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Abstract. Fourier transforms is one of the oldest and a well-known technique in field of mathematic and engineer-

ing mathematical work. Fourier transform method represents the variable as a summation of complex exponentials.

Fourier analysis has been used in signal processing and digital image processing for the analysis of a single image as

a two-dimensional wave form, and many other type of form like Quantum mechanics, Signal processing, Image Pro-

cessing. This analysis also represents filters, Transformation, representation, and encoding, Data Processing, Analysis

and many more fields. In this article, some basics of Fourier Integrals have been discussed in terms of neutrosophic

set. Dirichlet’s Conditions, Fourier integral formula and it’s five different forms are studied based on neutrosophic

set. This article includes the F.T., F.S.T. and F.C.T. of a neutrosophic function and their inversion formulae. In this

study, some properties of F.T. are discussed for a neutrosophic function. This study will help to get better results in

signal processing, image processing, and in other fields also. This serves as an overview of the Fourier integral of a

neutrosophic function.

Keywords: Fourier integral, F.T., neoutrosophic function.

Abreviation: F.T.= Fourier transform

F.S.T= Fourier sine transform

F.C.T.= Fourier cosine transform

N.R.N.= Neutrosophic real number

N.C.N.= Neutrosophic complex number
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1. Introduction:

In place of the present logic, F. Smarandache[1,2] put forward the neutrosophic concept to rep-

resent a mathematical model of undetermined, uncertainity, vagueness, unclearness, incomplete-

ness, inconsistency, redundancy, in which the neutrosophy is a new concept brought in by Smaran-

dache[1,2]. He defined the N.R.N. in standard form and the considerations for existence of N.R.N.s’

division. The standard form of N.C.N.s is also deduced and the root index is found as n ≥ 2 [3,4].

Studying the concept of neutrosophic probability [1,5] and the neutrosophic statistics [4,6], Professor

Smarandache , for the first time studied the concept of preliminary calculus by introducing ideas

of neutrosophic mereo-limit, mereo-continuity, mereo-derivative and mereo-integral [7,8].Madeleine

Al-Taha produced results on single valued neutrosophic (weak) polygon [9]. Edalatpanah purport a

new direct algorithm for the solution of neutrosophic linear programming in which the variables and

right hand side are expressed with triangular neutrosophic numbers[10]. Pentagonal neutrosophic

number is used in Networking problem and Shortest Path problem by Chakraborty [11,12].

A. Kharal[15] presents a method of multicriteria decision making using neutrosophic sets. A.

A. Salama and F. Smarandache [16] used neutrosophic set to introduce new types of neutrosophic

crisp sets with three types 1, 2, 3. D. Koundal, S. Gupta and S. Singh [17] demonstrates the use of

neutrosophic theory in medical image denoising and segmentation, using which the performance is

observed to be much better.

The concepts of Neutrosophic set have been used in different areas of Mathematics. Here we are

using this concepts in Fourier integral and Fourier transform. Fourier integral represents a certain

type of non periodic functions that are defined on either (−∞,∞) or (0,∞). Fourier transform is a

mathematical tool used to decompose a signal into its constituent frequency components. It breaks

down signals into a combination of sines and cosines, which can be used to analyse the frequency

content of a signal. Fourier analysis has been used in digital image and processing of image and

for analysis of a single image into a two-dimensional wave form, and more recently has been used

for magnetic resonance imaging, angiographic assessment, automated lung segmentation and image

quality assessment and Mobile stethoscope [18]. Fourier transforms which is also used in frequency

domain representation. Fourier analysis used as time series analysis proved its application in Quan-

tum mechanics; Signal processing, Image Processing and filters, representation, Data Processing and

Analysis and many more.

Fourier transforms are obviously very essential to conduct of Fourier spectroscopy, and that alone

would justify its importance. Fourier transforms are very vital in other pursuits as well; such as

electrical signal analysis, diffraction, optical testing, optical processing, imaging, holography, and

also for remote sensing [13, 14]. Thus, knowledge of Fourier transforms can be a springboard to

many other fields. The main idea behind Fourier transforms is that a function of direct time can be

expressed as a complex valued function of reciprocal space, that is, frequency.
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In this paper we are studying the Fourier integral and Fourier transform by using the concept

of Neutrosophic set. The use of Neutrosophic concept in the Fourier transform will help to get the

frequencies more accurately which constitude a signal or a sound and can be filter out the unwanted

frequencies in more appropriately. This study will give better results in signal processing, image

processing and filtering, noise filtering, etc.

This paper consist of 6 sections. The 1st section provides an introduction, in which review of

Fourier transform has been given. In 2nd section, definition of neutrosophic real number is given

and discussed about division of two neutrosophic real numbers. The 3rd section gives the knowledge

of Fourier integral theorem for a neutrosophic function and different forms of neutrosophic Fourier

integrals. In the 4th section, we have discussed about the F.T. of a neutrosophic function which

includes Fourier sine transform and Fourier cosine transform of a neutrosophic function. In the 5th

section we studied about the properties of F.T. of a neutrosophic function and their proofs. The 6th

section is the conclusion of the article.

2. Preliminaries:

In this part, definitions of N.R.N. and division of two N.R.N.s are discussed.

2.1. Neutrosophic Real Number[4]:

If a number that can be written in the form pn + qnI, where pn, qn are real numbers and I is an

indeterminate number such that I.0 = 0 and IN = I, for all natural number N, is called N.R.N..

Here we denote the N.R.N. by w, and thus we can write w = pn+qnI and it is knwon as the standard

form of N.R.N..

2.2. Division of two N.R.N.s[4]:

Consider that w1 and w2 be two N.R.N.s where, w1 = pn1 + qn1I and w2 = pn2 + qn2I. Then the

division of these N.R.N.s, i.e. (pn1 + qn1I)÷ (pn2 + qn2I) is given by

pn1 + qn1I

pn2 + qn2I
=

pn1
pn2

+
pn2qn1 − pn1qn2
pn2(pn2 + qn2)

.I

provided pn2(pn2 + qn2) ̸= 0 or pn2 ̸= 0 and pn2 ̸= −qn2

3. Neutrosophic Dirichlet’s Conditions:

Dirichlet’s conditions are those condition which must be satisfied by a function f(x) to be expanded

by using Fourier series. There are three Dirichlet’s conditions, which must be satisfied by the function

f(x). In this article, we shall discuss the Dirichlet’s conditions by using the concept of neutrosophic

set.

