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Abstract: Breast cancer is the most prevalent type of cancer that affects women worldwide and poses 

a serious risk to female mortality. In order to lower death rates and enhance treatment results, early 

detection is critical. Neutrosophic Set Theory (NST) and machine learning (ML) approaches are 

integrated in this study to provide a novel hybrid methodology (NS-ML) that improves breast cancer 

diagnosis. Using the Wisconsin Diagnostic Breast Cancer (WDBC) dataset, the research transforms 

these data into Neutrosophic (N) representations to effectively capture uncertainties. When trained 

on the N-dataset instead of traditional datasets, ML algorithms such as Decision Tree (DT), Random 

Forest (RF), and Adaptive Boosting (AdaBoost) perform better. Notably, N-AdaBoost models achieve 

outstanding results with 99.12% accuracy and 100% precision, highlighting the efficacy of NS in 

enhancing diagnostic reliability. 

Keywords: Neutrosophic sets; Machine Learning; Uncertainity handling; Breast cancer; 

Classification. 

 

1. Introduction 

Women globally have the risk of breast cancer which as a risk factor of cancer due to abnormal 

growth of cells in breast tissue [1]. Countries like Belgium and the Netherlands reported high rates 

of incidence, affecting thousands of women, while Barbados and Fiji had notable mortality rates due 

to the disease [2]. In 2020, it caused over 2 million new cases and led to 6,85,000 deaths globally [3]. 

By 2030, global cases are expected to rise significantly, impacting approximately 27 million people 

[4]. 

Breast cancer involves various tumor types, categorized as malignant or benign, with malignant 

tumors posing a higher risk due to their rapid spread. Factors contributing to its increasing incidence 

include lack of awareness, economic disparities, inadequate healthcare access, and screening 

challenges [5]. Developing independent apps for accurate cancer diagnosis is crucial to overcome 

these challenges. By analyzing variables and pinpointing the most important elements for a precise 

diagnosis across several models, ML has shown to be extremely successful in the diagnosis of breast 

cancer. Several models have been presented in earlier research, using various methods and 

techniques to identify cancers. ML, particularly integrated with NS to handle data uncertainty, 

presents an effective approach for enhancing breast cancer models for forecasting. 
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The main contributions of this study are: 

a) Transforming the WDBC into an N-dataset. 

b) Model training employing ML classification techniques, such as AdaBoost, DT, and RF. 

c) Evaluating the performance of these models. 

d) Comparing the performance between the original dataset and the N-dataset. 

The remaining sections of the paper are organized as follows: The section 2 summarizes the 

literature on breast cancer prognosis. The study's materials and procedures are described in depth in 

Section 3. The study's findings are presented in Section 4. The methodology and results are covered 

in Section 5, and the paper's conclusions are given in Section 6. 

2. Related work 

Breast cancer is a serious worldwide health issue, and increasing survival rates requires early 

identification. Advanced ML techniques, such as Eagle Strategy Optimization (ESO), Gravitational 

Search Optimization (GSO), and their combined approach, are used to improve classification 

accuracy on the WDBC dataset. By prioritizing informative features and reducing computational 

complexity, the approach shows promising results in improving diagnostic precision and efficiency 

[6]. Breast cancer, characterized by complex development involving various cell types, remains a 

significant challenge worldwide. Advances in understanding pathogenesis and genetic factors have 

led to improved prevention and treatment strategies. Effective screening and research into drug- 

resistant mechanisms have enhanced patient outcomes and quality of life [7]. Over recent decades, 

significant advancements in breast cancer research have revolutionized treatment approaches, 

leading to better outcomes. Early detection through improved awareness and screening methods has 

enabled curative treatments such as surgery and radiation therapy. Ongoing research aims to further 

enhance diagnostic and therapeutic strategies [8]. 

Breast cancer is a multifactorial illness with a wide range of subtypes and symptoms. 

