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Abstract. In decision making scenarios, dealing with imprecise information through extensions of fuzzy sets

is crucial. Among these extensions, single valued neutrosophic set (SVNS) are especially effective at managing

and interpreting such imprecise data. In the current study, decision makers confidence levels, derived from their

familiarity with the assessed objects, are combined with the primary data within a neutrosophic framework.

This paper focuses on developing innovative confidence single valued neutrosophic (SVN) aggregation operators

(AO) that utilize the recently developed Aczel-Alsina (AA) operational laws and power AO (PAO) to capture

the interrelationships among aggregated single valued neutrosophic numbers (SVNN). Specifically, it introduces

new confidence SVNAA power average AO, namely, confidence SVNAA power weighted and ordered weighted

average AO, which integrate the decision maker familiarity with the aggregated arguments. To evaluate the

effectiveness of the proposed operators, we perform a comprehensive examination of their desirable properties.

Also, we use these suggested operators to establish a innovative approach for SVN multi attribute decision

making problems (MADM). A demonstrative example of strategic suppplier selection is provided to validate

the proposed approach and highlight its practicality and effectiveness.

Keywords: Single valued neutrosophic sets; Aczel-Alsina; Power aggregation operator; Confidence levels;

Average AO; Multiple attribute decision making.

—————————————————————————————————————————-

1. Introduction

In our complex world, managing uncertainty, which arises from navigating imprecision and

incomplete data, is essential across various fields, including science, business, and decision mak-

ing (DM). To address imprecise, contradictory, and incomplete information. Lotfi Zadeh [1]

introduced fuzzy set (FS) theory with the membership degree (MD), which is denoted by ℜ.
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Atanassov [2] further developed FS theory with intuitionistic FS (IFS) theory, which incor-

porates both ℜ and non-membership degree (NMD) which is represented by ℏ. In IFS, the

degree of hesitation is commonly computed as 1-ℜ − ℏ which potentially leading to the loss

of some uncertainty. As an extension of IFS, Atanassov and Gargov [3] proposed interval

valued intuitionistic FS (IVIFS) theory, allowing ℜ and ℏ to range over intervals. Further, the

generalization of IFS includes pythagorean FS (PyFS) [4], fermatean FS (FFS) [5]and q-rung

orthopair FS (q-ROFS) [6]. Cuong et al. [7] introduced picture FS (PFS), by including an

dependent neutral MD (∂) along with ℜ and ℏ. Additionally, the expansion of PFS encom-

passes spherical FS (SFS) [8], cubical FS (CFS) [9]and T-spherical FS (T-SFS) [10]. Building

on IFS, Smarandache introduced the concept of neutrosophic sets (NS) by adding an indepen-

dent degrees known as the indeterminacy MD (∂) alongside the truth MD (ℜ) and falsity MD

(ℏ) over a non-standard interval. Subsequently, Wang et al. [12] developed the single valued

neutrosophic set (SVNS) based on the standard real interval [0,1], making it more suitable for

computational ease in DM scenarios.

A variety of AO have emerged in the context of different fuzzy environments to enable

the combination of evaluated objects, allowing for more effective DM and analysis. Liu and

Chen [13] utilized the IF Heronian mean aggregation operator, which is based on Archimedean

norms, to aggregate multiple decision matrices in a group DM problem, facilitating the evalu-

ation of multiple perspectives and opinions. Shit and Ghorai [14] proposed FF Dombi AO to

solve a MADM. Qiyas et al. [15] investigated Yager operators under PF environment. Ullah

et al. [16] explored T-SFS in Hamacher AO.

In recent years, various operators have been designed to integrate confidence and ordering

information into the preference components of aggregated data, allowing for more comprehen-

sive and nuanced analysis of complex DM scenarios. In this manner, Dejian Yu [17] developed

IF aggregation under confidence levels (CL). Tahir Mahmood et al. [18] established confidence

level induced AO based on IF rough sets information. K Rahman et al. [19] proposed confi-

dence based generalized IF AO for group DM. Harish Garg [20] introduced the induced PyF

AO and its application to DM process. Manish Kumar [21] made a study on the confidence

based q-ROF AO with numerical examples and discussed their applicability in a DM problem.

Tanuja Puntaua and Komal [22] introduced the confdence PF AO and applied with a group

DM problem. Muhammad Kamran et al. [23] developed CL AO based on SVN rough sets.

Inspired by the literature, the goals of this paper are presented below:

• The confidence an expert has in their assessment significantly impacts the evaluation

process and the reliability of the DM outcome.

• There will be an opportunity to incorporate the experts confidence in the evaluated

SVN aggregating objects during the DM process.
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• Integrating the experts CLs into the exact information within the SVN environment

is essential.

• It has been noted that no research has explored the integration of experts CLs with

SVN Aczel-Alsina power aggregation operator.

• These objectives have inspired us to develop new confidence-based SVN operators.

The primary contributions of our study are summarized below:

• We propose utilizing SVNAAP weighted and ordered weighted average AO combined

with decision makers CLs.

• The essential characteristics of the AO are analyzed.

• We have created SVNMADM approach based on the introduced operators.

• This DM approach has been implemented in the supplier selection process.

• The outcomes are then compared with those obtained from existing SVN average

operators documented in the literature.

2. Preliminaries

Here, we review some basic definitions related to SVNS within the context of a universal

set Ẍ ′.