Consider, fN (x, I) be any neutrosophic function satisfying the conditions given below:

(i) fN (x, I) is defined in the interval −(h+ I) < x < (h+ I).
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(ii) fN (x, I) and f ′N (x, I) are sectionally continous in −(h+ I) < x < (h+ I).

(iii) fN (x, I) is periodic with period 2(h+ I).

Then the above conditions are called neutrosophic Dirichlet’s conditions.

Here, I is called indeterminate number such that I.0 = 0 and In = I, n ∈ N, the set of natural

numbers.

4. Fourier Integral Theorem (or Formula) for a neutrosophic function. Fourier Integral

representation for a neutrosophic function:

Consider, fN (x, I) be a neutrosophic function and it satisfy the following statements:

(a) fN (x, I) fulfill neutrosophic Dirichlet’s conditions in each finite interval −(h+ I) ≤ x ≤ (h+ I)

(b)
∫∞
−∞ |fN (x, I)|dx converges that means, fN (x, I) is absolutely integrable in −∞ < x < ∞.

Then Fourier integral theorem for a neutrosophic function will be

fN (x, I) =

∫ ∞

0
{AN (s, I)coss(pn + qnI)x+BN (s, I)sins(pn + qnI)x}ds (1)

where, AN (s, I) =
1

π

∫ ∞

−∞
fN (u, I)coss(pn + qnI)udu (2)

and BN (s, I) =
1

π

∫ ∞

−∞
fN (u, I)sins(pn + qnI)udu (3)

Thus Fourier integral theorem of a neutrosophic function is also re-written as

fN (x, I) =
1

2π

∫ ∞

s=−∞

∫ ∞

u=−∞
fN (u, I)coss{(pn + qnI)(x− u)}duds (4)

5. Different forms of Fourier integral theorem of a neutrosophic function:

There are five different forms of Fourier integral theorem in classical method. These five forms

are discussed in the sense of neutrosophic set as given below.

(i) General Form:

fN (x, I) =
1

π

∫ ∞

−∞
fN (u, I)

{∫ ∞

0
coss{(pn + qnI)(x− u)}ds

}
du (5)
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Proof: When x is a point of continuity of fN (x, I), we have

fN (x, I) =
1

2π

∫ ∞

−∞

{∫ ∞

−∞
fN (u, I)coss((pn + qnI)(x− u))du

}
ds

=
1

2π

∫ ∞

−∞
fN (u, I)

{∫ ∞

−∞
coss((pn + qnI)(x− u))ds

}
du

=
1

2π

∫ ∞

−∞
fN (u, I)

{
2

∫ ∞

0
coss((pn + qnI)(x− u))ds

}
du,

[using the property of definite integral∫ a

−a
fN (x, I)dx = 2

∫ a

0
f(x, I)dx if fN (−x, I) = fN (x, I)]

=
1

π

∫ ∞

u=−∞
fN (u, I)

{∫ ∞

s=0
coss((pn + qnI)(x− u))ds

}
du

(ii) Another General Form: If fN (x, I) is continous at x, then

fN (x, I) =

∫ ∞

0
{AN (s, I)coss(pn + qnI)x+BN (s, I)sins(pn + qnI)x} ds (6)

where, AN (s, I) =
1

π

∫ ∞

−∞
fN (u, I)coss(pn + qnI)udu (7)

and BN (s, I) =
1

π

∫ ∞

−∞
fN (u, I)sins(pn + qnI)udu (8)

Proof: We have

fN (x, I) =
1

π

∫ ∞

−∞
fN (u, I)

{∫ ∞

−∞
coss(pn + qnI)(x− u)ds

}
du

=
1

π

∫ ∞

0

{∫ ∞

−∞
fN (u, I)coss(pn + qnI)(x− u)du

}
ds

=
1

π

∫ ∞

0

{∫ ∞

−∞
fN (u, I)coss((pn + qnI)(x− u))ds

}
du,

=
1

π

∫ ∞

0

∫ ∞

−∞
fN (u, I){coss((pn + qnI)xcoss(pn + qnI)u

+ sins(pn + qnI)xsins(pn + qnI)u)du}ds

=

∫ ∞

0
[coss(pn + qnI)x

{
1

π

∫ ∞

−∞
fN (u, I)coss(pn + qnI)udu

}
+ sins(pn + qnI)x

{
1

π

∫ ∞

−∞
fN (u, I)sins(pn + qnI)udu

}
]ds

=

∫ ∞

0
{AN (s, I)coss(pn + qnI)x+BN (s, I)sins(pn + qnI)x} ds, [using(7)and(8)]

(iii) Fourier Sine Integral formula for a Neutrosophic Function:

If fN (x, I) is an odd neutrosophic function, then

fN (x, I) =
2

π

∫ ∞

0
sins(pn + qnI)x

{∫ ∞

0
fN (u, I)sins(pn + qnI)udu

}
ds (9)
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Proof: Proceeding as in form (ii), we have

=
1

π

∫ ∞

0
[coss(pn + qnI)x

∫ ∞

−∞
fN (u, I)coss(pn + qnI)udu

+sins(pn + qnI)x

∫ ∞

−∞
fN (u, I)sins(pn + qnI)udu]ds (10)

Since, fN (x, I) is an odd function, it follows that fN (u, I)coss(pn + qnI)u is an odd function and

fN (u, I)sins(pn + qnI)u is an even function and so by property of definite integral, we have∫ ∞

−∞
fN (u, I)coss(pn + qnI)udu = 0

and

∫ ∞

−∞
fN (u, I)sins(pn + qnI)udu = 2

∫ ∞

0
fN (u, I)sins(pn + qnI)udu

Therefore (10) implies

fN (x, I) =
2

π

∫ ∞

0
sins(pn + qnI)x

{∫ ∞

0
fN (u, I)sins(pn + qnI)udu

}
ds

(iv) Fourier Cosine Integral formula for a Neutrosophic Function:

If fN (x, I) is an even neutrosophic function, then

fN (x, I) =
2

π

∫ ∞

0
coss(pn + qnI)x

{∫ ∞

0
fN (u, I)coss(pn + qnI)udu

}
ds (11)

