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Abstract. Samarandache [43] introduced neutrosophoic sets to generalize the theory of fuzzy sets. In this pa-

per we modify the definition of neutrosophic normed space with help of continuous neutrosophic t-representable

norm. Then we study the statistical graphical convergence and pointwise convergence of the sequences of set-

valued functions defined on modified version of neutrosophic normed space and give some related theorems. We

also introduce neutrosophic upper and lower semi continuities of set valued maps to develop the link between

these convergences.
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—————————————————————————————————————————-

1. Introduction

The landscape of both pure and applied mathematics has been substantially enriched

through the insights provided by fuzzy theory. The foundational work was established by

L.A. Zadeh in 1965 [38]. In 1975, Kramosil and Michálek introduced the concept of fuzzy met-

ric space [25], which served as a generalization of the conventional metric space. Later, George

and Veeramani refined this concept in 1994 [16]. Katsaras proposed the idea of fuzzy normed

space in 1984 [21], which was subsequently modified by Bag and Samanta [8]. Saadati and

Vaezpour expanded upon this notion, further advancing the field of fuzzy normed spaces [33].

In the realm of fuzzy mathematics, Atanassov introduced intuitionistic fuzzy set theory, broad-

ening the scope beyond traditional fuzzy set theory [2]. Building upon this foundation, Park

extended the concept into intuitionistic fuzzy metric spaces [29]. Saadati and Park further

generalized the notion to intuitionistic fuzzy normed spaces [34]. Recognizing the need for

refinement, additional conditions were incorporated into the concept by Hosseini et al. [18]. In
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a recent exploration, Jakhar et al. applied fixed point and direct methods to investigate the

intuitionistic fuzzy stability of 3-dimensional cubic functional equations [19]. Also Vakeel A.

Khan and S. K. Ashadul Rahaman [44] explopred statistical graph and pointwise convergence

of sequences of set-valued functions on intuitionistic fuzzy normed spaces.

Beyond intuitionistic fuzzy sets, the emergence of neutrosophic sets marked a significant gen-

eralization in dealing with uncertainty and imprecision. Smarandache introduced neutrosophic

sets, providing a broader framework for this purpose [43]. Advancing the field, Kirisci and

Simsek defined a metric and a norm specifically tailored for neutrosophic sets, while also delv-

ing into their topological properties 41,42. These advancements not only expanded the toolkit

for handling complex and uncertain data but also offered fresh perspectives on fuzzy systems.

Jemima and colleagues investigated the convergence patterns within a Kothe sequence space,

whereas Al-Marzouki’s study delved into the statistical characteristics of the type II Topp

Leone inverse exponential distribution [1,20]. The understanding of sequence set limits is piv-

otal not just in set-valued analysis [4] but also in variational analysis [32]. In 1902, Painlevé

initially proposed the notions of upper and lower limits for sequences of sets, advancing the

idea of Kuratowski convergence by aligning the corresponding upper and lower limits [26].

The formalization of upper and lower limits for a sequence of subsets within a metric space

(X , d) was first introduced in [27]. Building upon these foundational ideas, Beer introduced

the concept of topological convergence [11]. Later, Kowalczyk utilized the notion of sequence

set convergence within a topological space [24]. For those interested in further exploration of

sequence set convergence, additional resources include articles such as [12,37]. informative.

The convergence of function sequences holds paramount significance across both analysis and

topology, particularly concerning the convergence of graphs associated with such sequences.

When discussing the convergence of sequences of real-valued functions, terms such as pointwise

convergence and uniform convergence frequently emerge. In 1983, Beer elucidated the condi-

tions under which topological convergence and uniform convergence of sequences of continuous

functions from one metric space to another coincide [10]. In 2008, Grande explored the graph

convergence of single-valued functions defined from one topological space to another, drawing

comparisons between graph convergence, pointwise convergence, and uniform convergence [17].

For those wishing to delve further into the graph convergence of single-valued functions, ad-

ditional resources include articles such as [28,30]. informative.

The convergence of sequences of set-valued functions plays a fundamental role in various math-

ematical contexts. Attouch extensively examined the graph convergence of sequences of maxi-

mal monotone set-valued operators in his seminal work [3]. Aubin and Frankowska introduced

the concept of graph convergence for sequences of set-valued functions utilizing the notions
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of upper and lower limits of sets in the Kuratowski sense [6]. Similarly, Kowalczyk addressed

the convergence of sequences of set-valued functions employing Kuratowski limits, while also

introducing the equicontinuity of set-valued functions to establish connections between dif-

ferent types of convergence [24]. Delgado and colleagues investigated the interplay between

pointwise convergence and graph convergence of sequences of set-valued functions, introduc-

ing the concept of outer-semicontinuity for set-valued functions [31]. For further insights and

applications concerning the graph convergence of sequences of set-valued functions, interested

readers may consult papers and books such as [7, 9, 14].

The primary aim of this article is to conduct an analysis of sequences of set-valued functions

originating from a modified variant of intuitionistic fuzzy normed space and extending to

another space. This analysis will delve into the phenomena of both graph convergence and

pointwise convergence exhibited by these sequences, shedding light on their properties and

implications within the framework of fuzzy normed spaces.

2. Preliminaries

Throughout the entirety of this investigation, we will consistently use the symbols N, R, and
Q to represent the sets of natural numbers, real numbers, and rational numbers, respectively.

Here are some fundamentals to review:

Consider U and V as two arbitrary non-void sets. A set - valued mapping φ : U −→ P (V ) is

a mapping from U to power set of V i.e. P (V ), such that ∀ u ∈ U , φ(u) ⊆ V .

The domain of the function φ is defined as

Dom(φ) =
{
u ∈ U : φ(u) ̸= ∅

}
.

and the image of the function φ is defined as

Im(φ) =
⋃
u∈U

φ(u)

Consider U as an arbitrary non-void set and V be a linear space over the field F . Let

φ1, φ2 : X −→ P (V ) to be the set - valued functions. The addition and scalar multiplication

of φ1 and φ2 are therefore defined below:

(φ1 + φ2)(u) = φ1(u) + φ2(u)

=

{
v1 + v2 : v1 ∈ φ1(u) and v2 ∈ φ2(u)

}
;

(αφ1)(u) = αφ1(u) =

{
αv : v ∈ φ1(u), α ∈ K

}
.
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n : U −→ P (V ) be a sequence of set

- valued functions. Then the pointwise lower limit and pointwise upper limit of the sequence

(φn)
∞
n=1 are the functions p− φl

n and p− φu
n, respectively, defined by

(p− φl
n)(u) = lim inf

n→∞
φn(u), ∀u ∈ U.

and

(p− φu
n)(u) = lim sup

n→∞
φn(u), ∀u ∈ U

If (p − φu
n)(u) = (p − φl

n)(u) = φ(u), ∀u ∈ U , then φ(u) is called pointwise limit and we

denote lim
n→∞

φn(u) = φ(u), ∀u ∈ U then we say, the sequence (φn)
∞
n=1 is pointwise convergent

to φ(u).