Definition 2.1. [12] A SVNS C̆, on the universal set Ẍ ′ is of the form C̆ =

{⟨ϕ,ℜC̆(ϕ), ∂C̆(ϕ), ℏC̆(ϕ)|ϕ ∈ Ẍ ′⟩} where ℜC̆ : Ẍ ′ → [0, 1] represent the truth membership

function, ∂C̆ : Ẍ ′ → [0, 1] represent the indeterminacy membership function and ℏC̆ : Ẍ ′ →
[0, 1] represent the falsity membership function and ℜC̆(ϕ), ∂C̆(ϕ), ℏS(ϕ) ∈ [0, 1] such that

0 ≤ ℜC̆(ϕ) + ∂C̆(ϕ) + ℏC̆(ϕ) ≤ 3. Now we denote the triplets C̆ = (ℜC̆, ∂C̆, ℏC̆) as an sin-

gle valued neutrosophic numbers (SVNN) for simplicity.

Definition 2.2. [24] Let C̆ = ⟨ℜC̆, ∂C̆, ℏC̆⟩ ∈ C̆ be a SVNN, then the score function M̈ of C̆
is defined as

M̈(C̆) =
2 + ℜC̆ − ∂C̆ − ℏC̆

3
∈ [0, 1] (1)

M̈(C̆) = 2+0.9−0.7−0.8
3 = 0.467 ∈ [0, 1]

Definition 2.3. [24] Let C̆ = ⟨ℜC̆, ∂C̆, ℏC̆⟩ ∈ C̆ be a SVNN, then the accuracy function M̈ of

C̆ is defined as

L̈(C̆) = ℜC̆ − ℏC̆ ∈ [−1, 1] (2)

Definition 2.4. [24] Let C̆1 = ⟨ℜC̆1
, ∂C̆1

, ℏC̆1
⟩ and C̆2 = ⟨ℜC̆2

, ∂C̆2
, ℏC̆2

⟩ be any two SVNNs

and M̈(C̆j) and L̈(C̆j) for j = 1, 2 be their respective score and accuracy values, then we arrive

at the following results.

(1) If M̈(C̆1) > M̈(C̆2), then C̆1 ≻ C̆2;
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M̈(C̆1) < M̈(C̆2), then C̆1 ≺ C̆2;

(3) If M̈(C̆1) = M̈(C̆2) then

• IfL̈(C̆1) > L̈(C̆2), then C̆1 ≻ C̆2;

• If L̈(C̆1) < L̈(C̆2), then C̆1 ≺ C̆2;

• If L̈(C̆1) = L̈(C̆2), then C̆1 ∼ C̆2.

Definition 2.5. [25] Let C̆1 = ⟨ℜC̆1
, ∂C̆1

, ℏC̆1
⟩ and C̆2 = ⟨ℜC̆2

, ∂C̆2
, ℏC̆2

⟩ be any two SVNNs,

then the Euclidean distance between them is defined as follows:

D(C̆1, C̆2) =

√
1

3
{|ℜC̆1

−ℜC̆2
|2 + |∂C̆1

− ∂C̆2
|2 + |ℏC̆1

− ℏC̆2
|2} (3)

Definition 2.6. [26] A PAO of dimension n is mapping PAO: Qρ → Q, according to the

following formula.

PAO(t̆1, t̆2, . . . , t̆ρ) =

∑ρ
j=1(1 + Ë(t̆j))t̆j∑ρ
j=1 1 + Ë(t̆j)

(4)

where Ë(t̆j) =
∑ρ

h=1,h̸=j supp (t̆j , t̆h) and (j = 1, 2, . . . , ρ;h = 1, 2, . . . , r) which provides the

relationship between t̆j and t̆h which must follow the conditions:

(1) supp(t̆j , t̆h) ∈ [0, 1];

(2) supp(t̆j , t̆h) = supp(t̆h, t̆j);

(3) supp(t̆j , t̆h) ≥ supp(t̆s, t̆t) if |t̆j − t̆h| < |t̆s − t̆t|.

Definition 2.7. [27] A TN is a function E : [0, 1]× [0,1] → [0,1] that fulfills the properties

of symmetry, monotonicity, and associativity, and includes an identity element, i.e., for all

˘̈p, ˘̈q, ˘̈n ∈ [0,1]:

(1) E(˘̈p, ˘̈q) = E(˘̈q, ˘̈p);

(2) E(˘̈p, ˘̈q) ≤ E(˘̈p, ˘̈n) if ˘̈q < ˘̈n ;

(3) E(˘̈p,E(˘̈q, ˘̈n)) = E(E(˘̈p, ˘̈q), ˘̈n);

(4) E(˘̈p, 1) = ˘̈p.

The following is a list of some well-known TNs.

(1) Minimum TN: EM (˘̈p, ˘̈q) = min(˘̈p, ˘̈q);

(2) Product TN: EP (˘̈p, ˘̈q) = ˘̈p · ˘̈q;
(3) Lukasiewicz TN: EL(˘̈p, ˘̈q) =max(˘̈p+ ˘̈q − 1, 0);

(4) Drastic TN: ED(˘̈p, ˘̈q)=

 ˘̈p, if ˘̈q=1

˘̈q, if ˘̈p=1

0, otherwise

;

(5) Nilpotent minimum:

EnM (˘̈p, ˘̈q)=

(
min(˘̈p, ˘̈q) if ˘̈p+ ˘̈q >1

0 otherwise

)
.

(2) If
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Definition 2.8. [27] A TCN is a function O : [0, 1]× [0,1] → [0,1] that fulfills the properties

of symmetry, monotonicity, and associativity, and includes an identity element, i.e., for all

˘̈p, ˘̈q, ˘̈n ∈ [0,1]:

(1) O(˘̈p, ˘̈q) = O(˘̈q, ˘̈p);

(2) O(˘̈p, ˘̈q) ≤ O(˘̈p, ˘̈n) if ˘̈q < ˘̈n ;

(3) O(˘̈p,O(˘̈q, ˘̈n)) =O(O(˘̈p, ˘̈q), ˘̈n);

(4) O(˘̈p, 0) = ˘̈p.

