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Abstract. Neutrosophic sets play an important role in addressing uncertainty, vagueness, and indeterminacy
in problem-solving. In this research article, we deal with the concepts of the derivative of neutrosophic real
functions. This article aims to understand the n-th order derivative of neutrosophic real functions. In addition,
the n-th order neutrosophic differential equation is defined, and at the same time, we have established both the

existence and uniqueness of the solution to the n-th order neutrosophic differential equation.
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List of Abbreviation

Complete Metric Space : CMS

Initial Value Problem : IVP

Lattice Problem : LP

Neutrosophic Complex Number : NCN
Neutrosophic Function : NF
Neutrosophic Mereo Continuity : NMC
Neutrosophic Mereo Derivative : NMD
Neutrosophic Mereo Integral : NMI
Neutrosophic Mereo Limit : NML
Neutrosophic Real and Complex Number : NRCN
Neutrosophic Real Number : NRN
Neutrosophic Real Numbers : NRNs
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Pentagonal Neutrosophic Number : PNN
Shortest Path Problem : SPP

Single Valued Neutrosophic Polygroups : SVNPs
Triangular Neutrosophic Number : TNN

1. Introduction

The American scientist and philosopher F. Smarandache introduced neutrosophic logic, and
this logic is a generalization of fuzzy logic invented by Zadeh in 1965 [1]. Neutrosophic sets
were introduced into the literature by Smarandache, supporting incomplete, undefined, and
inconsistent information. In neutrosophic sets, the vagueness is explicitly measured by a new
parameter I. True membership (T), ambiguity of membership (I), and false membership (F) are
three independent parameters that allow us to characterize a Neutrosophic number. Smaran-
dache proposed neutrosophic logic to represent a mathematical model of uncertainty, inaccu-
racy, ambiguity, imprecision, vagueness, unknown, incompleteness, inconsistency, redundancy,
and contradiction, the concept of neutrosophy being a new branch of philosophy introduced
by Smarandache [2-15|. He introduced the meaning of the standard form of an NRN and
the circumstances for the division of two NRNs, characterized the standard form of an NCN,
and found the root n > 2 of an NRCN [2-5]. While studying the concept of neutrosophic
probability and neutrosophic statistics, Professor Smarandache [2-9] entered the concept of
provisional calculus, where he first introduced the concepts of the NML, NMC, NMD, and
NMI. Al-Tahan [11] presented the results on SVNPs. Edalatpanah [12] proposed a new simple
algorithm for solving linear neutrosophic programming, in which the variables and the RHS
represent the TNNs. Chakraborty [13,/14] applied the PNN to the LP and the SPP. Mondal et
al. [16] described the application of the neutrosophic differential equation on Mine safety via
a single-valued neutrosophic number. Sumathi et al. [17] discussed the differential equation
in a neutrosophic environment and the solution of a second-order linear differential equation
with trapezoidal neutrosophic numbers as boundary conditions. Acharya et al. [18] used the
differential equations in a neutrosophic environment under Hukuhara differentiability to model
the amount of glucose distribution and absorption rates in blood. Lathamaheswari et al. |19]
solved the neutrosophic differential equation by using bipolar trapezoidal neutrosophic number
and applied this concept in predicting bacterial reproduction over separate bodies. Parikh et
al. [20] describe the solution of a first-order linear non-homogeneous fuzzy differential equation
with initial conditions in a neutrosophic environment. He also introduced the neutrosophic
analytical method and the fourth-order Runge-Kutta numerical method by using triangular

neutrosophic numbers. Recently Alhasan [21-23] introduced the differential and integral of
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neutrosophic real functions. Salamah et al. [24] used the concepts of continuity, differentia-
bility, and integrability from real analysis to study the derivative and integration of a neu-
trosophic real function with one variable depending on the geometry isometry(AH-Isometry),
also they studied the neutrosophic differential equation by using One-Dimensional geometry
AH-Isometry, where they discuss the methods of finding the solution of neutrosophic identical
linear differential equation and neutrosophic non-homogeneous linear differential equation [25].
In this article, the main contributions are:

e An n-th order derivative of neutrosophic functions.

e An n-th order neutrosophic differential equation.

e Existence and uniqueness to the solution of n-th order neutrosophic differential

equation.

1.1. Motivation

In our literature review, we have seen that few works have been done on neutrosophic dif-
ferential equations. However, there are almost no work has been done on nth-order differential
equations for neutrosophic numbers of the form 7 + n2l, where n1,m72 € R, and I repre-
sent literal indeterminacy (/- neutrosophic structure). Therefore, there is a lot of scope and
opportunity to work in this area. So, to proceed in this direction, we must first define the nth-
order derivative of a neutrosophic functions by using the first-order neutrosophic derivative,
which has been previously done. Also, we must define the first-order neutrosophic differential
equation to discuss the n-th order differential equation and the existence of its solution.