Define the notions as follows:

Mf = {M ⊆ N : mc is finite }

M∞ = {M ′ ⊆ N : M ′ is infinite }.

In general, we denote lim
n→∞

when n approaches to ∞ along N. Throughout this paper, we will

denote lim
n∈M

and lim
n∈M ′

when n approaches to ∞ along the subsets M and M ′ of N, respectively.

Definition 2.2. [32] Let U, V be topological spaces and φn : U −→ P (V ) be a sequence

of set-valued functions. The graphical lower limit of the sequence (φn)
∞
n=1 is the function

Gr(φl
n) = lim inf

n→∞
(Gr(φn)), where v ∈ φl(u) if and only if (u, v) ∈ Gr(φl

n), i.e., there exists

M ∈ Mf such that

lim
n∈M

un = u, lim
n∈M

vn = v for vn ∈ φn(un).

and the graphical upper limit of the sequence (φn)
∞
n=1 is the function Gr(φu

n) =

lim sup
n→∞

(Gr(φn)), where v ∈ φu(u) if and only if (u, v) ∈ Gr(φu
n), i.e., there exists M ′ ∈ M∞

such that

lim
n∈M ′

un = u, lim
n∈M ′

vn = v for vn ∈ φn(un)

If Gr(φu
n) = Gr(φl

n), then the limit is known as the graphical limit denoted by lim
n→∞

Gr(φn).

The sequence (φn)
∞
n=1 is graph convergent to a function φ : U −→ P (V ) if

lim sup
n→∞

(Gr(φn)) ⊆ Gr(φ) ⊆ lim inf
n→∞

(Gr(φn)).

Lemma 2.3. [39] Consider (D⋆,≤D⋆) to be partially ordered set, defined as

D⋆ =
{
(ζ1, ζ2, ζ3) : ζ1, ζ2, ζ3 ∈ [0, 1]

}
,

(ζ1, ζ2, ζ3) ≤D⋆ (η1, η2, η3) if and only if ζ1 ≤ η1, ζ2 ≥ η2, ζ3 ≥ η3

for all (ζ1, ζ2, ζ3), (η1, η2, η3) ∈ D⋆. Then (D⋆,≤D⋆) is complete lattice.

0D⋆ = (0, 1, 1) and 1D⋆ = (1, 0, 0) are its units.

Definition 2.1. [32] Let U, V be topological spaces and φ
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Definition 2.4. [40] In the context of a non-empty set U , a single-valued neutrosophic setM is

defined by three essential functions: the truth membership function TM (u), the indeterminacy-

membership function IM (u), and the false-membership function FM (u). Therefore, a single-

valued neutrosophic set M can be represented as

M = {(u, TM (u), IM (u), FM (u));u ∈ U}

where TM (u), IM (u), FM (u) ∈ [0, 1] and ∀ u ∈ U , they satisfy the condition 0 ≤ TM (u) +

IM (u) + FM (u) ≤ 3.

In the traditional context, a triangular norm denoted by ∗ on the interval [0, 1] refers to

a function ∗ : [0, 1]2 −→ [0, 1] that exhibits properties of being increasing, commutative, and

associative, satisfying the condition 1∗ ζ = ζ for all ζ ∈ [0, 1]. Conversely, a triangular conorm

denoted by ⋄ on [0, 1] is a function ⋄ : [0, 1]2 −→ [0, 1] with similar properties, such as being

increasing, commutative, and associative, and satisfying 0 ⋄ ζ = ζ for all ζ ∈ [0, 1] (refer

to [23], [22]). This terminology is utilized within the lattice (D⋆,≤D⋆).

, these definitions can be extended as follows.

Definition 2.5. [39] A mapping Γ : D⋆ ×D⋆ −→ D⋆ is said to be a neutrosophic t-norm on

D⋆ if it adheres to the following conditions:

(1) Γ(ζ, 1D⋆) = ζ for all ζ ∈ D⋆,

(2) Γ(ζ1, ζ2) = Γ(ζ2, ζ1) for all ζ1, ζ2,∈ D⋆,

(3) Γ(ζ1,Γ(ζ2, ζ3)) = Γ(Γ(ζ1, ζ2), ζ3) for all ζ1, ζ2, ζ3 ∈ D⋆,

(4) ζ1 ≤D⋆ η1 and ζ2 ≤D⋆ η2 implies Γ(ζ1, ζ2) ≤D⋆ Γ(η1, η2) for all ζ1, ζ2, η1, η2 ∈ D⋆.

Definition 2.6. [39] A mapping Γ : D⋆ ×D⋆ −→ D⋆ is said to be a neutrosophic t-conorm

on D⋆ if it adheres to the following conditions:

(1) Γ(ζ, 0D⋆) = ζ for all ζ ∈ D⋆,

(2) Γ(ζ1, ζ2) = Γ(ζ2, ζ1) for all ζ1, ζ2,∈ D⋆,

(3) Γ(ζ1,Γ(ζ2, ζ3)) = Γ(Γ(ζ1, ζ2), ζ3) for all ζ1, ζ2, ζ3 ∈ D⋆,

(4) ζ1 ≤D⋆ η1 and ζ2 ≤D⋆ η2 implies Γ(ζ1, ζ2) ≤D⋆ Γ(η1, η2) for all ζ1, ζ2, η1, η2 ∈ D⋆.

Definition 2.7. [39] A continuous neutrosophic t-norm Γ defined on D⋆ is classified as con-

tinuous t-representable if there exists both a continuous t-norm denoted by ∗ and a continuous

t-conorm represented by ⋄ on the interval [0, 1] such that,

Γ(ζ, η) =
(
ζ1 ∗ η1, ζ2 ⋄ η2, ζ3 ⋄ η3

)
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1, ζ2, ζ3), η = (η1, η2, η3) ∈ D⋆.

For example, Γ(ζ, η) =
(
ζ1η1, min

{
ζ2 + η2, 1

}
, min

{
ζ2 + η2, 1

})
for all ζ = (ζ1, ζ2, ζ3), η =

(η1, η2, η3) ∈ D⋆, is a continuous t-representable norm.