Proof: Proceeding as in (ii), we get

=
1

π

∫ ∞

0
[coss(pn + qnI)x

∫ ∞

−∞
fN (u, I)coss(pn + qnI)udu

+sins(pn + qnI)x

∫ ∞

−∞
fN (u, I)sins(pn + qnI)udu]ds (12)

Since, fN (x, I) is an even function, it follows that fN (u, I)coss(pn + qnI)u is an even function and

fN (u, I)sins(pn + qnI)u is an odd function and hence we have∫ ∞

−∞
fN (u, I)coss(pn + qnI)udu = 2

∫ ∞

0
fN (u, I)coss(pn + qnI)udu

and

∫ ∞

−∞
fN (u, I)sins(pn + qnI)udu = 0

Therefore (13) implies that

fN (x, I) =
2

π

∫ ∞

0
coss(pn + qnI)x

{∫ ∞

0
fN (u, I)coss(pn + qnI)udu

}
ds

(v) Complex or Exponential form of Fourier Integral Formula for a Neutrosophic Func-

tion:

fN (x, I) =
1

2π

∫ ∞

−∞
e−is(pn+qnI)x

{∫ ∞

−∞
fN (u, I)eis(pn+qnI)udu

}
ds (14)
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Proof: From general form (i) of Fourier integral theorem of a neutrosophic function, we have

fN (x, I) =
1

π

∫ ∞

−∞
fN (u, I)

{∫ ∞

0
coss(pn + qnI)(x− u)du

}
ds

=
1

π

∫ ∞

0

{∫ ∞

−∞
fN (u, I)coss(pn + qnI)(x− u)ds

}
du

(changing the order of integration)

=
1

π

∫ ∞

0

{∫ ∞

−∞
fN (u, I)

eis(pn+qnI)(x−u) + e−is(pn+qnI)(x−u)

2
du

}
ds

=
1

2π

∫ ∞

0
eis(pn+qnI)x

{∫ ∞

−infty
fN (u, I)e−is(pn+qnI)udu

}
ds

+
1

2π

∫ ∞

0
e−is(pn+qnI)x

{∫ ∞

−∞
fN (u, I)eis(pn+qnI)udu

}
ds (15)

substituting s = −y and ds = −dy in the first integral only of (15), we get

fN (x, I) =
1

2π

∫ −∞

0
e−iy(pn+qnI)x

{∫ ∞

−∞
fN (u, I)eiy(pn+qnI)udu

}
(−dy)

+
1

2π

∫ ∞

0
e−is(pn+qnI)x

{∫ ∞

−∞
fN (u, I)eis(pn+qnI)udu

}
ds

=
1

2π

∫ 0

−∞
e−iy(pn+qnI)x

{∫ ∞

−∞
fN (u, I)eiy(pn+qnI)udu

}
(dy)

+
1

2π

∫ ∞

0
e−is(pn+qnI)x

{∫ ∞

−∞
fN (u, I)eis(pn+qnI)udu

}
ds

=
1

2π

∫ 0

−∞
e−is(pn+qnI)x

{∫ ∞

−∞
fN (u, I)eiy(pn+qnI)udu

}
(ds)

+
1

2π

∫ ∞

0
e−is(pn+qnI)x

{∫ ∞

−∞
fN (u, I)eis(pn+qnI)udu

}
ds

Therefore fN (x, I) =
1

2π

∫ ∞

−∞
e−is(pn+qnI)x

{∫ ∞

−∞
fN (u, I)eis(pn+qnI)udu

}
ds

Note: In (15), substituting s = −y and ds = −dy in the second integral only in place of first integral

and proceeding as before, we get

fN (x, I) =
1

2π

∫ ∞

−∞
eis(pn+qnI)x

[∫ ∞

−∞
fN (u, I)e−is(pn+qnI)udu

]
ds

which is another form of complex form of Fourier integral formula in terms a neutrosophic function.

Example 1: Using cosine integral formula of a neutrosophic function, we get the following result:∫ ∞

0

cos(pn + qnI)λx

λ2 + 1
dλ =

π(pn + qnI)

2
e−(pn+qnI)x, x ≥ 0

Solution: Fourier cosine integral formula for a neutrosophic function is

fN (x, I) =
2

π

∫ ∞

0
cosλ(pn + qnI)x

{∫ ∞

0
fN (u, I)cosλ(pn + qnI)udu

}
dλ (i)
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Taking fN (x, I) = e−(pn+qnI)x so that fN (u, I) = e−(pn+qnI)u

Using these in (i), we get

e−(pn+qnI)x =
2

π

∫ ∞

0
cosλ(pn + qnI)x

{∫ ∞

0
e−(pn+qnI)ucosλ(pn + qnI)udu

}
dλ

=
2

π

∫ ∞

0
cosλ(pn + qnI)x

{∫ ∞

0
e−vcosλv

dv

(pn + qnI)

}
dλ

[Taking v = (pn + qnI)u so that dv = (pn + qnI)du

as u → 0, v → 0 and u → ∞, v → ∞]

=
2

(pn + qnI)π

∫ ∞

0
cosλ(pn + qnI)x

{∫ ∞

0
e−vcosλvdv

}
dλ

=
2

(pn + qnI)π

∫ ∞

0
cosλ(pn + qnI)x

{
1

1 + λ2

}
dλ

=
2

(1 + λ2)(pn + qnI)π

∫ ∞

0
cosλ(pn + qnI)xdλ

e−(pn+qnI)x =
2

(pn + qnI)π

∫ ∞

0

cosλ(pn + qnI)x

(1 + λ2)
dλ

Therefore,

∫ ∞

0

cosλ(pn + qnI)x

(1 + λ2)
dλ =

π(pn + qnI)

2
e−(pn+qnI)x, x ≥ 0

Example 2: Using the Fourier cosine integral formula, we get the following result:

e−(pn+qnI)xcos(pn + qnI)x =

(
1

pn
− qn

pn(pn + qn)
I

)
2

π

∫ ∞

0

(s2 + 2)coss(pn + qnI)x

s2 + 4
ds

Solution: Fourier Cosine Integral formula is given by

fN (x, I) =
2

π

∫ ∞

0
coss(pn + qnI)x

{∫ ∞

0
f(u, I)coss(pn + qnI)udu

}
ds (i)
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Solution: Taking fN (x, I) = e−(pn+qnI)xcos(pn+qnI)x so that fN (u, I) = e−(pn+qnI)ucos(pn+qnI)u