Understanding this diversity is crucial for developing targeted treatment approaches. Research 

focuses on genetic mutations, micro environmental factors, and epigenetic changes to improve 

personalized treatment strategies [9]. Technological advancements in mammographic screening and 

therapeutic interventions have transformed breast cancer management. Innovations in surgical 

techniques and radiotherapy have improved disease control and cosmetic outcomes. Clinical trials 

exploring combination therapies and gene-expression profiling aim to enhance treatment selection 

and patient outcomes [10]. Developing accurate prediction models tailored to specific populations, 

such as Cuban women, is crucial for effective breast cancer management. ML-based model that 

achieves high accuracy in estimating breast cancer risk for Cuban women, outperforms existing 

models. The potential for early diagnosis to enhance patient outcomes and save healthcare 

expenditures is highlighted by this approach [11]. To select and classify features in multidimensional 

breast cancer datasets, a new approach called the Rat Swarm Optimizer (RSO) hybridization with 

Levy Flight-based Cuckoo Search Optimization Algorithm (H-RS-LVCSO) was presented. By 

merging hybrid adaptive LVCSO with moment invariant wavelet feature extraction, this method 

greatly improves accuracy, precision, and execution speed. The research contributes to advancing 

breast cancer classification through innovative Feature Selection (FS) and classification techniques 

[12]. 
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Evaluating various ML algorithms for breast cancer diagnosis, highlights RF’s robustness in 

handling high-dimensional data and nonlinear decision boundaries. The approach demonstrates 

high accuracy in distinguishing between healthy individuals and those with breast cancer, 

showcasing its potential for accurate early detection [13]. The application of ensemble data mining 

techniques enhances the precision of breast cancer diagnosis by combining Rotation Forest with 

feature selection based on genetic algorithms. The approach optimizes input variable selection and 

employs robust classification methods, achieving high accuracy rates and demonstrating the 

effectiveness of ensemble methods in medical diagnostics [14]. Particle swarm optimization (PSO) 

was used for FS in data mining techniques to create a predictive model for breast cancer recurrence. 

The study demonstrates how Particle Swarm Optimization (PSO) enhances classification 

performance by assessing classifiers such as Naive Bayes (NB), K-Nearest Neighbor (KNN), and the 

rapid Decision Tree learner (REPTree). The results highlight the effectiveness of feature selection (FS) 

techniques in optimizing predictive models for breast cancer recurrence [15]. 

Cardiotocography (CTG) data uncertainty is crucial for classifying fetal heart rate in the 

biomedical field. The proposed Interval Neutrosophic Rough Neural Network (IN-RNN) framework, 

utilizing the backpropagation algorithm, enhances RNN’s performance through NST. The 

experimental results indicate exceptional performance, with scores around 95%. Using WEKA 

application, the framework was compared with algorithms like Neural Network (NN), decision 

tables, and nearest neighbors, confirming its efficiency. The Receiver Operating Characteristic (ROC) 

curve displays high and acceptable area-under-curve values for the pathologic, normal, and 

suspicious states. The IN-RNN framework estimates uncertainty boundaries based on membership, 

truth, and indeterminacy values, with performance metrics indicating its effectiveness in classifying 

CTG data [16]. Differentiating COVID-19 from other lung illnesses, like bacterial and viral 

pneumonia, has become more difficult due to the COVID-19 pandemic. To differentiate between 

these diseases, a neutrosophic method was put forth, which involved grouping data into sets labeled 

True (T), False (F), and Indeterminacy (I) to improve feature extraction. Alpha-mean and beta- 

enhancement preprocessing is applied to chest X-ray pictures in order to decrease indeterminacy and 

boost opacity detection. Then, in a transfer learning setup, these improved images are examined 

using ResNet-50, VGG-16, and XGBoost, yielding an accuracy of 97.33% [17]. 

Decision-making (DM) is naturally challenging because of the uncertain and ambiguous nature 

of environments, particularly when multiple attributes are considered. The Multi-Polar Interval- 

Valued Neutrosophic Set (MPIVNS) and the Hypersoft Set (HS) framework were combined to 

address these issues. New aggregate operators, distance metrics, and similarity measures created 

especially for MPIVN-HSs are presented. These tools are essential for resolving complex attribute- 

based decision-making problems. The research utilizes the KNN algorithm to improve decision 

processes, showcasing practical applications in areas like site selection and beyond. The study 

significantly advances fields relying on language-based DM, including Artificial Intelligence (AI) and 

sentiment analysis [18]. The KNN algorithm is a popular non-parametric supervised classifier that 

assigns class labels to unknown samples based on their nearest neighbors in a training set using 

distance metrics. While effective, efforts have extended KNN to enhance its accuracy. Neutrosophic 