Definition 2.8. [18] Let Ψ, Φ and Π are fuzzy sets from U × (0,∞) to [0, 1] such that

0 ≤ Ψ(u, r) + Φ(u, r) + Π(u, r) ≤ 3 for all u ∈ U and r > 0. The tuple (U, IΨ,Φ,Π,Γ) is

called neutrosophic normed space (NNS ) if U is a linear space over F (R or C), Γ is continuous

t-representable norm and IΨ,Φ,Π : U × (0,∞) −→ D⋆ is a mapping such that for all u, v ∈ U

and r, s > 0 the following conditions hold:

(a) IΨ,Φ,Π(u, r) >D⋆ 0D⋆ ,

(b) IΨ,Φ,Π(u, r) = 1D⋆ if and only if u = 0,

(c) IΨ,Φ,Π(au, r) = IΨ,Φ,Π

(
u, r

|a|
)
for any 0 ̸= a ∈ F ,

(d) Γ(IΨ,Φ,Π(u, r), IΨ,Φ,Π(v, s)) ≤D⋆ IΨ,Φ,Π(u+ v, r + s),

(e) IΨ,Φ,Π(u, .) : (0,∞) −→ D⋆ is continuous,

(f) lim
r→∞

IΨ,Φ,Π(u, r) = 1D⋆ and lim
r→0

IΨ,Φ,Π(u, r) = 0D⋆ .

Here, IΨ,Φ,Π is referred to as the neutrosophic norm (NN ) on U and

IΨ,Φ,Π(u, r) =
(
Ψ(u, r),Φ(u, r),Π(u, r)

)
Example 2.9. Let (X, ||.||) be a normed linear space and let Γ(ζ, η) =

(
ζ1η1, min

{
ζ2 +

η2, 1
}
, min

{
ζ2 + η2, 1

})
for all ζ = (ζ1, ζ2, ζ3), η = (η1, η2, η3) ∈ D⋆. Now let Ψ, Φ and Π are

fuzzy sets from X × (0,∞) to [0, 1] and define,

IΨ,Φ,Π(u, r) =
(
Ψ(u, r),Φ(u, r),Π(u, r)

)
=

( r

r + ||u||
,

||u||
r + ||u||

,
||u||
r

)
for all u ∈ Uand r > 0 then (U, IΨ,Φ,Π,Γ) is neutrosophic normed space.

Definition 2.10. Consider (U, IΨ,Φ,Π,Γ) as a NNS . The open ball centered at u ∈ U of radius

r > 0 with respect to ζ ∈ (0, 1) is the set

Bu(r, ζ) =

{
v ∈ U : IΨ,Φ,Π(u− v, r) >D⋆ (1− ζ, ζ, ζ)

}
.

Consider the set

TIΨ,Φ,Π
=

{
P ⊂ U : for any u ∈ P , there exist

ζ ∈ (0, 1) and r > 0 so that Bu(r, ζ) ⊆ P

}
.

Then TIΨ,Φ,Π
defines a topology on X, induced by IΨ,Φ,Π and the collection{

Bx(r, ζ) : x ∈ X, r > 0, ζ ∈ (0, 1)

}

for all ζ = (ζ
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IΨ,Φ,Π
on U .

Definition 2.11. Consider (U, IΨ,Φ,Π,Γ) as a NNS . A sequence (un)
∞
n=1 in U is termed as

Cauchy if for any r > 0 and ζ ∈ (0, 1), there exists n0 ∈ N such that IΨ,Φ,Π(un − um, r) >

D⋆(1 − ζ, ζ, ζ) for each m,n ≥ n0. Additionally, the sequence (un)
∞
n=1 in U is termed as

convergent to u ∈ U if lim
n→∞

IΨ,Φ,Π(un − u, r) = 1D⋆ for every r > 0. In this scenario, we

denote the limit as IΨ,Φ,Π − lim
n∈N

un = u.

Definition 2.12. Consider (U, IΨ,Φ,Π,Γ) as a NNS . A sequence (un)
∞
n=1 in U is termed as

statistically convergent to some u ∈ U with respect to IΨ,Φ,Π if, for every ζ ∈ (0, 1) and r > 0,

δ
{
k ∈ N : IΨ,Φ,Π(uk − u, s) ̸>D⋆ (1− ζ, ζ, ζ)

}
= 0,

or equivalently

δ
{
k ∈ N : IΨ,Φ,Π(uk − u, r) >D⋆ (1− ζ, ζ, ζ)

}
= 1.

We write the limit as IstΨ,Φ,Π − lim
n∈N

un = u.

3. Main Results

Within this section, we present the concepts of statistical graph convergence and statistical

pointwise convergence pertaining to sequences of set-valued functions originating from one

neutrosophic normed space and extending to another.

Let’s characterize the collections of subsets of N in the following manner:

M = {M ⊆ N : δ(M) = 1};

M ∗ = {M ′ ⊆ N : δ(M ′) ̸= 0}.

Consider (U, IΨ1,Φ1,Π1 ,Γ) and (V,IΨ2,Φ2,Π2 ,Γ) as two NNSs with respect to NNs IΨ1,Φ1,Π1 and

IΨ2,Φ2,Π2 , respectively, where U and V are linear spaces over the field of R. Let

D =
{
φ | φ : U −→ P (V ) is a set valued function

}
(1)

is the collection of all set - valued functions from (U, IΨ1,Φ1,Π1 ,Γ) to (V,IΨ2,Φ2,Π2 ,Γ). Now we

are going to introduce some definitions:

Definition 3.1. Consider (φn)
∞
n=1 as a sequence in D. The statistical pointwise lower limit

and statistical pointwise upper limit of (φn)
∞
n=1, denoted by stp−φl

n and stp−φu
n, respectively,

are the set - valued functions from (U, IΨ1,Φ1,Π1 ,Γ) to (V,IΨ2,Φ2,Π2
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(
stp − φl

n

)
(u) =

{
w ∈ V | there exist M ∈ M and

wn ∈ φn(u)(n ∈ M) such that

IΨ2,Φ2,Π2 − lim
n∈M

wn = w

}
.