In our reality, many things cannot be precisely defined, and they contain an indeterminacy
part. As a result, we can’t find an accurate solution to such a problem by using a differential
equation of classical real numbers, and this motivates us to think about similar types of
development and modification in a neutrosophic environment.

This article is structured into six sections. The first section offers an introduction that
provides a scientific overview of neutrosophists. It also includes information about the con-
tributions and motivation of this article. The second section explains some basic concepts
such as NRNs, the derivative of neutrosophic real functions, its rule, and the properties of the
derivative. The third section introduces the n-th order neutrosophic derivative and provides
examples. In the fourth section, we study the simple first and second-order neutrosophic dif-
ferential equations with examples by using the concepts from classical differential equations.
We also study the existence and uniqueness of a solution to the n-th order neutrosophic differ-
ential equation. In the fifth section, we mention a few applications of neutrosophic differential
equations, which we plan to study in the future. Lastly, in the sixth section, we provide a

conclusion to this article.
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2. Preliminaries
2.1. NRN [3]

Let n be a NRN, then it takes the standard form n = n; + n2l, where 1,172 € R, and [
represent literal indeterminacy, such that .0 =0 and I" =1 VYnec ZT .

2.2. Division of two NRNs [3]

Ifn=mn+mnl, ~=v 4+l aretwo NRNs

mAned _mo N2 —mo2

Then, =
Yi+vl M mn+ )

I, provided, v1 # 0 and v, # —7s.

2.3. The neutrosophic derivative [20]

Let g: Dy C R — R, U{I}, if
lim g(s +h+hol)—g(s,I)
h+hoI—0+01 h+ hol
exist, then we say that the function g(s, I) is differentiable w.r.t. s and is given by

J(s.1) = g(s+h+hol) —g(s,I)

hthoI—0+01 h+ hol
Where h 4 hol is the number of small indetermined changes in s, and h,hg € R, while I is

Indeterminacy.

2.3.1. Some rules of neutrosophic derivatives [20]

By the above definition given in 2.3, we can prove the following formulas:

d
(1) %(’Yl +72I) = 0+ 0I; where 71,72 € R.

d
(2) £[(771 +m20)s + (71 + 72l)] = m + n2d; where n1, 271,72 € R.

d -
(3) Zllm +mD)s"] = n(m +n21)s" L neR.

i (mAn2D)s+(m+y20)] — (mAn2D)s+(v1+y21)
(4) —[e ] = (m +mn2l)e

ds

d
(5) £(771 +n2l)® = (N1 +n2)° In(ny +n2I); where y1 > 0,72 >0and I > 0ory>0,d <0
and I <0

1
; where v1 > 0,72 > 0and I > 0or y;3 > 0,72 <0

d
6 —_— 1 = —
( ) ds[ O8n1+na1 S] Sln(nl + 7721)7

and I <0
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m + n2l

M((m +nel)s + (1 +21))] = (n + D)5 + (1 + 720)

M

S

m + ol
2v/(m +n2D)s + (11 +721)

(8) % [V (1 +mD)s + (v +720)] =
(9) S lsin{0m + mD)s + (1 + 7D} = (n + D) cos{(m + mI)s + (o +221)
(10) S feos{(m +mD)s + (1 + 3D} = ~(m -+ ) sinf(m +mD)s + (1 +3D)
(11) %[tan{(m +m2d)s + (m + 72D} = (0 + mel) sec?{(m +m20)s + (1 +721)}

(12) j [cot{ (1 + m2D)s + (v + y2D)} = — (1 + m2d) esc®{(m + m2d)s + (v + 21)}

(13) %[Sec{(m +mel)s + (1 + 2D} = (m + n21) sec{(m +n2l)s + (v1 + y2d) } tan{(m +
nel)s + (y1 +720)}

(14) %[CSC{(W +nel)s+ (v1+720)}] = —(m +m20) esc{(m +n2l)s + (y1 +721) } cot{(m +
m2l)s 4+ (y1 +721)}

2.4. Properties of neutrosophic derivative [20]

d d d
(1) %[f(&f) +g(s,I)] = £[f(s,f)] + £[g(s,1)]; where f(s,I) and g(s,I) are any two
differentiable NF.

@) L +920) 75, 1) = (1 +22) (5, ) where 11,7 € R

ds ds

(3) L 1£(s5,D)g(s, D) = Fls. 1) los, D] + lals, D] [£(s, D); where f(5,1) and g(s, 1)

are any two differentiable NF.

d d
d[fs,n]  flDglals DI = lols DI F (s DI
4 ds|g(s,I)| [g(s, )2 ; where f(s,I) and g(s, I) are any

two differentiable NF.

(5) If y = f(¢t,I) and t = g(s,I) are two NF, then
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dy dy dt dy , ,
— == — — = I). I
ds dt ds = ds f (ta ) g (8, )

This is the derivative of composite NFs, which is also known as Chain rule.

Main Work

3. N-th order derivative of a NF

d
Let f: Dy C R — RyU{I} and y = f(s,I) be any NF. Then d—y = f(s, ) is called the first-
s

order derivative of the NF w.r.t. s. Again if we differentiate the first-order derivative w.r.t.