The following is a list of some well-known TCNs.

(1) Maximum TCN: OM (˘̈p, ˘̈q) =max( ˘̈p, ˘̈q);

(2) Probabilistic sum TCN: OP (˘̈p, ˘̈q) = ˘̈p+ ˘̈q − ˘̈p · ˘̈q;
(3) Bounded sum: OL(˘̈p, ˘̈q) = min(˘̈p+ ˘̈q, 1);

(4) Drastic TCN: OD(˘̈p, ˘̈q)=

 ˘̈p, if ˘̈q=0

˘̈q, if ˘̈p=0

1, otherwise

;

(5) Nilpotent minimum:

OnM (˘̈p, ˘̈q)=

(
max(˘̈p, ˘̈q) if ˘̈p+ ˘̈q <1

1 otherwise.

)
.

Definition 2.9. [28] AA in early 1982 introduced the concepts of TN and TCN classes for

functional equations. The AATN can be defined as follows:

Eϕ
A(

˘̈p, ˘̈q) =


ED(˘̈p, ˘̈q), if α = 0

min(˘̈p, ˘̈q), if α = ∞

e−{(−Ln ˘̈p)α+(−Ln˘̈q)α}
1
α , otherwise.

and the AATCN can be defined as follows:

Oϕ
A(

˘̈p, ˘̈q) =


OD(˘̈p, ˘̈q); if α = 0

max(˘̈p, ˘̈q); if α = ∞

e−{(−Ln(1− ˘̈p))α+(−Ln(1−˘̈q))α}
1
α , otherwise.

such that E0
A = ED,E

1
A = EP ,E

∞
A = min,O0

A = OD,O
1
A = OP ,O

∞
A = max. The TN Eα

A and

TCN Oα
A are combained to one another for each α ∈ [0, ∞]. The class of AATN is strictly

increasing, and the class of AATCN is strictly decreasing. The following is the AATN and

AATCN operational laws in connection with SVN theory.

Definition 2.10. [24] Let C̆j = ⟨ℜC̆j
, ∂C̆j

, ℏC̆j
⟩, j = 1, 2 be two SVNNs, α ≥ 1 and K > 0.

Then, the AATN and AATCN operations of SVNN are defined as:

(1) C̆1 ⊕ C̆2 = ⟨1 −

e
−{(−Ln(1−ℜC̆1

))α+(−Ln(1−ℜC̆2
))α}

1
α
, e

−{(−Ln(ℏC̆1 ))
α+(−Ln(ℏC̆2 ))

α}
1
α
, e

−{(−Ln(∂C̆1
))α+(−Ln(∂C̆2

)))α}
1
α ⟩;
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(2) C̆1 ⊗ C̆2 =⟨e−{(−Ln(ℜC̆1
))α+(−Ln(ℜC̆2

))α}
1
α
, 1 − e

−{(−Ln(1−ℏC̆1 ))
α+(−Ln(1−ℏC̆2 ))

α}
1
α
, 1 −

e
−{(−Ln(1−∂C̆1

))α+(−Ln(1−∂C̆2
)))α}

1
α ⟩;

(3) K · C̆1 = ⟨1− e
−{K(−Ln(1−ℜC̆1

))α}
1
α
, e

−{K(−Ln(ℏC̆1 ))
α}

1
α
, e

−{K(−Ln(∂C̆1
))α}

1
α ⟩;

(4) C̆K
1 = ⟨e−{K(−Ln(ℜC̆1

))α}
1
α
, 1− e

−{K(−Ln(1−ℏC̆1 ))
α}

1
α
, 1− e

−{K(−Ln(1−∂C̆1
))α}

1
α ⟩.

Definition 2.11. [24] Let C̆ = {⟨ϕ,ℜC̆(ϕ), ∂C̆(ϕ), ℏC̆(ϕ)|ϕ ∈ X⟩} C̆1 =

{⟨ϕ,ℜC̆1
(ϕ), ∂C̆1

(ϕ), ℏC̆1
(ϕ)|ϕ ∈ X⟩} and C̆2 = {⟨ϕ,ℜC̆2

(ϕ), ∂C̆2
(ϕ), ℏC̆2

(ϕ)|ϕ ∈ X⟩} be any

three SVNS, and their set operators are defined as

(1) C̆1 ⊆ C̆2 ⇔ ℜC̆1
(ϕ) ≤ ℜC̆2

(ϕ), ∂C̆1
(ϕ) ≤ ∂C̆2

(ϕ) and ℏC̆1
(ϕ) ≥ ℏC̆2

(ϕ)∀ϕ ∈ X;

(2) C̆1 ∪ C̆2 =

{⟨ϕ, {OA{ℜC̆1
(ϕ),ℜC̆2

(ϕ)}}, {EA{∂C̆1
(ϕ), ∂C̆2

(ϕ)}}, {EA{ℏC̆1
(ϕ), ℏC̆2

}(ϕ)}|ϕ ∈ X⟩};
(3) C̆1 ∩ C̆2 =

{⟨ϕ, {EA{ℜC̆1
(ϕ),ℜC̆2

(ϕ)}}, {OA{∂C̆1
(ϕ), ∂C̆2

(ϕ)}}, {OA{ℏC̆1
(ϕ), ℏC̆2

(ϕ)}}|ϕ ∈ X}⟩};
(4) C̆c = {⟨ϕ, ℏC̆(ϕ), ∂C̆(ϕ),ℜC̆(ϕ)|ϕ ∈ X⟩}.