(2)

and (
stp − φu

n

)
(u) =

{
v ∈ V | there exist M ′ ∈ M ∗ and

vn ∈ φn(u)(n ∈ M ′) such that

IΨ2,Φ2,Π2 − lim
n∈M ′

vn = v

} (3)

Definition 3.2. Consider (φn)
∞
n=1 as a sequence in D. The statistical graphical lower limit of

(φn)
∞
n=1, denoted by stg−φl

n, is a set - valued function from (U, IΨ1,Φ1,Π1 ,Γ) to (V,IΨ2,Φ2,Π2 ,Γ)

with its graph Gr
(
stg − φl

n

)
such that for each u ∈ U ,

(
stg − φl

n

)
(u) =

{
w ∈ V | there exists M ∈ M :

IΨ1,Φ1,Π1 − lim
n∈M

un = u,

IΨ2,Φ2,Π2 − lim
n∈M

wn = w,wn ∈ φn(un)

}
.

(4)

and the statistical graphical uper limit, denoted by stg −φu
n, is a set - valued function from

(U, IΨ1,Φ1,Π1 ,Γ) to (V,IΨ2,Φ2,Π2 ,Γ) with its graph Gr
(
stg − φu

n

)
such that for each u ∈ U ,

(
stg − φu

n

)
(u) =

{
v ∈ V | there exists M ′ ∈ M ∗ :

IΨ1,Φ1,Π1 − lim
n∈M ′

un = u,

IΨ2,Φ2,Π2 − lim
n∈M ′

vn = v, vn ∈ φn(un)

} (5)

Remark 3.3. From Definition 3.1 and Definition 3.2, it is clear that (stp−φl
n)(u), (stp−φu

n)(u),(
stg −φl

n

)
(u) and

(
stg −φu

n

)
(u) are closed subsets of V , for every u ∈ U . Since M ⊂ M ∗, we

get

stp − φl
n ⊆ stp − φu

n and stg − φl
n ⊆ stg − φu

n. (6)

Now, we itntroduce the definitions of statistical graph convergence and statistical pointwise

convergence of a sequence (φn)
∞
n=1
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Ψ1,Φ1,Π1 ,Γ) and (V,IΨ2,Φ2,Π2 ,Γ) as two NNSs and (φn)
∞
n=1 be

a sequence in D. Then (φn)
∞
n=1 is termed as statistically pointwise convergent, if there exists

φ ∈ D such that (
stp − φu

n

)
(u) =

(
stp − φl

n

)
(u) = φ(u), ∀u ∈ U

.

In such an instance, φ is termed as the statistical pointwise limit of the sequence (φn)
∞
n=1,

denoted by st− lim
n

φn(u) = φ(u), ∀u ∈ U .

Definition 3.5. Consider (X, IΨ1,Φ1,Π1 , T ) and (Y,IΨ2,Φ2,Π2 , T ) as two NNSs and (φn)
∞
n=1 be

a sequence in D. Then (φn)
∞
n=1 is termed as statistically graph convergent to some φ ∈ D or

Gr(φn) is statistically convergent to Gr(φ), if

Gr
(
stg − φu

n

)
= Gr

(
stg − φl

n

)
= Gr(φ).

In such an instance, φ is termed as the statistical graphical limit of the sequence (φn)
∞
n=1,

denoted by st− lim
n

Gr(φn) = Gr(φ).

Definition 3.6. Consider (U, IΨ1,Φ1,Π1 ,Γ) and (V,IΨ2,Φ2,Π2 ,Γ) as two NNSs . A sequence

(φn)
∞
n=1 inD is termed as statistically pointwise bounded if both

(
stp−φu

n

)
(u) and

(
stp−φl

n

)
(u)

exist for each u ∈ U .

For a sequence of real or complex numbers to converge in the ordinary sense, it must be

bounded. Similarly, we observe that for a sequence (φn)
∞
n=1 in D to be statistically graph

convergent, it must be statistically bounded in terms of the graph. However, it’s important

to note that statistical boundedness alone is not adequate for statistical graph convergence.

Consequently, we introduce the definition of statistical graph boundedness for (φn)
∞
n=1 as

follows.

Definition 3.7. Consider (U, IΨ1,Φ1,Π1 ,Γ) and (V,IΨ2,Φ2,Π2 ,Γ) as two NNSs . A sequence

(φn)
∞
n=1 in D is termed as statistically graph bounded if both Gr

(
stg −φu

n

)
and Gr

(
stg −φl

n

)
exist .

Remark 3.8. Consider (U, IΨ1,Φ1,Π1 ,Γ) and (V,IΨ2,Φ2,Π2 ,Γ) as two NNSs and let (φn)
∞
n=1

represent an infinite sequence in D. Assuming M equals Mf and M ∗ equals M∞, the con-

cepts of statistical pointwise limits and statistical graphical limits of (φn)
∞
n=1 correspond to

the pointwise limits and graphical limits of the same sequence. Under these conditions, the

statistical pointwise convergence of (φn)
∞
n=1 aligns with its pointwise convergence, and the

statistical graph convergence of (φn)
∞
n=1 aligns with its graph convergence.

Definition 3.4. Consider (U, I

Neutrosophic Sets and Systems, Vol. 73, 2024         290

Vakeel A. Khan, Mohd Kamran, Topological Aspects of Set-Valued Mappings Defned onNeutrosophic
normed spaces



Ψ1,Φ1,Π1 ,Γ) and (V,IΨ2,Φ2,Π2 ,Γ) as two NNSs . Suppose (φn)
∞
n=1

and (Ωn)
∞
n=1 are two sequences in D such that (φn)

∞
n=1 and (Ωn)

∞
n=1 are pointwise convergent

and graph convergent, respectively. Then (φn)
∞
n=1 and (Ωn)

∞
n=1 are statistically pointwise con-

vergent and statistically graph convergent, respectively.

Proof. It is evident that Mf ⊂ M and M ∗ ⊂ M∞.

Suppose (φn)
∞
n=1 be a sequence in D . Then

p− φl
n ⊂ stp − φl

n and

stp − φu
n ⊂ p− φu

n.

Hence, by (6), we get

p− φl
n ⊂ stp − φl

n ⊆ stp − φu
n ⊂ p− φu

n.

Let (φn)
∞
n=1 is pointwise convergent. Then

(p− φl
n)(u) = (p− φu

n)(u) ∀u ∈ U.

Therefore

(stp − φl
n)(u) = (stp − φu

n)(u) ∀u ∈ U.

Thus, (φn)
∞
n=1 is statistically pointwise convergent.

Let (Ωn)
∞
n=1 be a sequence in D such that (Ωn)

∞
n=1 is graph convergent. Similarly, it can be

seen that (Ωn)
∞
n=1 is statistically graph convergent.