2
s, that is ;(%) = f"(s,I) or % = f"(s,I), then it is said to be second-order derivative
s \ds s
- o ddiyy Py . "
of the NF'. Similarly the derivative — (—) = ——= is called the third-order derivative of the
ds \ ds? ds3

NF and so on.
Continuing this process up to n-times, we get the nth-order derivative of the NF. That is
d’l’b
the derivative —2 = f"(s,I) is said to be the nth order derivative of the NF.

ds™
If y = f(s,I), then it’s derivatives are denoted by

Yy Y2 Ys .- Yn
or y/ y// y/// y(n)
ory § oy .. y™
or f/(s, 1) f'(s,I) f"(s, 1) ... f"(s,1)
or dy d2—y @ @ and so on
ds ds? ds3 T ds® '

3.1. The n-th derivative of some special functions

(1) f(s,I) = (m + n2I)s™, where n is any positive integer.
Solution: We have, f(s,I) = (1 + n21)s"™, then
(s, 1) =n.(n +nel).s" !
P75, 1) = o = 1)1 + mal) 5"
f"(s,1) =n.(n—1).(n —2).(m +nol).s"3
Proceeding in this way upto n-times, we get
(s, I)=n(n—-1).(n—2).(n—(n—1)).(m +n21).s""
or f"(s,I) =n.(n—1).(n—2).1.(0m +n21).1
or f(s,I) =nl.(m +nl).

(2) f(s,I)=((m +mn2l)s+ (71 4+ ~v2I))™, where m is any integer.
Solution: We have, f(s,I) = ((m +mn2l)s + (71 +21))™, then
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f'(s, 1) = me(m +n20).((m + n20)s + (1 +721))" !

f'(s,1) = m.(m = 1).(m +n20)*.((m +n2D)s + (1 + 720)"

f"(s,1) = m.(m = 1).(m = 2).(m +n20)*.((m +n2D)s + (71 +720))™ 3
Proceeding in this way upto n-times, we get

fr(s, 1) =m.(m = 1).(m = 2).(m — (n = 1)).0q + 12D)".((m + m2D)s + (y1 +720))" ™"
m.(m—1)...,(m—n+1).(m—n)..3.2.1

Or;::i) = (m—n).321 (A mD)™.((m +n2D)s + (n +
Y2
or (s, I) = (mn_z!n)!.(m +neD)™.((m +nel)s + (y1 + D)™

(3) f(s.1) = clm D
Solution: We have, f(s,I) = e(m+m1=0)s then
F(s,1) = (m + mpI)elmtmDs
f(s,1) = (m + na)2elmtneDs
f"(5,1) = (m +m20)elmtm2Ds
Proceeding in this way upto n-times, we get

fr(s, 1) = (1 + noI)nelm+mn2l)s

Note: If f(s,1) = ellmAnDst+(n+721D)) then (s, 1) = (m +mpl)reltmtmDst(tr2l))s

(4) f(s,1) =log ((m + m21)s + (11 +121))
Solution: We have, f(s,I) =log ((m +n2l)s + (1 + 12I)), then

/ _ (m +n21)
fls 1) = (m +mn2D)s + (71 + 721)

F(s, 1) = (=1)(m + m2D)*{(m +m2D)s + (1 +720)} >

F"(s,1) = (=1)(=2)(m +n2D)*{(m + n2D)s + (1 +721)}°
(=1)22!(n1 + n21)?

{m +m20)s + (11 +7D)}?

F(s, 1) = (=1)(=2)(=3)(m + neD)*{(m + n2)s + (c +dI)}
(=1)3!(m1 + n21)*

{(m +m20)s + (m1 + 7D}

Proceeding in this way upto n-times, we get

e (D" = D+ )"
s, 1) = {(m +m2D)s + (1 +720)}"

= (m +meD){(m +m2D)s + (m1 + )}

or f"(s,I) =

or f¥(s,I) =
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(5) f(s,1) = sin((m + n2l)s + (v1 +721))
Solution: We have, f(s,I) = sin ((n1 + n21)s + (71 + 721)), then

f(s, 1) = (m +m20) cos ((m +n20)s + (71 + 721))

or J'(s,1) = (p + mal)sin (5 + (m +mD)s + (n +72D))
J"(s.2) = (1 + D) cos (5 4 (o +meD)s + (4 721)
or f'(s,I) = (m +121)* sin (%ﬂ + (m A+ mel)s+ (m + 721))
F"(8,1) = (m +n21)* cos (%ﬂ + (m 4 med)s + (1 + 721))

. (3T
or f"(s,1) = (1 +121)” sin (7 + (m +nD)s+ (1 + ’Yzf)>
Proceeding in this way upto n-times, we get

£7(s.1) = (m 4+ meD)" sin (55 + (m + D)3 + (1 +721))

