
Abstract. In this paper Minimal Strong Component (MSC) of a Fuzzy Neutrosophic Soft Matrix (FNSM)

is suggested. By employing the connection of periodicity behaviours of FNSM with its cut matrices, the peri-

odicity of power sequence of FNSM is described. Especially the concepts of MSC is given and the periodicity

of a FNSM by its (Theorem-4.10) on the basis of the above results, the greatest value max
∑

li=n

= [li] of the

periodicity of all SFNSM for a given positive integer n is obtained. So in a case we have clearly resolved the

problem of the greatest value of all periodicity FNSM for a given positive integer n.

Keywords: Fuzzy Neutrosophic Soft Matrix (FNSM), Minimal Strong Component (MSC), Cut Fuzzy Neu-

trosophic Soft Matrix (CFNSM), Periodicity of Fuzzy Neutrosophic Soft Matrices (PFNSMs)

—————————————————————————————————————————-

1. Introduction

The models of real-life problems in almost every field of science like mathematics, physics,

operations research, medical sciences, engineering, computer science, artificial intelligence, and

management sciences are mostly full of complexities. Many theories have been developed to

overcome these uncertainties; one among those theories is fuzzy set theory. Zadeh [1] was the

first who gave the concept of a Fuzzy Set (FS) are the generalizations or extensions of crisps

sets.

In order to add the concept of nonmembership term to the idea of FS, the concept of an

Intuitionistic Fuzzy Set (IFS) was introduced by Atanassov in [2], where he added the thought

of nonmembership term to the definition of FS. The IFS is characterized by a membership

function µ and a nonmembership function η with ranges [0,1]. The IFS is the generalization
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of a FS. An IFS can be applied in several fields including modeling, medical diagnosis, and

decision-making. In [3] Molodtsov introduced the concept of a Soft Set SS and developed

the fundamental results related to this theory. Basic operations including complement, union,

and intersection are also defined on this set. Also he used SSs for applications in games,

probability, and operational theories. Maji et. al., [4,5] proposed the Fuzzy Soft Sets (FSSs)

and Intuitionistic Fuzzy Soft Set (IFSS) by combining SSs and FSs and applied them in

decision-making problems.

The concept of neutrosophy was introduced by Smarandache in [6]. A Neutrosophic Set

(NS) is characterized by a truth membership function T , an indeterminacy function I, and

a falsity membership function F . A FS is a mathematical framework which generalizes the

concept of a classical set, FS, IFS, and IVFS. Broumi et,al., [7] proposed the generalized

interval neutrosophic soft set and its decision making problem.

Thomason [8] was the first who gave the concept of a Fuzzy Matrix FM. He discussed

the convergence of powers of FM, its play a vital role in scientific development. And he also

pointed out that the powers of a FM either converge or oscillate with a finite period. Li [9,10]

discussed the periodicity and index of fuzzy matrices in the general case. In [11] Fan proves

that the periodicity of a FM is the least common multiple (l.c.m.) of periodicity of its cut

matrices, and the index of a fuzzy matrix is not greater than the maximum index of its cut

matrices. It is also shown that the periodicity set of the power sequences of FMs of order n is

not bounded from above by a power of n for all integers n. Liua and Ji [12,13] have discussed the

periodicity of Square Fuzzy Matrices SFMs based on minimal strong components. Atanassov

[14,15] has studied intuitionistic fuzzy index matrix and the index matrix representation of the

intuitionistic fuzzy graphs has been studied. Murugadas et.al., [16] presented the periodicity

of intuitionistic fuzzy matrix. Manoj Bora et.al., [17] introduced the concepts of Intuitionistic

Fuzzy Soft Matrix IFSM theory and its Application in Medical Diagnosis. Arockiarani

and Sumathi [18, 19] proposed Fuzzy Neutrosophic Soft Matrix FNSM and used them in

decision making problems. Kavitha et.al., [20–26] introduced some concepts on priodicity of

interval values, on powers of matrices and convergence of matrices usig the notion of FNSM.

The idea of monotone interval fuzzy neutrosophic soft eigenproblem and convergence of fuzzy

neutrosophic soft circulant matrices are proposed by Murugadas et.al., [27,28]. Uma et.al., [29]

presented the concepts of FNSMs of Type-1 and Type-2.