Theorem 2.1. Let C̆1 = ⟨ℜC̆1
, ∂C̆1

, ℏC̆1
⟩ and C̆2 = ⟨ℜC̆2

, ∂C̆2
, ℏC̆2

⟩ be any two SVNNs. Then,

(1) C̆1 ⊕ C̆2 = C̆2 ⊕ C̆1,

(2) C̆1 ⊗ C̆2 = C̆2 ⊕ C̆1,

(3) Λ(C̆1 ⊕ C̆2) = ΛC̆1 ⊕ ΛC̆2,Λ ≥ 0,

(4) Λ1C̆1 ⊕ Λ2C̆1 = (Λ1 + Λ2)C̆1,Λ1,Λ2 ≥ 0,

(5) C̆Λ
1 ⊗ C̆Λ

2 = (C̆1 ⊗ C̆2)
Λ,Λ ≥ 0,

(6) C̆Λ1
1 ⊗ C̆Λ2

2 = (C̆1)
(Λ1 + Λ2),Λ1,Λ2 ≥ 0.

Proof. Straightforward.

3. Proposed Confidence SVN Aczel-Alsina power aggregation operator

The current section defines a series of SVN Aczel-Alsina power averaging operators that

incorporate CLs with the evaluated SVNNs.

3.1. Confidence SVN Aczel-Alsina power average aggregation operator

In this part, we built the confidence SVN weighted and ordered weighted Aczel-Alsina power

averaging AO. Additionally, we investigate several fundamental aspects of these proposed

operators.
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By employing the fundamental operations of AA aggregation tools, we derived appropri-

ate methodologies, including CSVNAAPWAAO, with reliable properties while considering

SVNNs. Additionally, we applied a weighted suppport degree throughout our article, us-

ing the following equation: Zj =
τj(1+Ŭ(C̆j))∑ρ
j=1 τj(1+Ŭ(C̆j))

where the suppport of C̆j is denoted by

Ŭ(C̆j) =
∑ρ

h=1,h̸=j supp(C̆j , C̆h), j = 1, 2, . . . , ρ, h = 1, 2, . . . , r and the associated weight

vector of C̆j is τ = (τ1, τ2, . . . , τρ, )
T , j = 1, 2, . . . , ρ, τj > 0, and

∑ρ
j=1 τj = 1.

Definition 3.1. Let C̆j = (ℜj , ℏj , ∂j)(j = 1, 2, . . . , ρ) be a set of SVNNs and ηjbe the CL of

C̆j with 0 ≤ ηj ≤ 1. Let Z = (Z1,Z2, . . . ,Zρ)
T be the weight vectors for SVNNs with the

condition
∑ρ

j=1Zj = 1. Then, the mapping CSVNAAPWAAO: bρ → b operator is given as

follows: CSVNAAPWAAO {(C̆1, η1), (C̆2, η2), . . . , (C̆ρ, ηρ)} = ⊕ρ
j=1Zj(ηj , C̆j)

= Z1(η1, C̆1)⊕Z2(η2, C̆2)⊕ · · · ⊕ Zρ(ηρ, C̆ρ). (5)

Theorem 3.1. The aggregated value of the SVNNs C̆j for j = 1, 2, . . . , ρ with respect to

the weight vector Z = (Z1,Z2, . . . ,Zρ)
T and the CL ηj such that 0 ≤ ηj ≤ 1 obtained us-

ing the CSVNAAPWAAO Equation 5 is also a SVNN and is given by CSVNAAPWAAO

{(C̆1, η1), (C̆2, η2), . . . , (C̆ρ, ηρ)} =

= ⟨1− e
−{

∑ρ
j=1(ηjZj(−Ln(1−ℜC̆j

))α)}
1
α

, e
−{

∑ρ
j=1(ηjZj(−LnℏC̆j )

α)}
1
α

, e
−{

∑ρ
j=1(ηjZj(−Ln∂C̆j

)α)}
1
α

⟩ (6)

Proof. By mathematical induction the proof as follows:

(1) For ρ = 2, we have CSVNAAPWAAO ((C̆1, η1), (C̆2, η2)) = Z(C̆1, η1) ⊕

Z(C̆2, η2). By operational laws, we get Z1(C̆1, η1) = ⟨1 − e
−{(η1Z1(−Ln(1−ℜC̆1

))α)}
1
α
,

e
−{(η1Z1(−LnℏC̆1 )

α)}
1
α
, e

−{(η1Z1(−Ln∂C̆1
)α)}

1
α ⟩. analogously, for Z2(C̆2, η2) = ⟨1 −

e
−{(η2Z2(−Ln(1−ℜC̆2

))α)}
1
α
, e

−{(η2Z2(−LnℏC̆2 )
α)}

1
α
, e

−{(η2Z2(−Ln∂C̆2
)α)}

1
α ⟩. CSVNAAP-

WAAO ((C̆1, η1), (C̆2, η2))= Z(C̆1, η1) ⊕ Z(C̆2, η2) = ⟨1 − e
−{(η1Z1(−Ln(1−ℜC̆1

))α)}
1
α
,

e
−{(η1Z1(−LnℏC̆1 )

α)}
1
α
, e

−{(η1Z1(−Ln∂C̆1
)α)}

1
α ⟩⊕ ⟨1 − e

−{(η2Z2(−Ln(1−ℜC̆2
))α)}

1
α
,

e
−{(η2Z2(−LnℏC̆2 )

α)}
1
α
, e

−{(η2Z2(−Ln∂C̆2
)α)}

1
α ⟩ =

⟨1−e
−{(η1Z1(−Ln(1−ℜC̆1

))α)+(η2Z2(−Ln(1−ℜC̆2
))α)}

1
α
, e

−{(η1Z1(−LnℏC̆1 )
α)+(η2Z2(−LnℏC̆2 )

α)}
1
α
,

e
−{(η1Z1(−Ln∂C̆1

)α)+(η2Z2(−Ln∂C̆2
)α)}

1
α ⟩ = ⟨1 − e

−{
∑2

j=1(ηjZj(−Ln(1−ℜC̆j
))α)}

1
α

,

e
−{

∑2
j=1(ηjZj(−LnℏC̆j )

α)}
1
α

, e
−{

∑2
j=1(ηjZj(−Ln∂C̆j

)α)}
1
α

⟩. Hence, this true for j=2.