(6) f(s,I) = cos((m +n20)s + (y1 + 721))
Solution: We have, f(s,I) = cos((n + n2l)s+ (71 + 721)), then

F(s,1) = (m +m20)[=sin ((nm + n20)s + (71 +721))]

or f'(s,1) = (m + mal) cos (5 + (m + ml)s + (1 + 1)
f(s, 1) = (m +772I)2[— sin (g +(m +n20)s+(n +’YQI)):|

2m
or f"(s,1) = (i + md)? cos (5 + (m +mD)s + (0 +721)

(s, 1) = (m +772[)3[— sin <2§ + (m +mn2l)s+ (m +’YQI>>}

3
or f"(s,1) = (m +n21)” cos (7 + (m+ml)s+ (n + 72I)>
Proceeding in this way upto n-times, we get

nm
-+

£7(s.1) = (o + maI)" cos (57 + (m +mal)s + (1 +721))

(7) f(s.1) = e F=D% sin{ (1 + 721) 5}
Solution: We have, f(s, 1) = e™*20%sin{(y; + 451)s}, then
f'(s.0) = D3 (g ) sin{ (1 + 520 s} + €MD cos{(y1 + 2 D)s}Hm + 72])
= f'(s,1) = e TR0 (any + mpI) sin{(y1 +721)s} + (71 + 1) cos{ (1 +721)s}]
Let m +nel =rcos®, 1+ vl =rsin®, where r =ry + 1ol and © =6 + I, then

1

r=[(m+ml)?*+ (m +1I)??
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(9)

N

=1 =[(m?+m?%) + {n?+1? +2(mn + 112)H]|

=r=(u + uzf)%, where u1 = (1% +712) and ug = m? + 722 + 2(mn2 + 1172)
17+l
m + n2l
—171 | M2 — MM
m o o +n2)’
Thus, we get

and © = tan

= 0 = tan

f'(s, 1) = emFmDs [ cos @ sin{(y1 + 2l )s} + rsin © cos{(y1 + y2l)s}]

= f'(s,1) = rem D3 gin[(y; + 4o1)s + O]

Again differentiating the above equation with respect to s, we get,

(s, 1) =7 [e(mﬂhl)s(m +ma0) sin{(y1 +721)s + O} + €M F=D3 (3 1) cos{(m +
1l)s + O}

= ["(s, 1) = relmimDs [(771 +n21) sin{ (y1+721)s+ O} +(y1+721) cos{(n +721)5+@}]
= f(s,I) = re(m+mDs {r cos O sin{(vy1 + v2l)s + O} + rsin © cos{(y1 + y21)s + @}}
= (s, 1) = r2em+mDs gip [(’yl +vl)s+ 2@]

Similarly,

(s, 1) = rdemtnzDs gin [(71 +voI)s + 3@}

Proceeding in this way upto n-times, we get

(s, 1) = retm+mDs gip [(71 +v2l)s + n@}

3 I
(s, 1) = ((771 +mel)® + (71 + 'YQI)Q> ? elm+mD)s gip [(fyl +990)s +ntan™?! M]
m + el
or, f'(s,I) = (u1 + uﬂ)%emﬁm[ﬁ sin [(’yl +vl)s+ ntan~! n + w.]]
m o ni(n +n2)
If f(s,1) = eMmtmD3 cos{(; + ~51)s}, then
3 I
S, L) ={(m+mn2d)” + (71 +7 e cos [(y1 +7ed)s+ntan = ———
fn T T 2 I 2\ 2 _(m+n20)s I 171+ 72
m +nel
or, f"(s,I) = (u1 + uzI)%.e(”1+n21)S cos [(’yl +vl)s + ntan! n + w.l]
m o m(m+n2)

Where, uq = (n12 + 712) and ug = n9% + % + 2(mmn2 + v172)

If f(s,I) = eMmTmDsgin{ (v + ~91)s + (¢1 + CoI)}, then

s D) = (n+mD?+ (n+7D)?) @ D%5sin (0 + l)s + (G + GI) +
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(10)

ntan—1 L + 72—7}

m + n2d

or, fM(s.1) = (1 + ual) e 0 sin (31 + 9D)s + (G + GoI) + mtan”! (1

m
niy2 — M271 )}
e |
m(m + n2)

Where, u; = (m?% +712) and uz = 722 + v22 + 2(mn2 + 1172)

If f(s,1) = em+mD3 cos{ (v + v21)s + (¢1 + CoI)}, then

Fis0) = ((n+md)?+ (n+920)2) 2P0 cos (1 + D)s + (G + GI)
am Tt '721}

ntan
m + n2d

or, f*(s,I) = (u1 + UQI)%.e(m‘H”I)S oS {(71 + vD)s 4+ (¢ + GI) + ntan™! (ﬂ

m
mYy2 — 1M271 )}
—= =T
m(m +n2)

Where, u1 = (1% + m?2) and uz = m2% + 722 + 2(mn2 + 1172)

4. N-th order Neutrosophic differential equation

Definition 4.1 The equation which includes the first-order neutrosophic derivative as its

highest
by

In other way, an equation of the form F(s,y(s,I),y'(s,I)) = 0 is called a first-order neutro-
sophic differential equation and the function f(s,I) that satisfies F(s,y(s, ),y (s,I)) = 0 for

derivative is called the first-order neutrosophic differential equation and is represented

y/(S,I) = g(s, y(sa I))

every value of s is called its solution.