The converse of the Theorem 3.9 is not necessarily true. To illustrate this, let’s consider

the following example:

Example 3.10. Consider Γ(ζ, η) =
(
ζ1η1, min(ζ2 + η2, 1),min(ζ3 + η3, 1)

)
for all ζ =

(ζ1, ζ2, ζ3), η = (η1, η2, η3) ∈ D⋆. Define fuzzy sets Ψ, Φ and Π on R× (0,∞) by

Ψ(u, s) = e

(
− |u|

s

)
, Φ(u, s) = 1− e

(
− |u|

s

)
and Π(u, s) = 1− e

(
− |u|

s

)
for every u ∈ R and for all s ∈ (0,∞). Then (R, IΨ,Φ,Π,Γ) is a NNS , where IΨ,Φ,Π(u, s) =(
Ψ(u, s),Φ(u, s),Π(u, s)

)
.

Now define φn : R −→ P (R) by

φn(u) =

 [0, 12 ], if n = p

[−1
2 , 0], if n ̸= p

p is prime.

for each u ∈ R.
Then (

stp − φu
n

)
(u) =

(
stp − φl

n

)
(u) =

[
− 1

2
, 0
]

Theorem 3.9. Consider (U, I
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Also,

Gr
(
stg − φu

n

)
=Gr

(
stg − φl

n

)
=

{
(u, v) : u ∈ R,−1

2
≤ v ≤ 0

}
.

Thus, (φn)
∞
n=1 is both statistically pointwise convergent and statistically graph convergent.

However, on the other hand,

(p− φu
n)(u) =

[
− 1

2
,
1

2

]
and (p− φl

n)(u) = {0}

for each u ∈ R. Thus (φn)
∞
n=1 is not a pointwise convergent sequence. Also,

Gr(φu
n) =

{
(u, v) : u ∈ R,−1

2
≤ v ≤ 1

2

}
but Gr(φl

n), the graphical lower limit of (φn)
∞
n=1 does not exist. Hence (φn)

∞
n=1 is not a graph

convergent sequence.

Theorem 3.11. Consider (U, IΨ1,Φ1,Π1 ,Γ) and (V,IΨ2,Φ2,Π2 ,Γ) as two NNSs . Assume (φn)
∞
n=1

and (Ωn)
∞
n=1 are two sequences in D such that st − lim

n
φn(u) = φ(u) for each u ∈ U and

st− lim
n

Gr(Ωn) = Gr(Ω). Then φ and Ω are unique.

Proof. Let, ∃ Ω0 ∈ D such that

st− lim
n

Gr(Ωn) = Gr(Ω0)

. Then

Gr
(
stg − Ωu

n

)
= Gr

(
stg − Ωl

n

)
= Gr(Ω0) = Gr(Ω).

Hence Ω = Ω0. Similarly, it can be easily seen that pointwise limit is also unique.

Proposition 3.12. Consider (U, IΨ1,Φ1,Π1 ,Γ) and (V,IΨ2,Φ2,Π2 ,Γ) as two NNSs . Assume

(φn)
∞
n=1 and (Ωn)

∞
n=1 are statistically pointwise convergent sequences in D such that st −

lim
n

φn(u) = φ(u) and st − lim
n

Ωn(u) = Ω(u) for each u ∈ U . Then the sum of the sequences

(φn)
∞
n=1 and (Ωn)

∞
n=1 is statistically pointwise convergent with st−lim

n
(φn+Ωn)(u) = (φ+Ω)(u)

for each u ∈ U .

Proof. Let (φn)
∞
n=1 and (Ωn)

∞
n=1 be two sequences in D such that st − lim

n
φn(u) = φ(u) and

st− lim
n

Ωn(u) = Ω(u) for each u ∈ U . Then(
stp − φu

n

)
(u) =

(
stp − φl

n

)
(u) = φ(u), ∀u ∈ U

and (
stp − Ωu

n

)
(u) =

(
stp − Ωl

n

)
(u) = Ω(u), ∀u ∈ U.

for each u ∈ R.
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Let v be an arbitrary element of φ(u). Since
(
stp − φu

n

)
(u) = φ(u), ∀u ∈ U , there exist M ′

1 ∈
M ∗ and vn ∈ φn(u) (n ∈ M ′

1) such that IΨ2,Φ2,Π2 − lim
n∈M ′

1

vn = v. Hence lim
n∈M ′

1

IΨ2,Φ2,Π2(vn −

v, r) = 1D⋆ for every r > 0, i.e.,

lim
n∈M ′

1

Ψ2

(
vn − v,

r

2

)
= 1, lim

n∈M ′
1

Φ2

(
vn − v,

r

2

)
= 0, lim

n∈M ′
1

Π2

(
vn − v,

r

2

)
= 0. (7)

Let w be an arbitrary element of Ω(u). Also,
(
stp − Ωu

n

)
(u) = Ω(u), ∀u ∈ U . Hence,

there exist M ′
2 ∈ M ∗ and wn ∈ Ωn(u)(n ∈ M2) such that IΨ2,Φ2,Π2 − lim

n∈M ′
2

wn = w. Hence

lim
n∈M ′

2

IΨ2,Φ2,Π2(wn − w, r) = 1D⋆ for every r > 0, i.e.,

lim
n∈M ′

2

Ψ2

(
wn − w,

r

2

)
= 1, lim

n∈M ′
2

Φ2

(
wn − w,

r

2

)
= 0, lim

n∈M ′
2

Π2

(
wn − w,

r

2

)
= 0.. (8)

Because
(
stp − φu

n

)
(u) =

(
stp − φl

n

)
(u) and

(
stp − Ωu

n

)
(u) =

(
stp − Ωl

n

)
(u), ∀u ∈ U , (7) and

(8) hold for n ∈ M ′
2 and n ∈ M ′

1, respectively. Now, in the choice of M ′
1,M

′
2 ∈ M ∗, we have

the following two possibilities:

(1) M ′
1 ∩M ′

2 = ∅ or δ(M ′
1 ∩M ′

2) = 0.

(2) M ′
1 ∩M ′

2 ∈ M ∗.

If M ′
1 ∩M ′

2 = ∅ or δ(M ′
1 ∩M ′

2) = 0, take M ′ = M ′
1 or M ′ = M ′

2. If M ′
1 ∩M ′

2 ∈ M ∗, put

M ′ = M ′
1 ∩M ′

2. Thus for n ∈ M ′, we get

Ψ2

(
(vn + wn)− (v + w), r

)
= Ψ2

(
(vn − v) + (wn − w), r

)
≥ Ψ2

(
vn − v,

r

2

)
∗Ψ2

(
wn − w,

r

2

)
.