Using these in (i), we get

e−(pn+qnI)xcos(pn + qnI)x

=
2

π

∫ ∞

0
coss(pn + qnI)x

{∫ ∞

0
e−(pn+qnI)ucos(pn + qnI)ucoss(pn + qnI)udu

}
ds

=
1

π

∫ ∞

0
coss(pn + qnI)x

{∫ ∞

0
e−(pn+qnI)u(2cos(pn + qnI)ucoss(pn + qnI)u)du

}
ds

=
1

π

∫ ∞

0
coss(pn + qnI)x

[∫ ∞

0
e−(pn+qnI)u{cos(pn + qnI)(s+ 1)u+ cos(pn + qnI)(s− 1)u}du

]
ds

=
1

π

∫ ∞

0
coss(pn + qnI)x[

∫ ∞

0
e−(pn+qnI)ucos(pn + qnI)(s+ 1)udu

+

∫ ∞

0
e−(pn+qnI)ucos(pn + qnI)(s− 1)udu]ds

=
1

π

∫ ∞

0
coss(pn + qnI)x

[
(pn + qnI)

(pn + qnI)2 + (pn + qnI)2(s+ 1)2
+

(pn + qnI)

(pn + qnI)2 + (pn + qnI)2(s− 1)2

]
ds

=
1

π

∫ ∞

0
coss(pn + qnI)x.

1

(pn + qnI)

[
1

1 + (s+ 1)2
+

1

1 + (s− 1)2

]
ds

=
1

(pn + qnI)π

∫ ∞

0
coss(pn + qnI)x

[
(s2 − 2s+ 2) + (s2 + 2s+ 2)

(s2 + 2s+ 2)(s2 − 2s+ 2)

]
ds

=
1

(pn + qnI)π

∫ ∞

0

2(s2 + 2)

(s2 + 2)2 − (2s)2
coss(pn + qnI)xds

=
2

(pn + qnI)π

∫ ∞

0

2(s2 + 2)coss(pn + qnI)x

s4 + 4
ds

=

(
1

pn
− qn

pn(pn + qn)
I

)
2

π

∫ ∞

0

2(s2 + 2)coss(pn + qnI)x

s4 + 4
ds

Example 3: Using Fourier sine integral formula, the following result is obtained

e−(an+bnI)x − e−(cn+dnI)x =
2(pn + qnI)[(cn + dnI)

2 − (an + bnI)
2]

π∫ ∞

0

sins(pn + qnI)xds

{(an + bnI)2 + s2(pn + qnI)2} {(cn + dnI)2 + s2(pn + qnI)2}
.

Solution: Fourier sine integral formula is given by

fN (x, I) =
2

π

∫ ∞

0
sins(pn + qnI)x

{∫ ∞

0
fN (u, I)sins(pn + qnI)udu

}
ds (i)

Taking fN (x, I) = e−(an+bnI)x − e−(cn+dnI)x

so that fN (u, I) = e−(an+bnI)u − e−(cn+dnI)u
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Using these in (i), we get

e−(an+bnI)x − e−(cn+dnI)x

=
2

π

∫ ∞

0
sins(pn + qnI)x

{∫ ∞

0
(e−(an+bnI)u − e−(cn+dnI)u)sins(pn + qnI)udu

}
ds

=
2

π

∫ ∞

0
sins(pn + qnI)x

{∫ ∞

0
e−(an+bnI)usins(pn + qnI)udu−

∫ ∞

0
e−(cn+dnI)usins(pn + qnI)udu

}
ds

=
2

π

∫ ∞

0
sins(pn + qnI)x

[
s(pn + qnI)

(an + bnI)2 + s2(pn + qnI)2
− s(pn + qnI)

(cn + dnI)2 + s2(pn + qnI)2

]
ds

=
2

π

∫ ∞

0
sins(pn + qnI)x.(pn + qnI)s

[
(cn + dnI)

2 − (an + bnI)
2

{(an + bnI)2 + s2(pn + qnI)2} {(cn + dnI)2 + s2(pn + qnI)2}

]
ds

=
2(pn + qnI)[(cn + dnI)

2 − (an + bnI)
2]

π

∫ ∞

0

sins(pn + qnI)xds

{(an + bnI)2 + s2(pn + qnI)2} {(cn + dnI)2 + s2(pn + qnI)2}
.

6. F.T.s or Complex F.T. of a Neutrosophic Function

Fourier transform is a mathematical model which helps to transform the signals between two

different domains, such as transforming signal from frequency domain to time domain or vice versa.

It is an integral transform that converts a function into a form that describes the frequencies present

in the original function. The output of the transform is a complex-valued function of frequencies.

Definition: Let F (x, I) be a function defined on (−∞,∞) and be piecewise continuous in each

partial interval and absolutely integrable in (−∞,∞). Then the F.T. of F (x, I) is a function of a

new variable ′s′ and it is denoted and defined as

F{F (x, I)} = F (s, I) = fN (s, I) =

∫ ∞

−∞
eis(pn+qnI)xF (x, I)dx (16)

The function F (x, I) is then known as inverse F.T.s of F (s, I) or fN (s, I) and is denoted by

F (x, I) = F−1{F (s, I)}

F (x, I) = F−1{fN (s, I)} (17)

6.1. Inversion Formula for F.T. or Complex F.T. of a Neutrosophic Function:

If F (s, I) is the F.T. of F (x, I) and if F (x, I) satiesfies the Dirichlet’s conditions in every finite

interval (−l− I, l+ I) and further F (x, I) is absolutely integrable in (−∞,∞), then at every point

of continuity of F (x, I),

F (x, I) =
1

2π

∫ ∞

−∞
F (s, I)e−is(pn+qnI)xds

Proof: Complex Fourier integral formula is given by

F (x, I) =
1

2π

∫ ∞

−∞
e−is(pn+qnI)x

{∫ ∞

−∞
F (u, I)eis(pn+qnI)udu

}
ds (18)
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Complex F.T. of F (x, I) is given by

F (s, I) =

∫ ∞

−∞
eis(pn+qnI)xF (x, I)dx

=

∫ ∞

−∞
F (u, I)eis(pn+qnI)udu (19)

From (18) and (19) we get

F (x, I) =
1

2π

∫ ∞

−∞
F (s, I)e−is(pn+qnI)xds (20)

Which is the required inversion formula for complex F.T. of a neutrosophic function.