Similarly, the equation that includes the second-order neutrosophic derivative as its highest

derivative is called second-order neutrosophic differential equation and is represented by

y”(S,I) = g(svy(sv I)7y/(87 I))
or F(s,y(s,1),y'(s,1),y"(s,1)) =0

In the same way, we can define the n-th order neutrosophic differential equation by

yn(S’ I) = g(s7y(svj)v y/(S,I), y//(371)7 ey yn_1(371))
or F(s,y(s,1),y (s, 1),y (s,1),....,4"(s,1)) =0

Where y(s,I) is a NF of s and I. Here, 3/ denotes the j¥ derivative of y w.r.t. s, i.e.

i

Y

y'] = @ j:0,1,2,...,n.
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If y(so, 1) =11, o' (s0,1)=1la, y"(s0,1) =13, ..., y" (s0,I)=1, are the given initial
values, where I; ; j =1,2,...,n are the NRNs and are of the form I; = [;; + [j21, then the
Cauchy problem of n-th order is given by

y* (s, 1) = g(s,y(s,1),0/ (s,1),/" (s, 1), .. y" (s, 1));
y(SO,I) = lla y/<307I) - 127 y”(SOaI) - l37 "'7yn71(3071) = ln

In this section, we studied the existence and uniqueness of solutions to the n-th order

(1)

neutrosophic differential equation under the conditions of contraction mapping. For this, we

define the metric in definition 4.2.

Example 4.1.1 ¢/ = V/7s = (2.6457.....)s is a Ist-order classical differential equation, but
since v/7 has infinitely many decimals, we cannot work with this exact number in our real life.

Hence, we need to approximate this number, and we may write it as
y'(s,1) = (2 + I)s; where I = (0.6,0.7)
Which becomes first-order neutrosophic differential equation and we can find its solution by

integrating both sides.

So, integrating both sides, we get
2

y(s, 1) = (2+1)% e,

= y(s,I) = (i;)sj +C

2 2x1-2x0

=y D= (5+ “gmrg1)F +C

=y(s,I) = (1—1—%.[)52—1-0

= y(s,I) = (1+0.51)s* + C
Where C' is indeterminate real constant.
Since I = (0.6,0.7), and let C' = 10 = 10 + 0.7, then, the solution of the given neutrosophic
differential equation y'(s, I) = (2 + I)s is bounded by the lines marked by red and blue colors
in the figure 1.
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FIGURE 1. Graph of y(s,I) = (14 0.5I)s> +C

Example 4.1.2 Let us consider the second-order neutrosophic differential equation y" (s, I) =

241s, which is directly integrable, so its solution can be found by integrating two times.
2
y' (s, I) = 24%] +A

=19/(s, 1) =12Is> + A
= y(s, 1) =4Is* + As+ B
where A and B are indeterminate real constants.
Since, there is indeterminacy in the solution of the given differential equations, so, the

graphical representation can only be shown approximately through dot lines, as illustrated in

the figure 2 below.
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FIGURE 2. Graph of y(s,I) = 4Is3 + As + B

Definition 4.2 The metric d can be defined on R}, (Set of all ordered n tuples of NRN) by
d(w1 + w2l y1 + yolI) = max |(z;1 + zj2) — (yj1 + y2]);
1<k<n
x1+x2l, 1 +y2l €RY 5 x1,22,y1,2 € R
Let us denote the space of continuous function z = 1 +x21 : J = [s9, 5] = R}, by C(J, R})

and it is a CMS with the distance

Dy +al,y +yl) = sup [d{(z1 + 221)(s), (y1 + y2I)(s) e **]

Where p € R is fixed. For z1 + 221, y1 + y2f € C™(J, RY;), we consider the distance

Dy (z1 + xol,y1 +y2l) = D[$1 +xol, 1 + yﬂ] + D[(m + xol), (y1 + yﬂ)l] + ...+ D[(.’h +
xoD)™, (y1 + y21)"]

n
or Dy(z1 + oL, y1 +yol) = > D(w1 +z2I), (y1 + yaI )]
=0

Lemma 4.1 (C"(J,R};), Dy,) is a CMS.