Thus

lim
n∈M ′

Ψ2

(
(vn + wn)− (v + w), r

)
≥ lim

n∈M ′
Ψ2

(
vn − v,

r

2

)
∗ lim
n∈M ′

φ2

(
wn − w,

r

2

)
= 1 ∗ 1

= 1.
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′,

Φ2

(
(vn + wn)− (v + w), r

)
= Φ2

(
(vn − v) + (wn − w), r

)
≤ Φ2

(
vn − v,

r

2

)
⋄ Φ2

(
wn − w,

r

2

)
.

Hence

lim
n∈M ′

Φ2

(
(vn + wn)− (v + w), r

)
≤ lim

n∈M ′
Φ2

(
vn − v,

r

2

)
⋄ lim
n∈M ′

Φ2

(
wn − w,

r

2

)
= 0 ∗ 0

= 0.

Similarly, for n ∈ M ′,

Π2

(
(vn + wn)− (v + w), r

)
= Π2

(
(vn − v) + (wn − w), r

)
≤ Π2

(
vn − v,

r

2

)
⋄Π2

(
wn − w,

r

2

)
.

Hence

lim
n∈M ′

Π2

(
(vn + wn)− (v + w), r

)
≤ lim

n∈M ′
Π2

(
vn − v,

r

2

)
⋄ lim
n∈M ′

Π2

(
wn − w,

r

2

)
= 0 ∗ 0

= 0.

Thus lim
n∈M ′

IΨ2,Φ2,Π2

(
(vn + wn)− (v + w), r

)
= 1D⋆ for every r > 0 and hence

(
stp −

(
φn +Ωn

)u)
(u) =

(
φ+Ω

)
(u), ∀u ∈ U.

Again, since
(
stp − φl

n

)
(u) = φ(u) for each u ∈ U and v ∈ φ(u), there exist M1 ∈ M and

cn ∈ φn(u) (n ∈ M1) such that IΨ2,Φ2,Π2 − lim
n∈M1

cn = v, i.e., for every s > 0,

lim
n∈M1

Ψ2

(
cn − v,

s

2

)
= 1, lim

n∈M1

Φ2

(
cn − v,

s

2

)
= 0, lim

n∈M1

Π2

(
cn − v,

s

2

)
= 0.

Also for n ∈ M
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Also,
(
stp − Ωl

n

)
(u) = Ω(u) for each u ∈ U and w ∈ Ω(u). Hence, there exist M2 ∈ M and

dn ∈ Ωn(x)(n ∈ M2) such that IΨ2,Φ2,Π2 − lim
n∈M2

dn = w, i.e.,

lim
n∈M2

Ψ2

(
dn − w,

s

2

)
= 1, lim

n∈M2

Φ2

(
dn − w,

s

2

)
= 0, lim

n∈M2

Π2

(
dn − w,

s

2

)
= 0,

for every s > 0. Put M = M1 ∩M2. Clearly, M ∈ M . Then, similar to above, for every s > 0

and n ∈ M , we have

lim
n∈M

Ψ2

(
(cn + dn)− (v + w), s

)
= 1,

lim
n∈M

Φ2

(
(cn + dn)− (v + w), s

)
= 0,

lim
n∈M

ϕ2

(
(cn + dn)− (v + w), s

)
= 0

and thus lim
n∈M

IΨ2,Φ2,Π2

(
(cn + dn) − (v + w), s

)
= 1D⋆ for every s > 0. Since v and w are

arbitrary members of φ(u) and Ω(u), respectively, we get(
stp −

(
φn +Ωn

)l)
(u) =

(
φ+Ω

)
(u), ∀u ∈ U.

Therefore the sum of the sequence (φn)
∞
n=1 and (Ωn)

∞
n=1 is statistically pointwise convergent

with st− lim
n
(φn +Ωn)(u) = (φ+Ω)(u) for each u ∈ U .

Lemma 3.13. consider (U, IΨ1,Φ1,ϕ2 ,Γ) and (V,IΨ2,Φ2,Π2 ,Γ) as two NNSs . Suppose (φn)
∞
n=1

is a sequence in D. Then the following hold:

(1)
⋃

u∈U
{u} ×

(
stp − φl

n

)
(u) ⊆ Gr

(
stg − φl

n

)
,

(2)
⋃

u∈U
{u} ×

(
stp − φu

n

)
(u) ⊆ Gr

(
stg − φu

n

)
.

Proof. Part (1) , let u ∈ U and v ∈
(
stp − φl

n

)
(u). Then there exist M ∈ M and vn ∈

φn(u) (n ∈ M) such that IΨ2,Φ2,Π2 − lim
n∈M

vn = v, i.e.,

lim
n∈M

IΨ2,Φ2,Π2(vn − v, r) = 1D⋆ , for every r > 0. (9)

Now, consider the constant sequence (un)
∞
n=1 = {u} in U. Then IΨ1,Φ1,Π1 − lim

n∈M
un = u, i.e.,

for every r > 0,

lim
n∈M

IΨ1,Φ1,Π1(un − u, r) = 1D⋆ .

Thus, vn ∈ φn(un) = φn(u) (n ∈ M) satisfies (9). Therefore v ∈
(
stg − φl

n

)
(u) and hence

(u, v) ∈ Gr
(
stg − φl

n

)
.

Similarly, part (2) can be proved.
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Ψ1,Φ1,Π1 ,Γ) and (V,IΨ2,Φ2,Π2 ,Γ) as two NNSs and (φn)
∞
n=1 be

a sequence in D. If statistical pointwise limit φ and statistical graphical limit Ω of (φn)
∞
n=1

both exist, then for all elements u in U , it follows that φ(u) is a subset of Ω(u).

It is being established that the presence of a statistical pointwise limit for a sequence (φn)
∞
n=1

in D does not guarantee the existence of the statistical graphical limit, and vice versa. Even

in cases where both limits exist, they may not be directly comparable. However, there exists

a specific condition under which these limits coincide. To formalize this, we introduce the

following theorem:

Theorem 3.15. Consider (U, IΨ1,Φ1,Π1 ,Γ) and (V,IΨ2,Φ2,Π2 ,Γ) as two NNSs . Let IΨ1,Φ1,Π1

induces the discrete topology TIΨ1,Φ1,Π1
on U . Then a sequence (φn)

∞
n=1 in D is statistically

pointwise convergent if and only if it is statistically graph convergent and both the statistical

pointwise limit and the statistical graphical limit of (φn)
∞
n=1 are equivalent.