This paper is organized as follows: In section-2, some basic notions related to this topics

are recalled. Section-3 we, discuss the properties of periodicity and index of FNSM. In

section-4 we, explain the digraph representaion of Strongly Connected SC and Minimal Strong

Components MSC by using SFNSM. Section-5 we can frame the algorithm to find the MSC

of FNSM. Section-6 is for conculusion.
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2. Preliminaries

The following definitions is needed to our study.

Definition 2.1. [6] A Neutrosophic Set NS A on the universe of discourse X is defined as

A = {〈x, TA(x), IA(x), FA(x)〉, x ∈ X}, where T , I,F : X → ]−0, 1+[ and

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+. (2.1)

From philosophical point of view the neutrosophic set takes the value from real standard or non-

standard subsets of ]−0, 1+[. But in real life application especially in Scientific and Engineering

problems it is difficult to use neutrosophic set with value from real standard or non-standard

subset of ]−0, 1+[. Hence we consider the neutrosophic set which takes the value from the

subset of [0, 1]. Therefore we can rewrite equation (2.1) as 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

In short an element ã in the neutrosophic set A, can be written as ã = 〈aT , aI , aF 〉, where aT

denotes degree of truth, aI denotes degree of indeterminacy, aF denotes degree of falsity such

that 0 ≤ aT + aI + aF ≤ 3.

Example 2.2. Assume that the universe of discourse X = {x1, x2, x3} where x1, x2 and x3

characterize the quality, reliability, and the price of the objects. It may be further assumed

that the values of {x1, x2, x3} are in [0, 1] and they are obtained from some investigations of

some experts. The experts may impose their opinion in three components viz; the degree of

goodness, the degree of indeterminacy and the degree of poorness to explain the characteristics

of the objects. Suppose A is a Neutrosophic Set (NS) of X, such that

A = {〈x1, 0.4, 0.5, 0.3〉, 〈x2, 0.7, 0.2, 0.4〉, 〈x3, 0.8, 0.3, 0.4〉} where for x1 the degree of

goodness of quality is 0.4, degree of indeterminacy of quality is 0.5 and degree of falsity of

quality is 0.3 etc.

Definition 2.3. [18] A Fuzzy Neutrosophic Set FNS A on the universe of discourse X

is defined as A = {x, 〈TA(x), IA(x),FA(x)〉, x ∈ X} , where T , I,F : X → [0, 1] and 0 ≤

TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2.4. [3] Let U be the initial universal set and E be a set of parameter. Consider

a non-empty set A,A ⊂ E. Let P (U) denotes the set of all fuzzy neutrosophic sets of U. The

collection (F,A) is termed to be the fuzzy neutrosophic soft set over U, where F is a mapping

given by F : A → P (U). Here after we simply consider A as FNSS over U instead of (F,A).

Definition 2.5. [18] Let U = {c1, c2, ..., cm} be the universal set and E be the set of param-

eters given by E = {e1, e2, ..., em}. Let A ⊂ E. A pair (F,A) be a FNSS over U. Then the

subset of U × E is defined by RA = {(u, e); e ∈ A, u ∈ FA(e)}

which is called a relation form of (FA, E). The membership function, indeterminacy member-

ship function and non membership function are written by
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TRA
: U × E → [0, 1], IRA

: U × E → [0, 1] and FRA
: U × E → [0, 1] where TRA

(u, e) ∈

[0, 1], IRA
(u, e) ∈ [0, 1] and FRA

(u, e) ∈ [0, 1] are the membership value, indeterminacy value

and non membership value respectively of u ∈ U for each e ∈ E.

If [(Tij , Iij , Fij)] = [Tij(ui, ej), Iij(ui, ej) ,Fij(ui, ej)], we define a matrix

[〈Tij , Iij , Fij〉]m×n =




〈T11, I11, F11〉 · · · 〈T1n, I1n, F1n〉

〈T21, I21, F21〉 · · · 〈T2n, I2n, F2n〉
...

...
...

〈Tm1, Im1, Fm1〉 · · · 〈Tmn, Imn, Fmn〉



.

Which is called an m× n FNSM of the FNSS(FA, E) over U.

Definition 2.6. [29] Let A = (〈aTij , aIij , aFij〉), B = 〈(bTij , bIij , bFij〉) ∈ Nm×n. The component

wise addition and component wise multiplication is defined as

A⊕B = (sup{aTij , bTij}, sup{aIij , bIij}, inf{aFij , bFij})

A⊗B = (inf{aTij , bTij}, inf{aIij , bIij}, sup{aFij , bFij})

Definition 2.7. Let A ∈ Nm×n, B ∈ Nn×p, the composition of A and B is defined as

A ◦B =

(
n∑

k=1

(aTik ∧ bTkj),
n∑

k=1

(aIik ∧ bIkj),
n∏

k=1

(aFik ∨ bFkj)

)

equivalently we can write the same as

=

(
n∨

k=1

(aTik ∧ bTkj),
n∨

k=1

(aIik ∧ bIkj),
n∧

k=1

(aFik ∨ bFkj)

)
.