Proof: Let {z,}o2; = {za1 + za2l}oe; C C"(J,R}Y) be any cauchy sequence in
(C™(J,R}), Dy). Then

Dr(a1 + @a2l, z1 + w2]) = D(2a1 + a2l, Tp1 + zp2l) + D[(Ta1 + za2l)', (w41 + zp2])'] +
et D[(acal + xa2 )", (zp1 + xbgl)"] —0asa,b— +oo
This implies
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D(xa1+Ta2l, xp1 +ap21) — 0, D [(xal +202I), (11 —i—xng)'] —0,...,D [(%1 +2a0D)", (p1 +
a:bgl)"] -0
This shows that {xa1 + a2l 1521, {(za1 + Ta2l) 1521, ooy {(a1 + @a2I)"}5° are the cauchy
sequence in the CMS (C(J, RY,), D). So, 3 zo1 +zo2l, z11 + x12], x21 + 2221, ..., o1 + T2l €
C(J,R};) such that {zq1 + za2l} — o1 + zo2l, {(Za1 + 2a2l)'} = z11 + 2121, ..., {(za1 +
Ta2l)"} = Tp1 + T2l as a — 400.
We have to show that zo1 + zg2l € C™(J, R}Y;) and (201 + xo2l) = z11 + z121, (o1 + z02])" =
xo1 + xaal, ..., (xo1 + 2o2l)" = Tp1 + Tpal.
In this case, we have
Dy (2a1 + zazl, w01 + 202]) = D(@a1 + za2l, zo1 + 021) + D [(wa1 + za2])’, (o1 + wo2D)'] + ... +
D[(za1 + za2])™, (z01 + z021)"].

= Dn (a1 + Ta2l, 201 + 02l ) = D(2a1 + Ta2l, x01 + 021) + D [(xa1 + Ta2l), 211 + 312I] + ... +
D[(za1 + 2a2D)™, Tp1 + 2n2l| — 0 as a — +o0.

This shows that {zq1 + xe2l} — zo1 + zo2l € C™(J, R};) and hence (C™(J,RY,), Dy,) is a
CMS.

Theorem 4.1. Let f : [so,S] x R}, x RY, x ... x R}, — RY; is continuous, then a mapping
y : [s0,S] = R} is a solution of the IVP (1) iff y € C™(J, RY,) satisfy the following integral
equation for all uy € [so, S] :

u1

ul
y(ur, I) =1 + la(ur — so) + (53/ (ug — so)dus + l4/ / ug — so)dugdug + ... + 1, /

S0

/u (U1 — 50)dn_1. duQ—l—/ / / FU D) y(5, 1) ooy (5, 1)) dscltny...duiz)

(2)
Proof: We have

(s, 1) = g(s,y(s. 1),y (5, 1), y" (s, 1), o0y (5, 1))

For u, € [so, S|, we have
" (wn, I) = g(uns y(un, 1),y (i, 1), ooy~ (un, 1))

N / " (g, T) = / 9t Yty 1) o/ (s s o™ i, 1))

S0

Un

= {y"fl(s,f)} = /un g(s,y(s, 1),y (s,1),..y" (s, 1))ds

S0 S0

oy, 1) = / 9, y(5, 1),/ (5, 1), o™ (5, I))ds + 4™ (0, 1)

0
oy Y, T) = 1y + / (s 9(5, 1),/ (5, 1), oo™ (s, I))ds
S0

Integrating above equality from sg to up—1 € [so,S] w.r.t. u,, we get
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Un—1 Un

7o) =l bl = s0) [ gty D).y (s, D, s st
S0 S0

Proceeding in this way for ug € [sg, S|, we get

u u Un—2
(UQ, =lo+13(u 2—80)+l4/ (U3—80)dU3+...+ln/ / (Up—1— S0)dup—1...dug +
S0 S0

S0

/ / f(s,y(8, 1), .y y™ (s, I))dsduy,...dus

Now, integrating the above equality from sy to uy € [so, S] w.r.t. ug, we get

Ul Ul U (5% Un—2
y(uy, I) :ll—i-lg(ul—so)—i-lg/ (UQ—SO)dU2+l4/ / (U3—so)dU3duQ+...+ln/ /

S0 S0 S0 S0 S0

w1 n
(Up—1 — So)dup—1...dus —i—/ / / f(s,y(s, 1), .y y™ (s, I))dsduy,...dus))
S0 S0 S0

Definition 4.3 17/ Let us introduce the following function defined on [so, S] by

Un
D, 0(un) / e’ds

Un—1
Uun—s) / / e’*dsduy,
Similarly, for2 <i<n-—1

Un—j [Un—j+1 Un
S
(Ep,i(un_i) — / / / e’ dsdun...dun,Hl
S0 S0 S0

Theorem 4.2. Let f : [so,S] x R}, x R} x ... x RY — R}, be continuous and suppose that
1 Gi,Go,...,Gy > 0 such that

d(f(S,II?l,ZEQ,..., ) f(S Y1, Y2, -- ayn < Z xjvy]) (3)
j=1

Vs € [s0,S], xj,y; € Ry, j=1,2,...,n. Then the IVP (1) has a unique solution.
Proof: Let us consider the CMS (C™(J,R%), Dy) and J = [sq, S]
Let us define the operator Bn_y : C" " Y(I,R%) — C" Y (I,RY) by z— By_1z

ui
Let By—1x(u1) = l1 + la(ug — so) + l3/ (ug — sp)dug + 14/ / (us — so)dusdug + ... +

/ / (Up—1 — S0)dup—_1...dug +/ / / f(s,2(s, 1),z (s, I))dsduy,...
dug))

To prove the theorem, it is sufficient to show that By_1 is a contraction mapping for p > 0.