(2) Now, supppose that this will be true for j=k. Then we have the fol-

lowing equation: CSVNAAPWAAO {(C̆1, η1), (C̆2, η2), . . . , (C̆k, ηk)} = ⟨1 −

e
−{

∑k
j=1(ηkZk(−Ln(1−ℜC̆k

))α)}
1
α
, e

−{
∑k

j=1(ηkZk(−LnℏC̆k )
α)}

1
α
, e

−{
∑k

j=1(ηkZk(−Ln∂C̆k
)α)}

1
α ⟩.

Now, we have to show that it also hods for j=k+1 as follows CSVNAAPWAAO

{(C̆1, η1), (C̆2, η2), . . . , (C̆k, ηk), (C̆k+1, ηk+1)} = ⟨1 −
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e
−{

∑k
j=1(ηkZk(−Ln(1−ℜC̆k

))α)}
1
α
, e

−{
∑k

j=1(ηkZk(−LnℏC̆k )
α)}

1
α
, e

−{
∑k

j=1(ηkZk(−Ln∂C̆k
)α)}

1
α ⟩ ⊕

⟨1− e
−{

∑k+1
j=1 (ηk+1Zk+1(−Ln(1−ℜC̆k+1

))α)}
1
α

, e
−{

∑k+1
j=1 (ηk+1Zk+1(−LnℏC̆k+1

)α)}
1
α

,

e
−{

∑k+1
j=1 k(ηk+1Zk+1(−Ln∂C̆k+1

)α)}
1
α

⟩ = ⟨1 − e
−{

∑k+1
j=1 (ηjZj(−Ln(1−ℜC̆j

))α)}
1
α

,

e
−{

∑k+1
j=1 (ηjZj(−LnℏC̆j )

α)}
1
α

, e
−{

∑k+1
j=1 (ηjZj(−Ln∂C̆j

)α)}
1
α

⟩

which is true for j=k+1.

Example 3.1. Supppose C̆1 = ((0.3, 0.4, 0.2), 0.4), C̆2 = ((0.9, 0.8, 0.6), 0.9) C̆3 =

((0.7, 0.5, 0.2), 0.6) and C̆4 = ((0.9, 0.2, 0.2), 0.7) are four SVN numbers along their CL. If

we take α = 3 and τj = (0.2, 0.1, 0.3, 0.4)T then, CSVNAAPAAO can be utilized to ag-

gregate the three SVNNs as follows: D(C̆1, C̆2) = 0.476, D(C̆1, C̆3) = 0.238, D(C̆1, C̆4) =

0.365,D(C̆2, C̆3) = 0.311, D(C̆2, C̆4) = 0.416, D(C̆3, C̆4) = 0.208. supp(C̆1, C̆2) =

0.524supp(C̆1, C̆3) = 0.762supp(C̆1, C̆4) = 0.635, supp(C̆2, C̆3) = 0.689supp(C̆2, C̆4) =

0.584supp(C̆3, C̆4) = 0.792 then, Z1 = 0.192, Z2 = 0.092, Z3 = 0.32 and Z4 = 0.39. By using

Equation 6, we get CSVNAAPAAO(C̆1, C̆2, C̆3) = ⟨0.813,0.338,0.268⟩. Employing SVNs al-

lows us to readily demonstrate that the proposed CSVNAAPWAAO fulfills the properties of

idempotency, boundedness, and monotonicity, as explained below:

Property 3.1.1. The CSVNAAPWAAO is idempotent. i.e., If (C̆j , ηj) = (C̆, d) for all j,

then CSVNAAPWAAO ((C̆1, η1), (C̆2, η2), . . . , (C̆ρ, ηρ)) = ηC̆.

Proof. Since C̆j = ⟨ℜC̆j
, ℏC̆j

, ∂C̆j
⟩, j = 1, 2, . . . , ρ be the set of SVNNs we can

get the following equation: CSV NAAPWAA((C̆1, η1), (C̆2, η2), . . . , (C̆ρ, ηρ)) = ⟨1 −

e
−{

∑ρ
j=1(ηjZj(−Ln(1−ℜC̆j

))α)}
1
α

, e
−{

∑ρ
j=1(ηjZj(−LnℏC̆j )

α)}
1
α

, e
−{

∑ρ
j=1(ηjZj(−Ln∂C̆j

)α)}
1
α

⟩ = ⟨1 −
e−{(d(−Ln(1−ℜC̆))

α)}
1
α , e−{(d(−LnℏC̆)

α)}
1
α , e−{(d(−Ln∂)α)}

1
α ⟩ = ⟨ℜC̆, ℏC̆, ∂C̆⟩ = (η, C̆)

Property 3.1.2. The CSVNAAPWAAO is boundedness. i.e., For a collection of SVNNs C̆j

for all j = 1, 2, . . . , ρ and

˘
C
− = min(C̆1, η1), (C̆2, η2), . . . , (C̆ρ, ηρ) and C̆+ = max(C̆1, η1), (C̆2, η2), . . . , (C̆ρ, ηρ). Then

˘
C
− ≤ CSV NAAPWAA((C̆1, η1), (C̆2, η2), . . . , (C̆ρ, ηρ)) ≤ C̆+.