KNN, which integrates NST to improve classification. NST computes a final membership U = T + I - 

F for class labeling, similar to fuzzy KNN, and assigns T, I, and F memberships using a supervised 

Neutrosophic C-Means (NCM) algorithm. Extensive experiments on synthetic and real-world 

datasets validate the method's efficacy compared to traditional KNN, fuzzy KNN, and weighted 

KNN approaches [19]. 
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NST, especially single-valued NS (SVNSs), improves handling of imprecision and uncertainty in 

medical applications. By integrating NST with fuzzy techniques, more effective solutions for medical 

image processing, DM, and information fusion are achieved. These methods have shown efficacy in 

de-noising, clustering, and segmenting medical images. Neutrosophic logic (NL) offers a framework 

for modeling vagueness and uncertainty, making it ideal for dealing with incomplete or inconsistent 

information. The importance of NS is emphasized in various medical applications and proposes a 

framework for leveraging NS to enhance medical image processing and diagnosis [20]. 

Developing decision support tools for healthcare facility maintenance and asset renewal is 

challenging due to uncertainties and subjectivity in DM. In order to reduce subjectivity, Neutrosophic 

Logic (NL), Multi-Attribute Utility Theory (MAUT), and the Analytic Network Process (ANP) were 

integrated to assess hospital building assets according to their criticality and performance 

inequalities. ML algorithms, such as DT, KNN, and NB, automate and standardize the prioritization 

process. Applying the model to healthcare institutions in Canada showed a notable improvement in 

prediction performance, outperforming the previous model by about 11%. With the help of this 

framework, hospital asset renewal will be prioritized in a way that is impartial, automated, and 

consistent, guaranteeing effective resource allocation [21]. 

A hybrid fuzzy Multi-Criteria Decision-Making (MCDM) methodology utilizing Single-Valued 

Neutrosophic Fuzzy Sets (SVNFS), Best-Worst Method (BWM), and VIKOR is proposed for assessing 

cybersecurity risks targeting Connected and Autonomous Vehicles (CAVs). Expert opinions on 

cyber-attack likelihood and severity are integrated to rank threat-agent categories, identifying insider 

attackers as posing the greatest risk. This approach addresses subjectivity in opinions and 

incorporates criteria weights based on the consequences of cyber-attacks, offering a flexible 

framework applicable beyond CAV cybersecurity to other complex decision contexts with uncertain 

data [22]. The decision support system (DSS) utilizes the CRITIC and CRADIS models within SVNS 

to prioritize hydrogen technologies for decarbonizing Iran's oil refining industry. It assesses blue, 

green, and low-carbon hydrogen technologies across environmental, economic, social, and reliability 

criteria, identifying solar renewable energy as optimal due to its clean energy conversion and 

geographical suitability. This study enhances DM under uncertainty, suggesting future research 

explore broader qualitative factors and stakeholder perspectives [23]. The research focuses on 

advancing strategic DM in the planning of historic pedestrian bridge remediation through an 

innovative algorithm based on Rough NS (RNS). This novel approach integrates Rough Sets (RS) and 

NS theories within a MCDM model. A key contribution is the introduction of a new RN symmetric 

cross entropy measure and its weighted variant, specifically designed to address uncertainties and 

the challenge of unknown criteria weights inherent in complex DM processes. By incorporating the 

VIKOR method, the model enables effective prioritization of bridge remediation efforts by providing 

robust and reliable rankings. Case studies validate the model's efficacy, demonstrating its practical 

utility compared to traditional methods in real-world scenarios [24]. 

A novel approach to Multi-Attribute Decision-making (MADM) was introduced by integrating 

RS, NS, and Grey System Theory (GST). The RN Grey Relational Analysis (RNGRA) method 

addresses indeterminate and inconsistent data using RNS, characterized by T, I, and F-membership 

degrees. Attribute weights are partially known and determined via an information entropy method. 