Thus, we have

F{F (x, I)} = F (s, I)

= fN (s, I)

=

∫ ∞

−∞
eis(pn+qnI)xF (x, I)dx (21a)

and

F (x, I) =
1

2π

∫ ∞

−∞
e−is(pn+qnI)xF (s, I)ds

=
1

2π

∫ ∞

−∞
e−is(pn+qnI)xfN (s, I)ds (21b)

Theorem 1. If fN (s, I) is F.T. of F (x, I), then

(i) F{F (−x, I)} = fN (−s, I)

(ii) F{F (−x, I)} = fN (s, I)

(iii) F{F (x, I)} = fN (−s, I)

Where bar over a quantity represents its complex conjugate.

Proof: By definition,

F{F (x, I)} = fN (s, I) =

∫ ∞

−∞
F (x, I)eis(pn+qnI)xdx (22)
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Now

(i) F{F (−x, I)} =

∫ ∞

−∞
F (−x, I)eis(pn+qnI)xdx

=

∫ −∞

∞
F (y, I)e−is(pn+qnI)y(−dy)

{putting y = −x & dx = −dy

=

∫ ∞

−∞
F (y, I)e−is(pn+qnI)y(dy)

=

∫ ∞

−∞
F (x, I)ei(−s)(pn+qnI)y(−dy)

= fN (−s, I) {by(22)

(ii) F{F (−x, I)} =

∫ ∞

−∞
{F (−x, I)}eis(pn+qnI)xdx

=

∫ ∞

−∞
{F (y, I)}e−is(pn+qnI)y(−dy)

{putting y = −x & dx = −dy

=

∫ ∞

−∞
{F (x, I)}e−is(pn+qnI)xdx

=

{∫ ∞

−∞
F (x, I)eis(pn+qnI)xdx

}
= fN (s, I) by(22)

(iii) F{F (x, I)} =

∫ ∞

−∞
{F (x, I)}eis(pn+qnI)xdx

=

{∫ ∞

−∞
F (x, I)ei(−s)(pn+qnI)xdx

}
= fN (−s, I), by(22)

7. F.S.T. or Infinite F.S.T. for a Neutrosophic Function:

Definition: Let F (x, I) be a neutrosophic function defined on (−∞,∞) and be piecewise con-

tinous in each partial interval and absolutely integrable in (−∞,∞). Then the infinte F.S.T. of

F (x, I) is a function of a new variable ’s’ and it is denoted and defined as

Fs{F (x, I)} = Fs(x, I) = fN
s (s, I) =

∫ ∞

0
F (x, I)sins(pn + qnI)xdx (23)

The function F (x, I) is then called inverse Fourier sine transfom of Fs(s, I) or fN
s (s, I) and is

denoted by

F (x, I) = Fs
−1{Fs(s, I)} or F (x, I) = Fs

−1{fN
s (s, I)} (24)
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7.1. Inversion Formula for Infinite F.S.T. of a Neutrosophic Function:

If Fs(s, I) is the infinite F.S.T. of F (x, I) and if F (x, I) satisfies the Dirichlet conditions in every

finite interval (−l−I, l+I) and further if F (x, I) is absolutely integrable in (−∞,∞), then at every

point of continuity of F (x, I), then we have

F (x, I) =
2

π

∫ ∞

0
Fs(s, I)sins(pn + qnI)xds

Proof: Fourier sine integral formula is given by

F (x, I) =
2

π

∫ ∞

0
sins(pn + qnI)x

{∫ ∞

0
F (u, I)sins(pn + qnI)udu

}
ds (25)

Now, infinite F.S.T. of F (x, I) is given by

Fs(s, I) =

∫ ∞

0
F (x, I)sins(pn + qnI)xdx

=

∫ ∞

0
F (u, I)sins(pn + qnI)udu (26)

Thus, from (25) and (26), we get

F (x, I) =
2

π

∫ ∞

0
Fs(s, I)sins(pn + qnI)xds (27)

Which is the required inversion formula for infinite F.S.T..

Thus, we have

Fs{F (x, I)} = Fs(s, I)

= fN
s (s, I)

=

∫ ∞

0
F (x, I)sins(pn + qnI)xds (28a)

and F (x, I) = Fs
−1{Fs(s, I)}

=
2

π

∫ ∞

0
Fs(s, I)sins(pn + qnI)xds (28b)

Equations (28a) and (28b) are also defined as

Fs{F (x, I)} = Fs(s, I)

= fN
s (s, I)

=

√
2

π

∫ ∞

0
F (x, I)sins(pn + qnI)xds (28a*)

and F (x, I) = Fs
−1{Fs(s, I)}

=

√
2

π

∫ ∞

0
Fs(s, I)sins(pn + qnI)xds (28b*)
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8. F.C.T. or Infinite F.C.T. of a Neutrosophic Function:

Definition: Let F (x, I) be a neutrosophic function defined on (−∞,∞) and be piecewise con-

tinuous in each partial interval and absolutely integrable in (−∞,∞). Then the infinite F.C.T. of

F (x, I) is a function of a new variable ’s’ and it is denoted and defined as

Fc{F (x, I)} = Fc(s, I) = fN
c (s, I) =

∫ ∞

0
F (x, I)coss(pn + qnI)xdx (29)

The function F (x, I) is then called inverse F.C.T. of Fc(s, I) or f
N
c (s, I) and is denoted by

F (x, I) = Fc
−1{Fc(s, I)}

or F (x, I) = Fc
−1{fN

c (s, I)} (30)

8.1. Inversion Formula for Infinite F.C.T. of a Neutrosophic Function:

If Fc(s, I) is the infinite F.C.T. of F (x, I) and if F (x, I) satisfies Dirichlet’s conditions in every

finite interval (−l− I, l+ I) and further if F (x, I) is absolutely integrable in (−∞,∞) then at every

point of continuity of F (x, I), we have

F (x, I) =
2

π

∫ ∞

0
Fc(s, I)coss(pn + qnI)xds

Proof: Fourier cosine integral formula is given by

F (x, I) =
2

π

∫ ∞

0
coss(pn + qnI)x

{∫ ∞

0
F (u, I)coss(pn + qnI)udu

}
ds (31)

Now, infinite F.C.T. of F (x, I) is given by

Fc(s, I) =

∫ ∞

0
F (x, I)coss(pn + qnI)xdx

=

∫ ∞

0
F (u, I)coss(pn + qnI)udu (32)

Thus, from (31) and (32) we get

F (x, I) =
2

π

∫ ∞

0
Fc(s, I)coss(pn + qnI)xds (33)

Which is the required inversion formula for infinite F.C.T. of a neutrosophic function.