Proof. Consider C̆j = ⟨ℜC̆j
, ℏC̆j

, ∂C̆j
⟩, j = 1, 2, . . . , ρ,

be the set of SVNNs. Let C̆− = min(C̆1, η1), (C̆2, η2), . . . , (C̆ρ, ηρ) = ⟨ℜ−
˘

C
j
, ℏ−˘

C
j
, ∂−

˘

C
j
⟩ and

˘
C
+ = max(C̆1, η1), (C̆2, η2), . . . , (C̆ρ, ηρ)C̆j = ⟨ℜ+

˘

C
j
, ℏ+˘

C
j
, ∂+

˘

C
j
⟩. We have ℜ−

˘

C

= min
j

ℜC̆j
, ℏ−˘

C

=

max
j

ℏC̆j
, ∂−

˘

C

= max
j

∂C̆j
,ℜ+

˘

C

= max
j

ℜC̆j
, ℏ+˘

C

= min
j

ℏC̆j
and ∂+

˘

C

= min
j

∂C̆j
. Hence there we have

the following subsequent inequalities:

⟨1 − e
−{

∑ρ
j=1(ηjZj(−Ln(1−ℜ−

˘

C
j
))α)}

1
α

⟩ ≤ ⟨1 − e
−{

∑ρ
j=1(ηjZj(−Ln(1−ℜC̆j

))α)}
1
α

⟩ ≤ ⟨1 −
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e
−{

∑ρ
j=1(ηjZj(−Ln(1−ℜ+

C̆j
))α)}

1
α

⟩; ⟨e
−{

∑ρ
j=1(ηjZj(−Lnℏ−

C̆j
)α)}

1
α

≤ e
−{

∑ρ
j=1(ηjZj(−LnℏC̆j )

α)}
1
α

≤

e
−{

∑ρ
j=1(ηjZj(−Lnℏ+

C̆j
)α)}

1
α

⟩;⟨e
−{

∑ρ
j=1(ηjZj(−Ln∂−

C̆j
)α)}

1
α

≤ e
−{

∑ρ
j=1(ηjZj(−Ln∂C̆j

)α)}
1
α

≤

e
−{

∑ρ
j=1(ηjZj(−Ln∂+

C̆j
)α)}

1
α

⟩. Thereforce,

C̆− ≤ CSV NAAPWAA((C̆1, η1), (C̆2, η2), . . . , (C̆ρ, ηρ)) ≤ C̆+.

Property 3.1.3. The CSVNAAPWAAO is monotonicity. i.e., for any two SVNNs C̆j =

⟨ℜC̆j
, ℏC̆j

, ∂C̆j
⟩ and C̆′

j = ⟨ℜ′
C̆j
, ℏ′

C̆j
, ∂′

C̆j
⟩ such that C̆j ≤ C̆′

j for all j = 1, 2, . . . , ρ. Then

CSVNAAPWAAO(C̆1, C̆2, . . . , C̆ρ) ≤ CSVNAAPWAAO(C̆′
1, C̆′

2, . . . , C̆′
ρ).

Proof. Due to C̆j ≤ C̆′
j for all j = 1, 2, . . . , ρ, there exists ⊕ρ

j=1Zj(C̆j , ηj) ≤ ⊕ρ
j=1Zj(C̆′

j , ηj).

Thus CSVNAAPWAAO(C̆1, C̆2, . . . , C̆ρ) ≤ CSVNAAPWAAO(C̆′
1, C̆′

2, . . . , C̆′
ρ) is true.

3.1.2. CSVN Aczel-Alsina power ordered weighted average aggregation operator

In this part, a novel CSVNAAPOWAAO. This operator considers the ordered weights as-

sociated with the aggregated SVNNs.

Definition 3.2. Let C̆j = (ℜj , ℏj , ∂j)(j = 1, 2, . . . , ρ) be a set of SVNNs and ηjbe the CL of

C̆j with 0 ≤ ηj ≤ 1. Let Z = (Z1,Z2, . . . ,Zρ)
T be the weight vectors for SVNNs with the

condition
∑ρ

j=1Zj = 1. Then, the mapping CSVNAAPOWAAO: bρ → b operator is given as

follows: CSVNAAPOWAAO {(C̆1, η1), (C̆2, η2), . . . , (C̆ρ, ηρ)} = ⊕ρ
j=1Zj(ησ⃗(j), C̆σ⃗(j))

= Z1(ησ⃗(1), C̆σ⃗(1))⊕Z2(ησ⃗(2), C̆σ⃗(2))⊕ · · · ⊕ Zρ(ησ⃗(ρ), C̆σ⃗(ρ)) (7)

where, (⃗⃗σ(1), σ⃗(2), . . . , σ⃗(ρ)) is the permutation of (1, 2, . . . , ρ) with C̆σ⃗(j−1) ≤ C̆σ⃗(j) for all

j = 1, 2, . . . , ρ.