Proof. Let (φn)
∞
n=1 ∈ D such that (φn)

∞
n=1 is statistically pointwise convergent. Then there

exists φ ∈ D such that (
stp − φu

n

)
(u) =

(
stp − φl

n

)
(u) = φ(u), ∀u ∈ U.

Thus, by using part (1) of Lemma 3.13, we obtain

Gr(φ) ⊂ Gr
(
stg − φl

n

)
. (10)

Now we claim to show that Gr
(
stg − φu

n

)
⊂ Gr(φ).

Let (u, v) ∈ Gr
(
stg −φu

n

)
. Hence v ∈

(
stg − φu

n

)
(u). Then, there exists M ′ ∈ M ∗ such that

IΨ1,Φ1,Π1 − lim
n∈M ′

un = u and IΨ2,Φ2,Π2 − lim
n∈M ′

vn = v for vn ∈ φn(un). Since TIΨ1,Φ1,Π1
is the

discrete topology on U , we have un = u and φn(un) = φn(u), for all n ∈ M ′. This implies

that v ∈
(
stp − φu

n)(u) = φ(u). Thus (u, v) ∈ Gr(φ) and hence

Gr
(
stg − φu

n

)
⊂ Gr(φ). (11)

Consequently, by (10) and (11), we obtain

Gr
(
stg − φl

n

)
= Gr

(
stg − φu

n

)
= Gr(φ).

Thus the sequence (φn)
∞
n=1 is statistically graph convergent with st− lim

n
Gr(φn) = Gr(φ).

Conversely, suppose that (φn)
∞
n=1 is statistically graph convergent. Then there exists φ ∈ D

such that

Gr
(
stg − φu

n

)
= Gr

(
stg − φl

n

)
= Gr(φ).

Now, by using part (2) of Lemma 3.13, we obtain(
stp − φu

n

)
(u) ⊂ φ(u), ∀u ∈ U. (12)

Corollary 3.14. Consider (U, I
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Now we claim to show that φ(u) ⊂
(
stp − φl

n

)
(u), ∀u ∈ U .

Let w ∈ φ(u). Then (u,w) ∈ Gr(φ) = Gr
(
stg − φl

n

)
. Hence, there exists M ∈ M such

that IΨ1,Φ1,Π1 − lim
n∈M

un = u and IΨ2,Φ2,Π2 − lim
n∈M

wn = w for wn ∈ φn(un). Since TIΨ1,Φ1,Π1

is discrete topology on U , we have un = u and φn(un) = φn(u), for all n ∈ M . Therefore,

(u,w) ∈
(
stp − φl

n

)
. Consequently, we get

φ(u) ⊂
(
stp − φl

n

)
(u), ∀u ∈ U. (13)

From (12) and (13), we get(
stp − φl

n

)
(u) =

(
stp − φl

u

)
(u) = φ(u), ∀u ∈ U.

Thus (φn)
∞
n=1 is statistically pointwise convergent with st− lim

n
φ(u) = φ(u) for each u ∈ U .

Within D, there exist specific collections of sequences where the statistical graphical limit

differs from the statistical pointwise limit, and conversely. Before delving into such cases, let’s

introduce the concept of semicontinuity of sequences in D as follows:

Definition 3.16. Consider (U, IΨ1,Φ1,Π1 ,Γ) and (V,IΨ2,Φ2,Π2 ,Γ) as two NNSs . A set–valued

function φ : U −→ P (V ) is termed as neutrosophic lower semicontinuous (NLSC ) at u0 ∈ U if

and only if for any r > 0, ζ ∈ (0, 1) and v ∈ V with Bv(r, ζ) in V such that φ(u0)∩Bv(r, ζ) ̸= ∅,
there exists Bu0(r

0, ζ0) in U for some r0 > 0 and ζ0 ∈ (0, 1) such that φ(w) ∩ Bv(r, ζ) ̸= ∅, for
each w ∈ Bu0(r

0, ζ0).

The set–valued function φ : U −→ P (V ) is called NLSC on U , if it is NLSC at every u ∈ U .

Definition 3.17. Consider (U, IΨ1,Φ1,Π1 ,Γ) and (V,IΨ2,Φ2,Π2 ,Γ) as two NNSs . A set–valued

function φ : U −→ P (V ) is termed as neutrosophic upper semicontinuous (NUSC ) at u0 ∈ U

if and only if for any r > 0 and ζ ∈ (0, 1) with Bφ(u0)(r, ζ) in V , there exists Bu0(r
0, ζ0) in U

for some r0 > 0 and ζ0 ∈ (0, 1) such that

φ
(
Bu0(r

0, ζ0)
)
=

⋃
w∈Bu0 (r

0,ζ0)

φ(w) ⊆ Bφ(u0)(r, ζ).

The set–valued function φ : U −→ P (V ) is called NUSC on U , if it is NUSC at every

u ∈ U .

Definition 3.18. Consider (U, IΨ1,Φ1,Π1 ,Γ) and (V,IΨ2,Φ2,Π2 ,Γ) as two NNSs
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Ψ,Φ,Π,Γ) as a NNS and C ⊂ U . Then the statistical closure

of set C with respect to IΨ,Φ,Π denoted by Cst, is defined as

Cst =

{
L ∈ U | there exist M ∈ M and (un) in E

such that IΨ,Φ,Π − lim
n∈N

xn = L
}
.

We define C as a statistically closed subset of U if C coincides with its statistical closure,

denoted as Cst. It’s evident that every closed subset of U is also statistically closed.

For any two topological spaces U and V , we denote C(U,P (V )) as the collection of all

continuous set–valued functions from U to V with closed values.

Theorem 3.20. Consider (U, IΨ1,Φ1,Π1 ,Γ) and (V,IΨ2,Φ2,Π2 ,Γ) as two NNSs such that

IΨ1,Φ1,Π1 induces the non–discrete topology TIΨ1,Φ1,Π1
on U and C

(
[0, 1], P (V )

)
is non–trivial,

where [0, 1] is equipped with the usual topology. Then there exists {φ,φn : n ∈ N} ∈ C(U,P (V ))

such that st− lim
n

φn(u) = φ(u) for each u ∈ U but st− lim
n

Gr(φn) ̸= Gr(φ).