Now, we have

n—1
Dn—l(Bn—lxa Bn—ly) = Z D((Bn—lx)j7 (Bn—1y>j)
j=0
ul ul u2 u1l
= sup |d{(l1 + l2(u1 — so) + l3/ (ug — sg)dug + l4/ / (uz — so)dusdug + ... + ln/
ui€J N S0 50 S0

G. Narzary, B. Basumatary, A Study on n-th Derivative of Neutrosophic Function and Neutrosophic Differential
Equation



Neutrosophic Sets and Systems, Vol. 75, 2025

Up—2 ul u2 Un
/ (Up—1 — so)dunl...du2+/ / / f(s,z(s, I ,...,:L“”_l(s I))dsduy,...dus),
50

(ll + lQ(Ul — 50) + lg/ (UQ — 80 dUQ + l4/ / U3 — SO dU3dU2 + .ty / /
50

(Up—1 — So)dUp—_1.. duQ+/ / / f(syy(s, D)y .oy 1(s,I))alsdun...alu2)}e pul}

Un—2
-+ sup [d{(lg + lg( Ug — SQ)d’LLQ + l4/ dus + ... + ln/ / (un,1 — so)dun,l...du;g +
50 50

ug€eJ S0

u u
/ / f(s,x(s, 1), ( I))dsduy,...dus), (la + l3(u2 — so)dus +l4/ dug + ..

S0

+1, / / (Up—1 — So)dUp—1.. du;;—i—/ / f(syy(s, 1), ...,y 1(3 I))dsduy,...dus)
S0 S0
o]t s [+ [ s a(e ), e s D)), ot [ st
50

un€J

y"~ (s, D)ds) e

ul
= sup [{ Inax |(l1 + lg(ul — So) + lg/ ( U9 — So)d’UQ + l4/ / Uz — So)dUgd’u,Q + ...+
ui€J

/“1 /u (et = o) d“2+/ / " (s, 1), 2™ N s, 1)) dsduy..

U1 ul
dUQ)’—‘(ll—i-lQ(ul—So)—i-lg/ UQ—SO dUQ+l4/ / U3—80 dU3d’U,2—|-...+ln/

S0 S0

/u (tn—1 — S0)dutn—1.. dug—i—/ / / F(5.y(5, 1)y ooy L(5, 1)) dsdtty.. dug)]}

S0

e ”“ﬂ—l—sup [{ mkax ](l2+l3(u2—so)+l4/ (uz—so)dusz+...+1, / / dup—_1...dus+
50

UﬁEJ 1< S0
/ f(s,z(s,1),...,2" (s, I))dsdu,,.. dU3)]—|(l2+l3(u2—so)+l4/ (uz—so)dus+...+
50
n/ / dun_l...du;>,+/ / f(syy(s, D),y y™™ 1(5,I))dsdun...du;;)|}e_p“2]+...+
sup [{ mas J1n + / O O R A (TR N O )
un€J S50 S0

ds|}e p“”}

= sup [{ max | / / /{fsxsf "L, 1)) = £(5,y(5, 1)y ory™ (5, 1)) b

ui€J 1<k<n

—pu1 n—1 o
dun...du2|}e ] —1—52116% 1121]?,<Xn|/ / {f(s, e (8, 1)) — f(s,9y(s, 1), ...,
y"_l(s,I))}dsdun...du;;]}e_p“ﬂ + .. + sup max |/ {f(s,z(s,I), s, 1)) —

un€J
f(s,y(s, 1), ...,y“*l(sjj))}dﬂ}e—pun}

= sup {/m /;2/% dsdun...dUQ{ max |(f(s,z(s,1),...,a" (s, 1)) — f(s,9(s,1), ...,

ur€J 1<k<n
n—1 I —Pu1 / /un - I). ... n—1 I o
g s DDIfe ] s [ [ dsdundus{ max (£, (5, D" (5, 1)
n—1 pu2 n—1 o
F(s,9(s, 1), 00y (s,f)))|}e |+ + swp [/ ds{ mas |(f(s,a(s. 1), (5.1)
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f(s,y(s, 1), ....;y" (s, I)))|}e—pun:|

sup [e_pul /u1 /un dsdun...dqu{f(s,x(s,I), " Y, D)), f(s,y(s, 1), ...,y”_l(s,I))}] +

u1€J

sup [e*/’uz /u2 /un dsdun...dUg,d{f(s,x(S, D), ..,z Ys, 1)), f(s,y(s,1),...,y" (s, I))}] +

