ

2
)
)
< ϵ, f

(
W(∆xn−α,

γ

2
) < ϵ

)
.

We show that A1 ⊂ A2. So for n ∈ A1 we have,

f
(
U(∆xn − α, γ)

)
≥ f

(
U(∆xn −∆yn,

γ

2
)
)
⋆ f

(
U(∆yn − α,

γ

2
)
)

> 1 ⋆ (1− ϵ) = 1− ϵ

f
(
V(∆xn − α, γ)

)
≤ f

(
V(∆xn −∆yn,

γ

2
)
)
⋄ f

(
V(∆yn − α,

γ

2
)
)

< 0 ⋄ ϵ = ϵ

and

f
(
W(∆xn − α, γ)

)
≤ f

(
W(∆xn −∆yn,

γ

2
)
)
⋄ f

(
W(∆yn − α,

γ

2
)
)

< 0 ⋄ ϵ = ϵ

=⇒ n ∈ A2 and hence A1 ⊂ A2. Since A1 ∈ F(I), therefore A2 ∈ F(I). Hence x = {xn} ∈
I
(Y)
(∆)(f).

3. Conclusions

In the current study, using the concept of difference sequence and modulus function, we

extend the intriguing idea of I-convergence to the context of neutrosophic norm spaces via

difference sequences by modulus function. Also, we have introduce the new notion of I-

convergent difference sequence in neutrosophic normed spaces by modulus function and some

fundamental properties are examined.
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