The product A ◦B is defined if and only if the number of columns of A is same as the number

of rows of B. Then A and B are said to be conformable for multiplication. We shall use AB

instead of A ◦B.

Where
∑

(aTik ∧ bTkj) means max-min operation and
n∏

k=1

(aFik ∨ bFkj) means min-max operation.

Throught this paper, we are following this notation and notions [22, 23].

Let R = (〈rTij , r
I
ij , r

F
ij 〉 and P = (〈〈pTij , p

I
ij , p

F
ij〉) with their elements in the unit interval

I = [〈0, 0, 1〉, 〈1, 1, 0〉].

We discuss some definitions and notations.

• R × P = 〈rTij , r
I
ij , r

F
ij 〉 × 〈pTij , p

I
ij , p

F
ij〉 = (

∨n
m=1(〈r

T
ij , r

I
ij , r

F
ij 〉 ∧ 〈pTij , p

I
ij , p

F
ij〉))

• 〈rTij , r
I
ij , r

F
ij 〉

k+1 = 〈rTij , r
I
ij , r

F
ij 〉

k × 〈rTij , r
I
ij , r

F
ij 〉, k = 1, 2, ...

• 〈rTij , r
I
ij , r

F
ij 〉

0 = E , where E is the unit FNSM.

• R ≤ P iff 〈rTij , r
I
ij , r

F
ij 〉 ≤ 〈pTij , p

I
ij , p

F
ij〉 ∀i, j ∈ {1, 2, ..., n},
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• N
+ = {x|x is a positive integer}.

• In the sequence 〈rTij , r
I
ij , r

F
ij 〉, 〈r

T
ij , r

I
ij , r

F
ij 〉

2, 〈rTij , r
I
ij , r

F
ij 〉

3, ..., 〈rTij , r
I
ij , r

F
ij 〉

m, ..., the num-

ber of different matrices is at most ln
2

[here, l is the number of all the different elements

that occure in FNSM 〈rTij , r
I
ij , r

F
ij 〉,] which is neatly finite. Hence, ∃ indices s, t ∈ N

+,

(s 6= t) ∋ 〈rTij , r
I
ij , r

F
ij 〉

s = 〈rTij , r
I
ij , r

F
ij 〉

t.

• Let H = {(s, t)|(〈rTij , r
I
ij , r

F
ij 〉)

s = (〈rTij , r
I
ij , r

F
ij 〉)

t, s 6= t, s, t ∈ N
+};

• D = {d|d = |s− t|, (s, t) ∈ H}.

• By the well ordering property (of natural numbers) D has a least element d.

Clearly, d ≥ 1.

• Let K = {k|〈rTij , r
I
ij , r

F
ij 〉

k = 〈rTij , r
I
ij , r

F
ij 〉

k+d, k ∈ N
+}.

• Truly, K is a nonempty subset of N+. By well-ordering property, K has a least elemant

k(k ≥ 1).

• The following definitions, remarks and lemmas are from [22,23]

• A path in an ordinary directed graph (digraph) is a sequence of distinct vertices

v1, v2, ..., vn ∋ for i = {1, 2, ..., n − 1}, there is a directed edge in the graph from

vi to vi+1.

• A digraph is Strongly Connected (SC) iff for any two vertices vi, vj here vj is reachable

from vi.

• The Strong Components (SC) of a digraph G are those full subgraphs of G that are SC

and are not properly contained in any other SC subgraph of G.

• A cycle in a digraph is a sequence of vertices v1, v2, ..., vn ∋ for

i = {1, 2, ..., r − 1}, there is a directed edge from vi to vi+1 and v1 = vn and all the

other vs are distinct.

Remark 2.8. An ordinary directed graph is really the same as a Boolean Fuzzy Neutrosophic

Soft Matrix BFNSM and the periodicity of oscillation of a BFNSM can be determined from

its corresponding digraph.

Lemma 2.9. The periodicity of a (SC) is the greatest common divisor (g.c.d.) of the lengths

of all cycles in its digraph.