The Accumulated Geometric Operator (AGO) converts RN numbers into SVN numbers. The method 

employs the Hamming distance to calculate the NGR coefficient for assessing reliability and 

unreliability. Finally, a RN relational degree is established to rank alternatives, with a numerical 

example provided to demonstrate the method's effectiveness and applicability [25].  
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A RN TOPSIS method was presented for Multi-Attribute Group DM (MAGDM), effectively 

handling uncertainty, indeterminacy, and inconsistency in data. By evaluating alternatives and 

features using RNS, which are distinguished by T, I, and F-membership degrees, the method 

enhances the conventional TOPSIS technique. Individual opinions are aggregated into a group 

consensus using the RN weighted averaging operator. The distance between each alternative and 

the positive and negative Rough Neutrosophic (RN) ideal solutions is estimated using the Euclidean 

distance. A numerical example demonstrates the method's practicality and efficiency, making it 

applicable in pattern recognition, AI, and medical diagnosis [26]. 

3. Materials and Methods 

The materials and methods used in the study are described in detail in this section. 

3.1. Proposed methodology 

The objective is to advance breast cancer prediction by integrating NS with ML algorithms. The 

WDBC dataset ( 𝐼𝐷 ) was initially retrieved from the UCI ML Repository and then carefully 

preprocessed (𝑂𝐷𝑝𝑝) to ensure its quality and consistency. 

𝐼𝐷 = 𝑊𝐷𝐵𝐶            (1) 

𝑂𝐷𝑝𝑝 = 𝑓𝑝𝑝(𝐼𝐷 )       (2) 

 

The dataset was then transformed into an N-representation (𝑂𝑁), where each data point was 

characterized not only by its specific attributes but also by degrees of T, I, and F. This approach offers 

a more nuanced depiction of uncertainty and variability inherent in medical datasets. 

𝑂𝑁 = 𝑓𝑇,𝐼,𝐹 (𝑂𝐷𝑝𝑝)     (3) 

 

Following the transformation, the N-dataset was split (𝑂𝑁(𝑠)) into training and testing subsets. 

𝑂𝑁(𝑠) = 𝑠(𝑓𝑂𝑁 ) = 𝑠 (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑡𝑒𝑠𝑡, 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑒𝑠𝑡) (4)  

The N- dataset was normalized (𝑂𝑁(𝑁𝑜𝑟)) to a range of 0 to 1 using Min-Max Scaler. 

𝑂𝑁(𝑁𝑜𝑟) = 𝑓𝑁𝑜𝑟 (𝑂𝑁(𝑠))   (5) 

 

The normalized N - training dataset was employed to train ML classifiers (𝑂𝑁(𝑀𝐿)) such as DT, RF, 

and AdaBoost. These classifiers were selected based on their capacity to handle intricate feature 

interactions and identify subtle patterns necessary for an accurate diagnosis of breast cancer. 

𝑂𝑁(𝑀𝐿) 
= 𝑓𝑀𝐿 (𝑂𝑁(𝑁𝑜𝑟)) = 𝑂𝑀𝐿 (𝐷𝑇𝑂𝑁(𝑁𝑜𝑟) 

, 𝑅𝐹𝑂𝑁(𝑁𝑜𝑟) 
, 𝐴𝐵𝑂𝑁(𝑁𝑜𝑟) 

) (6)  

The main performance metrics (𝑂𝑁𝑀𝑒𝑡𝑟𝑖𝑐𝑠) for the classifier, which include accuracy, precision, 

recall, and F1 score, were used to evaluate its performance and provide a thorough examination of 

its ability to predict. 

 

𝑶𝑵𝑴𝒆𝒕𝒓𝒊𝒄𝒔 
= 𝑶𝑵(𝑴𝑳)

(𝑴𝒆𝒕𝒓𝒊𝒄𝒔𝑨𝒄𝒄,𝑷𝒓,𝑹𝒄,𝑭𝟏 
)    (7) 
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Finally, the study conducted a Comparative Analysis (𝑂𝐶𝐴 ) between the N-dataset and the 

original dataset to evaluate how integrating NS enhances the accuracy and reliability of breast cancer 

prediction models. 

𝑂𝐶𝐴 = 𝐶𝐴 (𝐼𝐷; 𝑂𝑁)       (8) 

The workflow is depicted in Figure 1. 