Theorem 3.2. The aggregated value of the SVNNs C̆j for j = 1, 2, . . . , ρ with respect to

the weight vector Z = (Z1,Z2, . . . ,Zρ)
T and the CL ηj such that 0 ≤ ηj ≤ 1 obtained us-

ing the CSVNAAPOWAAO Equation 7 is also a SVNN and is given by CSVNAAPWAAO

{(C̆1, η1), (C̆2, η2), . . . , (C̆ρ, ηρ)} =

= ⟨1−e
−{

∑ρ
j=1(ησ⃗(j)Zj(−Ln(1−ℜC̆σ⃗(j)

))α)}
1
α

, e
−{

∑ρ
j=1(ησ⃗(j)Zj(−LnℏC̆σ⃗(j)

)α)}
1
α

, e
−{

∑ρ
j=1(ησ⃗(j)Zj(−Ln∂C̆σ⃗(j)

)α)}
1
α

⟩
(8)

Proof. The proof of Theorem 3.2 follows the same approach as Theorem 3.1, so it is omitted

here.
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C̆1 = ((0.3, 0.4, 0.2), 0.4), C̆2 = ((0.9, 0.8, 0.6), 0.9) C̆3 =

((0.7, 0.5, 0.2), 0.6) and C̆4 = ((0.9, 0.2, 0.2), 0.7) are four SVN numbers along their CL. If

we take α = 3 and τj = (0.2, 0.1, 0.3, 0.4)T then, CSVNAAPAAO can be utilized to ag-

gregate the three SVNNs as follows: D(C̆1, C̆2) = 0.455, D(C̆1, C̆3) = 0.545, D(C̆1, C̆4) =

0.387,D(C̆2, C̆3) = 0.238, D(C̆2, C̆4) = 0.311, D(C̆3, C̆4) = 0.476. supp(C̆1, C̆2) =

0.545supp(C̆1, C̆3) = 0.455supp(C̆1, C̆4) = 0.613, supp(C̆2, C̆3) = 0.762supp(C̆2, C̆4) =

0.689supp(C̆3, C̆4) = 0.524 then, Z1 = 0.188, Z2 = 0.108, Z3 = 0.296 and Z4 = 0.407. By

using Equation 8, we get CSVNAAPAAO(C̆1, C̆2, C̆3) = ⟨0.841,0.418,0.33⟩. Employing SVNs

allows us to readily demonstrate that the proposed CSVNAAPOWAAO fulfills the properties

of idempotency, boundedness, and monotonicity, as explained below.:

Property 3.1.4. The CSVNAAPOWAAO is idempotent. i.e., If (C̆j , ηj) = (C̆, d) for all j,
then CSVNAAPOWAAO ((C̆1, η1), (C̆2, η2), . . . , (C̆ρ, ηρ)) = dC̆.

Proof. The proof provided is analogous to that of Property 3.1.1

Property 3.1.5. The CSV-

NAAPOWAAO is boundedness. i.e., For a collection of SVNNs C̆j for all j = 1, 2, . . . , ρ

and C̆− = min(C̆1, η1), (C̆2, η2), . . . , (C̆ρ, ηρ) and C̆+ = max(C̆1, η1), (C̆2, η2), . . . , (C̆ρ, ηρ)C̆j .

Then C̆− ≤ CSV NAAPOWAA((C̆1, η1), (C̆2, η2), . . . , (C̆ρ, ηρ)) ≤ C̆+.

Proof. The proof provided is analogous to that of Property 3.1.2

Property 3.1.6. The CSVNAAPWAAO is monotonicity. i.e., for any two SVNNs C̆j =

⟨ℜC̆j
, ℏC̆j

, ∂C̆j
⟩ and C̆′

j = ⟨ℜ′
C̆j
, ℏ′

C̆j
, ∂′

C̆j
⟩ such that C̆j ≤ C̆′

j for all j = 1, 2, . . . , ρ. Then

CSVNAAPWAAO(C̆1, C̆2, . . . , C̆ρ) ≤ CSVNAAPWAAO(C̆′
1, C̆′

2, . . . , C̆′
ρ).

Proof. The proof provided is analogous to that of Property 3.1.3

4. Evaluation of SVNMADM using proposed operators

This part illustrates how the proposed operators are applied by solving an SVNMADM

model.
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This section, presents a procedure for solving SVNMADM problems using the proposed

operators.

Step 1 Let
¨̆
S = (

¨̆
S1,

¨̆
S2, . . . ,

¨̆
Sκ) be a finite number of alternatives, and

¨̆
C = (

¨̆
C1,

¨̆
C2, . . . ,

¨̆
Cρ)

be the set of attributes. Let τ = (τ1, τ2, . . . , τρ)
T be the weight vector of attributes, where

τj ≥ 0, j= 1,2,. . . ,ρ such that
∑ρ

j=1 τj = 1. The SVN decision matrix D = [
¨̆
Sij ]κ×ρ evaluates

the alternatives under each attribute, where ℜij , ℏij , ∂ij indicates the truth, falsity and inde-

terminacy membership function respectively.

Step 2 To normalize an SVN decision matrix with cost type attribute, use the following

Equation. 9

D = [
¨̆
Sij ]κ×ρ =

⟨ℜij , ℏij , ∂ij⟩ if benefit type

⟨∂ij , ℏij ,ℜij⟩ if cost type
(9)

Step 3 Utilize the suggested operators to aggregate the evaluations for each attribute over all

alternatives.

Step 4 Choose the best alternative by ranking the options based on their score values.

5. Numerical illustration

Let’s consider the practical example of an MADM problem from [29], which involves an

organization strategic supppliers under suppply chain risk management in which the five supp-

pliers called the alternatives
¨̆
Si(i = 1, 2, 3, 4, 5) are assessed based on four different attributes

¨̆
Cj(j = 1, 2, 3, 4) namely e technology level, service level, risk managing ability and enterprise

environment with respect to the weighting vector τ = (0.2, 0.1, 0.3, 0.4)T .

Step 1 The decision matrix for the MADM problem, featuring confidence-induced SVN

preference values evaluated by a decision expert, is presented in Table 1.