Lemma 2.10. The periodicity of an ordinary digraph is the l.c.m. of the periods of all (SC)

in its graph.

3. Properties on Periodicity and Index

In this section, we give an equivalent definition of periodicity and index of a FNSM.
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Definition 3.1. If (〈rTij , r
I
ij , r

F
ij 〉) is a FNSM, m, s ∈ N

+ and (〈rTij , r
I
ij , r

F
ij 〉)

s+m =

(〈rTij , r
I
ij , r

F
ij 〉)

s, then we say that m is a periodicity of 〈rTij , r
I
ij , r

F
ij 〉, and s starting point of

(〈rTij , r
I
ij , r

F
ij 〉) corresponding to m.

Proposition 3.2. If s is a initial point corresponding to m; then n is also a first point(pt)

corresponding to m ∀n ∈ Z
+, n > s.

Proof: Multiplying (〈rTij , r
I
ij , r

F
ij 〉)

n−s on both sides of (〈rTij , r
I
ij , r

F
ij 〉)

s+m = (〈rTij , r
I
ij , r

F
ij 〉)

s,

obtains (〈rTij , r
I
ij , r

F
ij 〉)

n+m = (〈rTij , r
I
ij , r

F
ij 〉)

n. Proof Completes. Next part it is known from

Property 3.2 that the periodicity m decides a boundary Tm. Every n with n ≥ Tm is start

point corresponding to m, while every n with n < Tm is not a first point closed to m. We call

Tm an index of (〈rTij , r
I
ij , r

F
ij 〉). Clearly,

Tm = min{s|(〈rTij , r
I
ij , r

F
ij 〉)

s+m = (〈rTij , r
I
ij , r

F
ij 〉)

s,m a given positive integer}.

Definition 3.3. We define the d = min{m|(〈rTij , r
I
ij , r

F
ij 〉)

s+m = (〈rTij , r
I
ij , r

F
ij 〉)

s,

∀ s,m ∈ N
+} the least periodicity of (〈rTij , r

I
ij , r

F
ij 〉).

The natural numbers d exists from the well ordering property.

Proposition 3.4. Every periodicity m of (〈rTij , r
I
ij , r

F
ij 〉) is a multiple of d.

Proof: Suppose this property does not hold.

Let as take that m = nd+ p, 1 ≤ p ≤ d, r = max{Tm, Td}.

By known Property 3.2, (〈rTij , r
I
ij , r

F
ij 〉)

r = (〈rTij , r
I
ij , r

F
ij 〉)

r+m = (〈rTij , r
I
ij , r

F
ij 〉)

r+nd+p =

(〈rTij , r
I
ij , r

F
ij 〉)

r+p, it follows that p is periodicity of (〈rTij , r
I
ij , r

F
ij 〉), a contradiction to the defi-

nition of d.

Proposition 3.5. Td is an index correponding to every periodicity of (〈rTij , r
I
ij , r

F
ij 〉).

Proof: Tm denote the index corresponding to periodicity m of (〈rTij , r
I
ij , r

F
ij 〉).

By Property 3.4, there exists an integer l ∈ N
+ such that m = ld.

Thus (〈rTij , r
I
ij , r

F
ij 〉)

Td+m = (〈rTij , r
I
ij , r

F
ij 〉)

Td+ld = (〈rTij , r
I
ij , r

F
ij 〉)

Td .

By our definition of Tm, we have Td ≥ Tm. On the other words, for all m > 0, we can

find h ∈ Z
+ suth that Tm + mh ≥ Td. Thus (〈rTij , r

I
ij , r

F
ij 〉)

Tm+d = (〈rTij , r
I
ij , r

F
ij 〉)

Tm+d+mh =

(〈rTij , r
I
ij , r

F
ij 〉)

Tm+mh = (〈rTij , r
I
ij , r

F
ij 〉)

Tm , so we have Tm ≥ Td.

Definition 3.6. We said the common index Td the index of (〈rTij , r
I
ij , r

F
ij 〉), the least periodicity

d the periodicity of (〈rTij , r
I
ij , r

F
ij 〉), denoted by k, d, respectively.

Theorem 3.7. If N ,H ∈ N
+, then 〈rTij , r

I
ij , r

F
ij 〉

N = 〈rTij , r
I
ij , r

F
ij 〉

N+H ⇔ N ≥ k, d|H.

Proof: That implies since H is a periodicity of (〈rTij , r
I
ij , r

F
ij 〉), by property 3.4, we get d|H.