 

 
Fig. 1: NS-ML framework for Breast Cancer Prediction 

3.2. Dataset description 

A popular dataset for ML and statistical analysis, the WDBC dataset was collected by the 

University of Wisconsin Hospitals in Madison and is particularly useful for predicting and classifying 

breast cancer. Derived from digital photographs of breast tumors, it has attributes including radius, 

texture, area, perimeter, smoothness, compactness, concavity, concave spots, symmetry, and fractal 

dimension. With 212 instances classified as malignant (indicating presence of cancer) and 357 as 

benign (indicating absence of cancer), this dataset serves as a robust resource for developing accurate 

models that distinguish between malignant and benign breast cancer cases based on these 

comprehensive tumor characteristics. 

3.3. Preprocessing of data 

The breast cancer dataset was preprocessed for effective ML analysis. First, it was divided into 

features attributes describing tumor and a categorical target variable that distinguishes between 

benign and malignant cases. This categorical target was encoded into numerical values to make it 

easier for the models to understand. All features were normalized using Min-Max scaling in order to 

guarantee accurate predictions. This preprocessing process improved the machine learning models' 

ability to predict breast cancer diagnosis and maintained data consistency. 

3.4. Neutrosophic Sets 

Let 𝑋 be a point or object-containing space, and let 𝑥 be any element belongs to 𝑋. Three 

unique membership functions define a NS, 𝐴 within 𝑋: 𝑇, 𝐼 and 𝐹 membership often referred as 

𝑇𝐴(𝑋), 𝐼𝐴 (𝑋), and 𝐹𝐴(𝑋). These functions assign real values within the interval [0, 1] indicating the 

degree to which 𝑥 pertains to the subsets of 𝑇, 𝐼, and 𝐹, respectively: 

𝑇𝐴 𝑚𝑎𝑝𝑠 𝑋 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ] 0−, 1+[ 

𝐼𝐴 𝑚𝑎𝑝𝑠 𝑋 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ] 0−, 1+[ 

𝐹𝐴 𝑚𝑎𝑝𝑠 𝑋 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ] 0−, 1+[ 

The sum of 𝑇𝐴(𝑋), 𝐼𝐴(𝑋), 𝐹𝐴(𝑋) for every X, the falls ranges from 0 to 3. This flexibility enables 

NS to effectively represent and manage uncertainty, ambiguity, and contradiction within sets, 
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making them valuable in contexts where handling incomplete or uncertain information is crucial [26]. 

 

3.5. Neutrosophic dataset formation 

To address the uncertainties inherent in the WDBC dataset for binary classification, An N- dataset 

was introduced as an inclusive and generalized solution. This dataset goes beyond conventional and 

high-risk categories by incorporating a degree of neutrality. Thus, the N-dataset is defined as < 𝑇𝐴, 

𝐼𝐴 , 𝐹𝐴 >, where each element of the set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} is specified as follows: 

∀ 𝑥 (𝑡, 𝑖, 𝑓) ∈ < 𝑇𝐴, 𝐼𝐴 , 𝐹𝐴 > 

where, t, i, and f, respectively, are the real numbers for T, I, and F. 

In order to better capture the uncertainty in the data, the model is being developed by adding 

N-components to the original dataset. The first step in the method is to compute the mean vectors for 

the training set as a whole (𝜌𝑎𝑙𝑙), the positive class (𝜌+ ), and the negative class (𝜌−) which is provided 

in Eq. (1). 

𝜌𝑎𝑙𝑙 = ∑𝑛
𝑎𝑙𝑙 
𝑥 ; 𝜌+ = ∑𝑛

+
 𝑥 ; 𝜌− = ∑𝑛

−  
𝑥 

(1) 

𝑘=1  𝑘 𝑘=1  𝑘 𝑘=1  𝑘 

The following Eqs. (2), (3) & (4) are u sed to compute the T, I, and F components for a given 

sample (𝑥): 

||𝑥−𝜌+|| 
𝑇 = 1 − 

max (||𝑋 
 
𝑡𝑟𝑎𝑖𝑛 −𝜌+)                                                                    

(2) 

 
||𝑥−𝜌𝑎𝑙𝑙|| 
𝐼 = 1 − 

max (||𝑋 
 
𝑡𝑟𝑎𝑖𝑛 −𝜌𝑎𝑙𝑙)                                                                  

(3) 

 

 
||𝑥−𝜌−|| 

max (||𝑋𝑡𝑟𝑎𝑖𝑛−𝜌−)                (4) 