Thus, we have

Fc{F (x, I)} = Fc(s, I) = fc(s, I) =

∫ ∞

0
F (x, I)coss(pn + qnI)xdx (34a)

and F (x, I) = Fc
−1{Fc(s, I)} =

2

π

∫ ∞

0
Fc(s, I)coss(pn + qnI)xds (34b)
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Equations (34a) and (34b) are also re-written in the following symmetric form as

Fc{F (x, I)} = Fc(s, I)

= fN
c (s, I)

=

√
2

π

∫ ∞

0
F (x, I)coss(pn + qnI)xds (34a*)

and F (x, I) = Fc
−1{Fc(s, I)}

=

√
2

π

∫ ∞

0
Fc(s, I)coss(pn + qnI)xds (34b*)

9. Linearity Property of F.T. of a Neutrosophic Function:

If c1 and c2 be constants, then

(i) F{c1F1(x, I) + c2F2(x, I)} = c1F{F1(x, I)}+ c2F{F2(x, I)}

(ii) Fs{c1F1(x, I) + c2F2(x, I)} = c1Fs{F1(x, I)}+ c2Fs{F2(x, I)}

(iii) Fc{c1F1(x, I) + c2F2(x, I)} = c1Fc{F1(x, I)}+ c2Fc{F2(x, I)}

Proof: (i) By definition (16), we have

F{c1F1(x, I) + c2F2(x, I)} =

∫ ∞

−∞
eis(pn+qnI)x{c1F1(x, I) + c2F2(x, I)}dx

=c1

∫ ∞

−∞
eis(pn+qnI)xF1(x, I)dx

+ c2

∫ ∞

−∞
eis(pn+qnI)xF2(x, I)dx

=c1F{F1(x, I)}+ c2F{F2(x, I)}

(ii) By definition (23), we have

Fs{c1F1(x, I) + c2F2(x, I)} =

∫ ∞

0
{c1F1(x, I) + c2F2(x, I)}sins(pn + qnI)xdx

=c1

∫ ∞

0
F1(x, I)sins(pn + qnI)xdx

+ c2

∫ ∞

0
F2(x, I)sins(pn + qnI)xdx

=c1Fs{F1(x, I)}+ c2Fs{F2(x, I)}
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(iii) By definition (29), we have

Fc{c1F1(x, I) + c2F2(x, I)} =

∫ ∞

0
{c1F1(x, I) + c2F2(x, I)}coss(pn + qnI)xdx

=c1

∫ ∞

0
F1(x, I)coss(pn + qnI)xdx

+ c2

∫ ∞

0
F2(x, I)coss(pn + qnI)xdx

=c1Fc{F1(x, I)}+ c2Fc{F2(x, I)}

10. Change of Scale Property of a Neutrosophic Function:

(i) If fN (s, I) is the F.T. of F (x, I), then 1
|α|f

N ( sα , I) is the F.T. of F (αx, I), where α ̸= 0.

i.e., If F{F (x, I)} = fN (s, I), then F{F (αx, I)} = 1
|α|f

N ( sα , I), where α ̸= 0.

(ii) If Fs{F (x, I)} = fN
s (s, I), then Fs{F (αx, I)} = 1

αf
N
s ( sα , I)

(iii) If Fc{F (x, I)} = fN
c (s, I), then Fc{F (αx, I)} = 1

αf
N
c ( sα , I)

Proof: (i) The following two cases arise:

Case I: Let α > 0. Then by definition of F.T., we get,

F{F (αx, I)} =

∫ ∞

−∞
eis(pn+qnI)xF (αx, I)dx

=
1

α

∫ ∞

−∞
e(

s
α
)(pn+qnI)tF (t, I)dt

[putting αx = t so that dx =
1

α
dt]

= (
1

α
)fN (

s

α
, I), by definition of Fourier Transform.

Case II: Let α < 0. Let β > 0 such that α = −β. Then by definition, we have

F{F (αx, I)} =

∫ ∞

−∞
eis(pn+qnI)xF (αx, I)dx

=

∫ ∞

−∞
eis(pn+qnI)tF (−βx, I)dx

[as α = −β]

=

∫ −∞

∞
ei(

s
α
)t dt

−β
, [putting − βx = t so that dx = − 1

β
dt]

=
1

β

∫ ∞

−∞
ei(

s
α
)tF (t, I)dt

=
1

−α
fN (

s

α
, I), by definition of Fourier Transform.

Combining the above two cases, we get

F{F (αx, I)} =
1

|α|
fN (

s

α
, I)
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. (ii) By definition (23), we get∫ ∞

0
F (x, I)sins(pn + qnI)xdx = fN

s (s, I) (i)

Now, Fs{F (αx, I)} =

∫ ∞

0
F (αx, I)sins(pn + qnI)xdx

=
1

α

∫ ∞

0
F (t, I)sin

s(pn + qnI)t

α
dt, [putting αx = t so that dx =

dt

α
]

=
1

α

∫ ∞

0
F (x, I)sin{ s

α
(pn + qnI)x}dx

=
1

α
fN
s (

s

α
, I), on replacing s by

s

α
in (i)

(iii) By definition (29), we get∫ ∞

0
F (x, I)coss(pn + qnI)xdx = fN

c (s, I) (i)

Now, Fc{F (αx, I)} =

∫ ∞

0
F (αx, I)coss(pn + qnI)xdx

=
1

α

∫ ∞

0
F (t, I)cos

s(pn + qnI)t

α
dt, [putting αx = t so that dx =

dt

α
]

=
1

α

∫ ∞

0
F (x, I)cos{ s

α
(pn + qnI)x}dx

=
1

α
fN
c (

s

α
, I), on replacing s by

s

α
in (i)

Example: If fN
c (s, I) is F.C.T. of F (x, I), show that F.C.T. of F ( xα , I) is αf

N
s (αs, I).