Proof. Consider u0 ∈ U be a non–isolated point. Then for every neighborhood Bu0 of u0 in U ,

we have Bu0 ̸= {u0}. Without loss of generality, consider the countable collection

Bu0 =

{
Bj
u0

: Bj
u0

= Bu0

(
1

j
,
1

j

)
: j ∈ N

}
of neighborhoods of u0 in U . For fixed j ∈ N, choose Bj

u0 ∈ Bu0 and let uj ∈ Bj
u0 such that

uj ̸= u0. Since
(
U, TIΨ1,Φ1,Π1

)
is completely regular Hausdorff space, there exists a continuous

function fj : U −→ [0, 1] corresponding to Bj
u0 such that fj(uj) = 1 and

fj(u) = 0, for all u ∈ (Bj
u0
)c
⋃

{u0}.

As C
(
[0, 1], P (V )

)
is non–trivial, there exists h ∈ C

(
[0, 1], P (V )

)
such that h(1) ̸= h(0). There-

fore, for every j ∈ N, φj = h ◦ fj ∈ C
(
U,P (V )

)
. Thus, the sequence

{
φj : Bj

u0 ∈ Bu0 , j ∈ N
}

belongs to C
(
U,P (V )

)
. Let u ∈ U be arbitrary. If u = u0 or u /∈ Bj

u0 for all j ∈ N, then

Fj(u) = h(fj(u)) = h(0), for all j.

If u ̸= u0 or u ∈ Bj
u0 for some fixed j ∈ N, then there is M1 ∈ M such that

φn(u) = h(fn(u)) = h(0), for all n ∈ M1.

Take φ(u) = h(0) for each u ∈ U . Hence the sequence
{
φj : Bj

u0 ∈ Bu0 , j ∈ N
}
statistically

pointwise convergent with st− lim
j

φj(u) = φ(u) for each u ∈ U .

Alternatively, let uj ∈ Bj
u0 such that uj ̸= u0 for every j ∈ N. Consequently, there exists

M2 ∈ M such that IΨ1,Φ1,Π1 − lim
j∈M2

uj = u0 and fj(uj) = 1 for each j. This implies φj(uj) =

Definition 3.19. Consider (U, I
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j , v) ∈ Gr(φj) for every j, and (u0, v) ∈
Gr(stg − φl

j) \Gr(φ). Consequently, st− lim
j

Gr(φj) ̸= Gr(φ).

Theorem 3.21. Consider (U, IΨ1,Φ1,Π1 ,Γ) and (V,IΨ2,Φ2,Π2 ,Γ) as two NNSs such that

IΨ1,Φ1,Π1 induces the non–discrete topology TIΨ1,Φ1,Π1
on U and C

(
[0, 1], P (V )

)
is non–trivial,

where [0, 1] is equipped with the usual topology. Then there exists {φ,φn : n ∈ N} ∈ C(U,P (V ))

such that st− lim
n

Gr(φn) = Gr(φ) but st− lim
n

φn(u) ̸= φ(u) for each u ∈ U .

Proof. let u0 ∈ U be a non–isolated point and h1 ∈ C([0, 1], P (V )) such that h1(1) ̸= h1(0).

Then there exist a non constant sequence (un)
∞
n=1 in U and M ∈ M such that IΨ1,Φ1,Π1 −

lim
n∈M

un = u0. Now define h2 : [0, 1] −→ P (V ) by

h2(ζ) =
⋃
η≤ζ

h1(η), ζ ∈ [0, 1].

It is certain that h2 ∈ C([0, 1], P (V )) and h2(1) ̸= h2(0). Now, for every ζ ∈ [0, 1], we have

h2(ζ) ⊂ h2(1). let r > 0 and u ∈ U . Set ζ = φ1(u − u0, r) and ζn = φ1(un − u0, r). Clearly,

for each n ∈ N, ζn+1 ≥ ζn and lim
n∈M

ζn = 1. Now define the set–valued functions φ, φn from U

to V as follows:

φn(u) =

 h2

(
1−ζ
1−ζn

× ζn
ζ

)
, if ζ > ζn,

h2(1), if ζn ≥ ζ,

n ∈ N

φ(u) = h2(1), for all u ∈ U.

From the definition of h2, it is clear that {φ,φn : n ∈ N} ∈ C(U,P (V )). Let (u1, v1) ∈ Gr
(
stg−

φu
n

)
. Then, there exists M ′ ∈ M ∗ such that IΨ1,Φ1,Π1− lim

n∈M ′
u

′
n = u1 and IΨ2,Φ2,Π2− lim

n∈M ′
v
′
n =

v1 for v
′
n ∈ φn(u

′
n) = h2(1). Hence IΨ2,Φ2,Π2 − lim

n∈M ′
v
′
n = v1 for v

′
n ∈ φ(u1). Since Gr(φ) is

closed, we get v1 ∈ φ(u1) and thus (u1, v1) ∈ Gr(φ). Therefore,

Gr
(
stg − φu

n

)
⊂ Gr(φ). (14)

Now, let (u2, v2) ∈ Gr(φ). Hence v2 ∈ φ(u2) = h2(1). If u2 = u0, then IΨ1,Φ1,Π1− lim
n∈M

un = u2

and φn(un) = h2(1), for all n ∈ M . Since h2(1) is closed and hence statistically closed,

there exists vn ∈ h2(1) = φn(un) such that IΨ2,Φ2,Π2 − lim
n∈N

vn = v2. If u2 ̸= u0, there

exist N ∈ M and a sequence (u
′′
n)

∞
n=1 in U and such that IΨ1,Φ1,Π1 − lim

n∈N
u

′′
n = u2 and

IΨ2,Φ2,Π2 − lim
n∈N

v
′′
n = h2(1) for v

′′
n ∈ φn(u

′′
n). Since v2 ∈ h2(1), we get (u2, v2) ∈ Gr(stg − φl

n).

Hence

Gr(φ) ⊂ Gr(stg − φl
n) (15)

From (14) and (15), we get st− lim
n

Gr(φn) = Gr(φ).

Alternatively, φn(u0) = h2(0) ̸= h2(1), for every n ∈ N. Thus st− lim
n

φn(u0) ̸= φ(u0

h(1) for every j. Suppose v ∈ h(1) \ h(0). Then (u
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Hence proof of the theorem is completed.
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This articles introduces the concepts of statistical pointwise and statistical graphical limits

of sequences of set–valued functions defined from a neutrosophic normed space to another,

certan theorems about statistical point wise and statistical graphical covergence are proved

and lastly the idea of neutrosophic upper and lower semi continuities of set valued maps is

given and used to develop link between these convergences.
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