These formulas are applied to each sample in the training and testing datasets, yielding 

features that measure the degrees of T, I, and F. Consequently, an N-dataset is produced, which 

enhances the ML algorithm's capacity to identify data with inherent uncertainty. This strategy 

considerably improves the classifier's performance in processing ambiguous and complex biomedical 

data by utilizing the capabilities of NST. The algorithm for the formation of 𝑂𝑁 is provided below. 
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𝑗=1 

 

 

 

3.6. Classification algorithms 

3.6.1. Decision Tree 

A hierarchical supervised learning model called a DT makes predictions by gradually dividing 

the data into groups based on the values of its features. It creates a tree-like structure with internal 

nodes representing decision points, branches indicating possible outcomes, and leaf nodes delivering 

final predictions. The tree is built recursively, starting from the root and progressing downwards. At 

each internal node, the algorithm chooses a feature and threshold that best separates the data, 

typically using metrics like Gini impurity or entropy. This process continues, refining predictions at 

each level, until reaching leaf nodes. In order to classify new data, branches are followed depending 

on feature values as they go from the root of the tree to the leaf. This approach effectively breaks 

complex decisions into simpler steps, making DT both powerful and interpretable for various 

prediction and classification tasks [28]. The Gini Impurity and Entropy is calculated using the 

following Eqs. (5) and (6) 
 

Gini Impurity  
                         

 (5) 

Entropy: 

 

𝐻 = − ∑𝐶 𝑝𝑗 log (𝑝𝑗)                    (6) 

 

where 𝑝𝑗 represents the probability of class 𝑗 in the node, and 𝐶 is the number of classes 

 

3.6.2. Random Forest 

An ensemble learning method called RF combines several DTs to reduce overfitting and improve 

prediction accuracy. Using a bootstrap sampling of the original dataset, it creates a large number of 

trees. In order to reduce correlations between the different trees and introduce variety through 

feature bagging, a random selection of features is chosen at each node for splitting. For classification 

tasks, the model aggregates predictions by majority voting, while for regression, it uses averaging. 

By leveraging the collective wisdom of many diverse trees, RF effectively reduces variance and 

enhances generalization. This method excels in handling complex, high-dimensional datasets and is 

where 𝑦𝑘 = 1 and 𝑛+ is the no. of positive samples in 𝑋𝑡𝑟𝑎𝑖𝑛 

Step 2: Calculate the N-components (𝑡, 𝑖, 𝑓) for each sample. 

For each sample 𝑥𝑖 in both 𝑋𝑡𝑟𝑎𝑖𝑛 and 𝑋𝑡𝑒𝑠𝑡 

||𝑥𝑖 − 𝜌+|| 𝑇𝑖 = 1 − 
max (||𝑋 − 𝜌+)  

𝐼𝑖 = 1 − 
max (||𝑋 

 

 − 𝜌𝑎𝑙𝑙) 

𝐹𝑖 = 1 − 
max (||𝑋 − 𝜌−) 

||𝑥𝑖 − 𝜌−|| 

 

Step 3: Group the N-components 
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widely adopted in ML for its robust performance, ability to capture non-linear relationships, and 

resilience against overfitting. Additionally, the model's capacity to provide feature importance 

rankings and handle missing values further contributes to its popularity across various domains [29]. 

3.6.3. Adaptive Boosting 

Boosting is a ML technique that combines multiple weak learners to form a strong predictive 

model. AdaBoost, developed by Freund and Schapire [30], exemplifies this approach and remains 

widely used in various fields. In AdaBoost, weak learners are trained iteratively on weighted 

distributions of training data, with weights adjusted based on their performance. Each weak 

hypothesis receives a weight 𝛼𝑡 proportional to its accuracy, thereby minimizing errors. By assigning 

greater weight to more accurate learners, the final model aggregates these weak learners into a robust 

overall predictor. 

3.7. Performance Evaluation 

The proposed methods were compared using metrics including recall, accuracy, precision, and 

F1-score. The percentage of correctly identified subjects is called accuracy. The precision measure 

shows the percentage of successfully diagnosed positive subjects out of all predicted positive subjects. 

The recall metric assesses how well the model can detect positive samples. A fair assessment of the 

model's performance is provided by the F1-score, which is the harmonic mean of precision and recall. 