uz€J

..+ sup [e_p“" /un dsd{f(s,x(s,]),...,:L‘”_l(s,l)),f(s,y(s,]),...,y”_l(s,I))H

up€J S0
uy up N1 4 , uy Un—1
< sup [e_pul/ / ZGj+1d(a:](s,I),yj(s,l))dsdun...duz] + sup [e_p“"’/ /
u1€J ug€J S0 S0

up M1
/ ZG]Hd 2 (s, 1), 17 (5,1))dsduy,.. dU3] + ...+ sup [e_p""/ ZG]-H
L -

j=0 un€J

(27 (s, 1), 9/ (s, I))ds}
n—1

< max {G1,Ga, ..., Gn} Dp_1(z,9) Y sup_{e™" " @iy, _)}
i=0 Un—i€

For every continuous function F on |a,b], we have

/ay yn /ayn dijn—1... /:12 F(y1)dy, = (n—ll)' /ay(y — )" R (t)at

Also, we have
Un—i+1 Un,
S
pz(un i) / / / e’ dsdun...dun,Hl
S0 S0 S0

Un—q
:>(I)Pl(un i) = 7,'/ (Un @—8) epsd‘s Z.:Ovla"-an_l
S0

Now, fori=20,1,....n—1, we have

sup {e "1, 0, o) = o sup / (ty_; — 5)'ePPdse Pun- ’}
Uy EJ ' Up €S
= sup {e "D, 0, ) S sup { — 50) / e*p(“"*ifs)ds}
Up—; €S ! Up—; €S

1 — e—P(un—i—so) }

1
= sup {e " ®, 0, } < sup {(S—so)Z

Un—i€J iy e p
_ 1 .1 — e—r(S—s0)
= sup {e """, 0, g} < (S —50)'————— > 0asp— o0
Up—iE€J 1. 1%
;1 — e plb=s0)
So, for p > 0, if we choose, max {Gl,Gg, ey Gy } Z —50)" ¢ <1

il
Then, we get

;1 — eplb=s0)

Dy—1(Bp-12, By_1y) < Dp—1(z,y) max {G1,Ga, ..., Gy, }Z — 50)" T

This shows that Dy_1 is a contraction mapping and hence 3 a unique solution for (1).
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Example 4.1 Let us consider the following neutrosophic cauchy problem:
y" (s, 1) = wiy(s, 1) + woy/(s, 1) + ... + way™" 1(s,I) + B(s) s € [sg, 5]

y(807I) = llv y,(sovl) = l2a ey yn_l(‘sO’I) = ln

(4)

Where wj,lj;  j =1,2,....,n are NRN which are of the form wj1 +wjol, lj1 + 21 respectively
and wj1, Wj2, ljl, ljz €R; Be C([So, S], RnN)
Let us define the function f by

J(8,91,925 s Yn) = WY1 + WaY2 + ... + WpYn + B(s)
which satisfies (3).
Now,

d(f(svylay27"'7yn)7f(87zl7z27"'7zn))
= d(w1y1 + ways + ... + wpyn + B(8), w121 + waze + ... + wpzy + B(S))

n

< d(wjy;, wizg)
j=1

<D fwjld(yj,z) Vs €ls0, 5] y5,2 € Ry
j=1

Thus from the above Theorem 4.2, we can conclude that the neutrosophic cauchy problem (1)

has a unique solution in C™(J, RY,).

5. Application

Many scientific and engineering problems require the use of neutrosophic differential equa-
tions. These problems arise in various fields, including electronics, mechanics, medicine, com-
munication, transportation, and the industrial sector. The equations are used to analyze the
behavior of phenomena that are subject to ambiguity or uncertainty. The following are a few
real-world applications of nth-order neutrosophic differential equations in different disciplines

where we are planning to use our study.

(1) In electrical engineering, nth-order neutrosophic differential equations are used to de-
scribe the behavior of circuits containing resistors, inductors, and capacitors.

(2) In telecommunications, nth-order neutrosophic differential equations can be used to rep-
resent how signals propagate along transmission lines, particularly for high-frequency
transmissions.

(3) To ensure the stability and safety of structures like buildings and bridges, vibrations
and oscillations are studied using nth-order neutrosophic differential equations.

(4) We can utilize nth-order neutrosophic differential equations to represent the motion of
a mass linked to a spring and a damper and to characterize the system’s response to

outside influences.
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(5) To evaluate the behavior of complex pendulum systems or multi-degree-of-freedom pen-
dulum systems, nth-order neutrosophic differential equations are used.
(6) Temperature distribution is studied using nth-order neutrosophic differential equations,

which are used to analyze the heat transport in materials over time.

6. Conclusions

In this article, we defined the n-th order derivative of neutrosophic real functions with suit-
able examples. In addition, we have discussed the integral equation of form (2) to obtain the
existence and uniqueness of the solution to the n-th order neutrosophic differential equation.
This form of integral equation can be used to obtain the approximate solution to the given
differential equation (1).

In the future, we are going to solve some real-life problems associated with uncertain data

such as differential areas in mechanical, electrical, communication, and civil engineering fields.
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