Solution: By definition (29), we get∫ ∞

0
F (x, I)coss(pn + qnI)xdx = fN

c (s, I) (i)

Now, Fc{F (
x

α
, I)} =

∫ ∞

0
F (

x

α
, I)coss(pn + qnI)xdx

= α

∫ ∞

0
F (t, I)cos(αst)(pn + qnI)dt, [on putting

x

α
= t so that dx = αdt]

= α

∫ ∞

0
F (x, I)cos{αs(pn + qnI)}xdx

= αfN
c (αs, I) [replacing s by αs in (i)]

11. Shifting Property for F.T. of a Neutrosophic Function:

If fN (s, I) is the complex F.T. of F (x, I), then complex F.T. of F (x−α, I) is eisα(pn+qnI)fN (s, I),

i.e., if F{F (x, I)} = fN (s, I), then

F{F (x− α, I)} = eisα(pn+qnI)fN (s, I).
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Proof: By definition (16), we have∫ ∞

−∞
eis(pn+qnI)xF (x, I)dx = fN (s, I) (i)

Now,

F{F (x− α, I)} =

∫ ∞

∞
eis(pn+qnI)xF (x− α, I)dx

=

∫ ∞

∞
eis(pn+qnI)(t+α)F (t, I)dt, [on putting x− α = t so that dx = dt]

= eisα(pn+qnI)α

∫ ∞

−∞
eis(pn+qnI)tF (t, I)dt

= eis(pn+qnI)α

∫ ∞

−∞
eis(pn+qnI)xF (x, I)dx

= eis(pn+qnI)αfN (s, I), {using (i)

12. Modulation Theorem for a Neutrosophic Function:

If fN (s, I) is the neutrosophic F.T. of a neutrosophic function fN (x, I), then
[fN (s+α,I)+fN (s−α,I)]

2

is the F.T. of F (x, I)cosα(pn + qnI)x, i.e.,

(i)If F{F (x, I)} = fN (s, I), then

Fc{F (x, I)cosα(pn + qnI)x} =
[fN (s+α,I)+fN (s−α,I)]

2

(ii) If Fs{F (x, I)} = fN
s (s, I), then

Fs{F (x, I)cosα(pn + qnI)x} =
[fN

s (s+α,I)+fN
s (s−α,I)]

2

(iii) If Fs{F (x, I)} = fN
s (s, I), then

Fc{F (x, I)sinα(pn + qnI)x} =
[fN

s (s+α,I)+fN
s (s−α,I)]

2

(iv) If Fc{F (x, I)} = fN
c (s, I), then

Fs{F (x, I)sinα(pn + qnI)x} =
[fN

c (s−α,I)−fN
c (s+α,I)]

2

Proof (i) By definition(16),∫ ∞

−∞
eis(pn+qnI)xF (x, I)dx = fN (s, I) (i)

Now, F{F (x, I)cosαx} =

∫ ∞

−∞
eis(pn+qnI)xF (x, I)cosα(pn + qnI)xdx

=

∫ ∞

−∞
eis(pn+qnI)xF (x, I)

eiα(pn+qnI)x + e−iα(pn+qnI)x

2
dx

=
1

2

∫
−∞

∞ei(s+α)(pn+qnI)xF (x, I)dx+
1

2

∫
−∞

∞ei(s−α)(pn+qnI)xF (x, I)dx

=
1

2
fN (s+ α, I) +

1

2
fN (s− α, I), {using (i)

=

[
fN (s+ α, I) + fN (s− α, I)

]
2
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(ii) By definition(23), we have

∫ ∞

0
F (x, I)sins(pn + qnI)xdx = fN

s (s, I) (i)

Now,

Fs{F (x, I)cosα(pn + qnI)x} =

∫ ∞

−∞
F (x, I)cosα(pn + qnI)xsins(pn + qnI)xdx, {By defn. (i)

=
1

2

∫ ∞

0
F (x, I)2sins(pn + qnI)xcosα(pn + qnI)xdx

=
1

2

∫ ∞

0
F (x, I)[sin(pn + qnI)(s+ α)x+ sin(pn + qnI)(s− α)x]dx

=
1

2
[

∫ ∞

0
F (x, I)sin(s+ α)(pn + qnI)xdx

+

∫ ∞

0
F (x, I)sin(s− α)(pn + qnI)xdx]

=
1

2
[fN

s (s+ α, I) + fN
s (s− α, I)], {using (i)

(iii) ∫ ∞

0
F (x, I)sins(pn + qnI)xdx = fN

s (s, I) (i)

Now,

Fc{F (x, I)sinα(pn + qnI)x} =

∫ ∞

−∞
F (x, I)sinα(pn + qnI)xcoss(pn + qnI)xdx, {By defn. (i)

=
1

2

∫ ∞

0
F (x, I)2coss(pn + qnI)xsinα(pn + qnI)xdx

=
1

2

∫ ∞

0
F (x, I)[sin(pn + qnI)(s+ α)x− sin(pn + qnI)(s− α)x]dx

=
1

2
[

∫ ∞

0
F (x, I)sin(s+ α)(pn + qnI)xdx

−
∫ ∞

0
F (x, I)sin(s− α)(pn + qnI)xdx]

=
1

2
[fN

s (s+ α, I)− fN
s (s− α, I)], {using (i)

(iv) By definition (28)

∫ ∞

0
F (x, I)coss(pn + qnI)xdx = fN

c (s, I) (i)
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Now,

Fs{F (x, I)sinα(pn + qnI)x} =

∫ ∞

−∞
F (x, I)sinα(pn + qnI)xsins(pn + qnI)xdx, {By defn. (i)

=
1

2

∫ ∞

0
F (x, I)2sins(pn + qnI)xsinα(pn + qnI)xdx

=
1

2

∫ ∞

0
F (x, I)[cos(pn + qnI)(s− α)x− cos(pn + qnI)(s+ α)x]dx

=
1

2
[

∫ ∞

0
F (x, I)cos(s+ α)(pn + qnI)xdx

−
∫ ∞

0
F (x, I)cos(s− α)(pn + qnI)xdx]

=
1

2
[fN

c (s+ α, I)− fN
c (s− α, I)], {using (i)

13. Solved examples based on Infinite F.T.:

Example 1. To find the Fourier complex transform of F (x, I), if

F (x, I) =

eiw(pn+qnI)x if α < x < β

0 if x < α or x > β

Solution: By definition (16), we have

F{F (x, I)} =

∫ ∞

−∞
eis(pn+qnI)xF (x, I)dx

=

∫ α

−∞
eis(pn+qnI)xF (x, I)dx+

∫ β

α
eis(pn+qnI)xF (x, I)dx+

∫ ∞

β
eis(pn+qnI)xF (x, I)dx

= 0 +

∫ β

α
eis(pn+qnI)x.eiw(pn+qnI)xdx+ 0, {using the given values of F (x, I).