Step 2 Since all the attribute are beneficial, there is no need to normalize the confidence

Table 1. Confidence SVN decision matrix evaluated by a decision expert

¨̆
C1

¨̆
C2

¨̆
C3

¨̆
C4

¨̆
S1 ((0.5, 0.8, 0.1),0.3) ((0.6, 0.3, 0.3),0.3) ((0.3, 0.6, 0.1),0.1) ((0.5, 0.7, 0.2),0.1)
¨̆
S2 ((0.7, 0.2, 0.1),0.8) ((0.7, 0.2, 0.2),0.8) ((0.7, 0.2, 0.4),0.7) ((0.8, 0.2, 0.1),0.4)
¨̆
S3 ((0.6, 0.7, 0.2),0.9) ((0.5, 0.7, 0.3),0.9) ((0.5, 0.3, 0.1),0.2) ((0.6, 0.3, 0.2),0.7)
¨̆
S4 ((0.8, 0.1, 0.3),0.7) ((0.6, 0.3, 0.4),0.5) ((0.3, 0.4, 0.2),0.8) ((0.5, 0.6, 0.1),0.8)
¨̆
S5 ((0.6, 0.4, 0.4),0.6) ( (0.4, 0.8, 0.1),0.8) ((0.7, 0.6, 0.1),0.4) ((0.5, 0.8, 0.2),0.6)

SVN decision matrix.

Step 3 Combine all the attribute, each with its own distinct confidence SVN preference value
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C̆i of the corre-

sponding
¨̆
Si as

¨̆C1 = ⟨0.241, 0.751, 0.472⟩, ¨̆C2 = ⟨0.59, 0.414, 0.332⟩, ¨̆C3 = ⟨0.385, 0.616, 0.407⟩,
¨̆C4 = ⟨0.2491, 0.386, 0.364⟩, ¨̆C5 = ⟨0.368, 0.7, 0.392⟩. Combine all the attribute, each with its

own distinct confidence SVN preference value for each alternative using CSVNAAPOWAAO

Equation 8 to get the overall SVN
¨̆Ci of the corresponding

¨̆
Si as

¨̆C1 = ⟨0.257, 0.7, 0.52⟩,
¨̆C2 = ⟨0.535, 0.414, 0.331⟩, ¨̆C3 = ⟨0.347, 0.558, 0.343⟩, ¨̆C4 = ⟨0.489, 0.384, 0.386⟩, ¨̆C5 =

⟨0.405, 0.732, 0.351⟩.
Step 4 Calculate the score values using Equation 1 corresponding to the SVN

¨̆Ci obtained

in Step 3 based on the CSVNAAPWAAO respectively are M̈(
¨̆C1) = 0.339, M̈(

¨̆C2) = 0.587,

M̈(
¨̆C3) = 0.454, M̈(

¨̆C4) = 0.581, M̈(
¨̆C5) = 0.427. Based on CSVNAAPWAAO, the score value

.Thus, we have
¨̆
S2 >

¨̆
S4 >

¨̆
S3 >

¨̆
S5 >

¨̆
S1. Hence the best alternative is

¨̆
S2.

Calculate the score values using Equation 1 corresponding to the SVN
¨̆Ci obtained in

Step 3 based on the CSVNAAPOWAAO respectively are M̈(
¨̆C1) = 0.347, M̈(

¨̆C2) = 0.587,

M̈(
¨̆C3) = 0.482, M̈(

¨̆C4) = 0.573, M̈(
¨̆C5) = 0.441. Based on CSVNAAPOWAAO, the score

value .Thus, we have
¨̆
S2 >

¨̆
S4 >

¨̆
S3 >

¨̆
S5 >

¨̆
S1. Hence the best alternative is

¨̆
S2.

6. Comparative analysis

In this discussion we compare the overall ranking results achieved with the proposed CSV-

NAAPWAAO and CSVNAAPOWAAO for the demonstrative example presented in Section

5 against the existing outcomes based on the SVN weighted Bonferroni power average ag-

gregation operator (SVNWBPWAAO). From the Table 2, we observe that the top-ranked

Table 2. Comparison of the existing operators with the proposed operators

Method Operator Ranking Best

Guiwu Wei and Zuopeng Zhang [29] SVNWBPWAAO
¨̆
S2 >

¨̆
S4 >

¨̆
S3 >

¨̆
S5 >

¨̆
S1

¨̆
S2

Proposed CSVNAAPWAAO
¨̆
S2 >

¨̆
S4 >

¨̆
S3 >

¨̆
S5 >

¨̆
S1

¨̆
S2

alternatives for the proposed operators are the same as those for the existing operators, while

the least favorable alternatives remain unchanged for the CSVNAAPWAAO. However, the

proposed operators, which incorporate CLs into SVNs, provide a more refined ranking of the

alternatives, reflecting the decision maker’s subjective familiarity. Additionally, the compari-

son is visually illustrated in Figure 1.

7. Conclusion

This paper presents the development of confidence SVN Aczel-Alsina power average AO,

specifically CSVNAAPWAAO and CSVNAAPOWAAO. The fundamental properties of these

for each alternative using CSVNAAPWAAO Equation 6 to get the overall SVN
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Figure 1. Graphical comparison of SVNWBPAAO and CSVNAAPWAAO

proposed AO have also been proven. An important feature of these operators is that they

take into account not only the assessed arguments of the decision experts but also the experts’

confidence in their assessments. In addition, we developed a SVNMADM method employing

the proposed operators and applied it to a real world problem of choosing a supplier system

based on four attributes, thereby confirming the validity of our proposal. We also compared our

findings with the existing SVNWBPAAO and CSVNAAPWAAOs to emphasize the potential

of the proposed operators. Additionally, the results were presented graphically for enhanced

clarity.

In the future, this proposed concept can be applied to develop SVN geometric AO and

to create a variety of AO for SVNs by integrating probabilistic information, and additional

factors.
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