4. Results 

4.1. Experimental setup 

Three distinct ML tree-based classifiers were utilized to predict breast cancer using the WDBC 

dataset. Prior to training, the dataset was transformed into an N-dataset to enhance the models' 

robustness in handling uncertainties. Several tree-based algorithms were trained on this N-dataset, 

and standard metrics were employed to evaluate the predictive performance of the methods. 

Furthermore, comparisons were made between results obtained from the N-dataset and the original 

dataset. All these experiments were efficiently executed on Google Colab, leveraging GPU 

acceleration to manage the computational complexity of ML tasks effectively. 

4.2. Experimental results 

The table provides a comparative analysis of ML algorithm performance using both the N- 

dataset and the original dataset. N-DT, N-RF, and N-AdaBoost denote models trained with the N- 

dataset using DT, RF, and AdaBoost algorithms respectively. 

 

Table 2. Comparative evaluation of N-DT and DT model 

Metrics N-DT DT 

Accuracy 93.86 90.35 

Precision 91.66 84.61 

Recall 93.62 93.62 

F1 score 92.63 88.88 
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Table 3. Comparative evaluation of N-RF and RF model 
  

Metrics N-RF RF 

Accuracy 96.49 96.49 

Precision 95.74 97.77 

Recall 95.74 93.61 

F1 score 95.74 95.65 

 

Table 4. Comparative evaluation of N-AdaBoost and AdaBoost model 

Metrics N-AdaBoost AdaBoost 

Accuracy 99.12 98.24 

Precision 100.00 100.00 

Recall 97.87 95.74 

F1 score 98.92 97.82 

 

These metrics provide a detailed comparison of ML algorithms using both the N-dataset and the 

original dataset. According to Table 2, N-DT demonstrate improvements in accuracy, precision, and 

F1 score, but slightly lower than RF and AdaBoost in precision and F1 score. Table 3 shows that N- 

RF exhibits notable enhancements in precision and F1 score, indicating improved capability to 

accurately classify positive instances while maintaining overall performance metrics. Table 4 

highlights performance of N-AdaBoost, achieving 99.12% accuracy, perfect precision of 100.00%, 

97.87% recall, and a F1 score of 98.92%. These results underscore AdaBoost's effectiveness in handling 

uncertainties inherent in biomedical data. In contrast, when using the original dataset, DT, RF, and 

AdaBoost shows lower precision and F1 scores compared to their performance with the N-dataset. 

The comparison of the results is displayed in Figure 2. Overall, integrating NS theory enhances the 

predictive capabilities of these algorithms for breast cancer diagnosis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Comparison of N-tree based and conventional ML classifiers 

 

5. Discussion 

The proposed hybrid approach, NS-ML aimed at improving the prediction of breast cancer 

diagnosis. The research findings highlight that N-AdaBoost models, achieve superior accuracy and 

precision in detecting breast cancer. This underscores the effectiveness of integrating NST into ML 

models for biomedical applications, particularly in enhancing the reliability and accuracy of breast 

cancer diagnosis. 
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Conclusion 

This research aims at advancing breast cancer prediction by integrating NS with ML techniques. 

Dataset was collected from WDBC dataset from the UCI ML Repository. The dataset was transformed 

into an N-representation, enriching each data point with degrees of T, I, and F to capture the 

complexities of medical datasets. Subsequently, the N-dataset was partitioned into training and 

testing subsets for training tree-based classifiers such as DT, RF, and AdaBoost. Predictive 

performance was measured using evaluation metrics, which demonstrated the models' capacity to 

recognize trends in breast cancer. Comparative analysis between the N-datasets and original datasets 

demonstrated improved performance metrics for DT, RF, and AdaBoost with the N-dataset. Notably, 

N-AdaBoost models demonstrated enhanced reliability of breast cancer diagnosis utilizing NS with 

scores of 99.12% accuracy, 100.00% precision, 97.87% recall, and an F1 score of 98.92%. 

As a future work, the NS-ML approach can be expanded to incorporate Deep Learning (DL) and 

Neural Network (NN) architectures, aiming to enhance their capability in handling complex 

biomedical data. This integration will leverage NST to effectively model uncertainties and variability, 

thereby improving accuracy in tasks like image-based diagnostics and genomic analysis. Developing 

new neural network structures that integrate N-elements will be crucial for capturing intricate 

patterns in biomedical data. 
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