=

∫ β

α
ei(s+w)(pn+qnI)xdx

=

[
ei(s+w)(pn+qnI)x

i(s+ w)(pn + qnI)

]β

α

= i.
ei(s+w)(pn+qnI)β − ei(s+w)(pn+qnI)α

i2(s+ w)(pn + qnI)

=
i

(s+ w)(pn + qnI)

[
ei(s+w)(pn+qnI)α − ei(s+w)(pn+qnI)β

]
, {since i2 = 1

= (
1

pn
− qn

pn(pn + qn)
I)

i

(s+ w)

[
ei(s+w)(pn+qnI)α − ei(s+w)(pn+qnI)β

]
Example 2. To find the F.T. of

fN (x, I) =

x+ I, if |x| ≤ α

0, if |x| > α
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Solution: By definition (16), we have

F{fN (x, I)} =

∫ ∞

−∞
fN (x, I)eis(pn+qnI)xdx

=

∫ −α

−∞
fN (x, I)eis(pn+qnI)xdx+

∫ α

−α
fN (x, I)eis(pn+qnI)xdx+

∫ ∞

α
fN (x, I)eis(pn+qnI)xdx

=

∫ α

−α
(x+ I)eis(pn+qnI)xdx, {using the given values of fN (x, I).

=

[
(x+ I).

eis(pn+qnI)x

is(pn + qnI)

]α

−α

−
∫ α

−α

eis(pn+qnI)x

is(pn + qnI)
dx, {using integration by parts.

=
α+ I

is(pn + qnI)
.eis(pn+qnI)α − −α+ I

is(pn + qnI)
.eis(pn+qnI)(−α) −

[
.eis(pn+qnI)x

{is(pn + qnI)}2

]α

−α

=
1

is(pn + qnI)

[
(α+ I)eis(pn+qnI)α − (I − α)e−is(pn+qnI)α

]
+

1

s2(pn + qnI)2

[
eis(pn+qnI)α − e−is(pn+qnI)α

]
=

2I

is(pn + qnI)

[
eis(pn+qnI)α − e−is(pn+qnI)α

2i

]

+
2αi

i2s(pn + qnI)

[
eis(pn+qnI)α + e−is(pn+qnI)α

2i

]

+
2i

s2(pn + qnI)

[
eis(pn+qnI)α − e−is(pn+qnI)α

2i

]

=
2I

s(pn + qnI)
sins(pn + qnI)α− 2αi

s(pn + qnI)
coss(pn + qnI)α

+
2i

s2(pn + qnI)2
sins(pn + qnI)α

= (
1

pn
− qn

pn(pn + qn)
I).

2

s
sins(pn + qnI)α− 2αi

s
(
1

pn
− qn

pn(pn + qn)
I)coss(pn + qnI)α

+
2i

s2
(
1

pn
− qn

pn(pn + qn)
I)2sins(pn + qnI)α.

Example 3 To find the F.T. of fN (x, I) if

fN (x, I) =

x2 + I, if |x| ≤ α

0, if |x| > α
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Solution: By definition (16), we have

F{fN (x, I)} =

∫ ∞

−∞
fN (x, I)eis(pn+qnI)xdx

=

∫ −α

−∞
eis(a+bIx)dx+

∫ α

−α
fN (x, I)eis(pn+qnI)xdx+

∫ ∞

α
fN (x, I)eis(pn+qnI)xdx

=

∫ α

−α
(x2 + I)eis(pn+qnI)xdx, {using the given values of fN (x, I)

=

[
(x2 + I).

eis(pn+qnI)x

is(pn + qnI)

]α

−α

−
∫ α

−α
2x.

eis(pn+qnI)x

is(pn + qnI)
dx, {using integration by parts.

=
(α2 + I)

is(pn + qnI)
.eis(pn+qnI)α − (α2 + I)

is(pn + qnI)
.e−is(pn+qnI)α

− 2

is(pn + qnI)
.

[
x.

eis(pn+qnI)x

is(pn + qnI)

]α

−α

− 2

is(pn + qnI)

∫ α

−α
1.

eis(pn+qnI)x

is(pn + qnI)
dx

=
(α2 + I)

is(pn + qnI)
.2isins(pn + qnI)α− 2

i2s2(pn + qnI)2

[
αeis(pn+qnI)α + αe−is(pn+qnI)α

]
+

2

i2s2(pn + qnI)2
.

[
eis(pn+qnI)x

is(pn + qnI)

]α

−α

=
2(α2 + I)

s(pn + qnI)
.sins(pn + qnI)α+

4α

s2(pn + qnI)2
coss(pn + qnI)α

− 4

s3(pn + qnI)3
sins(pn + qnI)α

14. Conclusion:

In this article, some basics of Fourier Integrals have been discussed in terms of neutrosophic set.

Dirichlet’s Conditions, Fourier integral formula and it’s five different forms are studied based on

neutrosophic set. This article includes the F.T., F.S.T. and F.C.T. of a neutrosophic function and

their inversion formulae. In this study, some properties of F.T. are discussed for a neutrosophic

function. The purpose of this work is to extend the classical analysis of Fourier integrals and Fourier

transform to Neutrosophic form. This study will help to get better results in signal processing, image

processing, noise filtering and in some other fields also. Presently, in classical form, there are many

applications of Fourier transform in different fields. In future, by using the concept of Neutrosophic

in Fourier integrals and Fourier transform it can be axpected to get better results than the present

applications of Fourier integrals and Fourier transform.
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