Let TH be the index corresponding to H. Since N is also an index of H, by the definition of

TH , we need N ≥ TH . By Property 3.5, TH = Td = k. So we have N ≥ k.

⇐ Suppose that H = md, m ∈ Z
+, N ≥ k, then (〈rTij , r

I
ij , r

F
ij 〉)

k+H = (〈rTij , r
I
ij , r

F
ij 〉)

k+md =
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(〈rTij , r
I
ij , r

F
ij 〉)

Td+md = (〈rTij , r
I
ij , r

F
ij 〉)

Td = (〈rTij , r
I
ij , r

F
ij 〉)k. We follows that H is a periodicity of

(〈rTij , r
I
ij , r

F
ij 〉). By Property 3.2 and N ≥ k, we obtain that N is Starting point (Spt) related

to H. Thus (〈rTij , r
I
ij , r

F
ij 〉)

N = (〈rTij , r
I
ij , r

F
ij 〉)

N+H .

Corollary 3.8. In the sequence (〈rTij , r
I
ij , r

F
ij 〉), (〈r

T
ij , r

I
ij , r

F
ij 〉)

2, ..., (〈rTij , r
I
ij , r

F
ij 〉)

n, ... the num-

ber of different FNSM is k + d − 1. The set of the k + d − 1 different FNSM is

X = {(〈rTij , r
I
ij , r

F
ij 〉), (〈r

T
ij , r

I
ij , r

F
ij 〉)

2, ..., (〈rTij , r
I
ij , r

F
ij 〉)

k, (〈rTij , r
I
ij , r

F
ij 〉)

k+1,

..., (〈rTij , r
I
ij , r

F
ij 〉)

k+d−1.

Proof: If a ∈ Z
+, a ≥ k+ d, then let a− k = sd+ r, (s, r ∈ Z

+, 0 ≤ r ≤ d− 1). By Theorem

3.7 (〈rTij , r
I
ij , r

F
ij 〉)

a = (〈rTij , r
I
ij , r

F
ij 〉)

(k+r)+sd = (〈rTij , r
I
ij , r

F
ij 〉)

k+r ∈ X. If a, b,∈ Z
+, 1 ≤ a ≤ b ≤

k + d − 1 and (〈rTij , r
I
ij , r

F
ij 〉)

a = (〈rTij , r
I
ij , r

F
ij 〉)

b, then (〈rTij , r
I
ij , r

F
ij 〉)

a = (〈rTij , r
I
ij , r

F
ij 〉)

a+(b−a).

By Theorem 3.7 a ≥ k, d|(b− a).

Thus b− a ≥ b ⇒ b ≥ a+ d ≥ k + d, contradiction to the assumption of b.

Lemma 3.9. If (〈rTij , r
I
ij , r

F
ij 〉) and (〈pTij , p

I
ij , p

F
ij〉) are FNSMs, then (〈rTij , r

I
ij , r

F
ij 〉) =

(〈pTij , p
I
ij , p

F
ij〉) ⇔ (〈rTij , r

I
ij , r

F
ij 〉)λ = (〈pTij , p

I
ij , p

F
ij〉)λ, ∀λ ∈ I.

From Lemma 3.9 we find if there is a λ and (〈rTij , r
I
ij , r

F
ij 〉)λ = (〈pTij , p

I
ij , p

F
ij〉)λ, then

(〈rTij , r
I
ij , r

F
ij 〉) 6= (〈pTij , p

I
ij , p

F
ij〉).

Let dλ, kλ denote the periodicity and index of (〈rTij , r
I
ij , r

F
ij 〉)λ respectively.

Theorem 3.10. d = [dλ]λ∈I , k = max
λ∈I

{kλ}. here “[ ]” denotes l.c.m.

Proof: Set N = max
λ∈I

{kλ}, H = [dλ]λ∈I . Let N = kλ + rλ, H = lλdλ, where rλ, lλ ∈ N
+, thus

(〈rTij , r
I
ij , r

F
ij 〉)

(N+H)
λ = (〈rTij , r

I
ij , r

F
ij 〉)

(N+H)
λ = (〈rTij , r

I
ij , r

F
ij 〉)

kλ+rλ+lλdλ

λ = (〈rTij , r
I
ij , r

F
ij 〉)

kλ+lλdλ
λ ×

(〈rTij , r
I
ij , r

F
ij 〉)

rλ
λ = (〈rTij , r

I
ij , r

F
ij 〉)

kλ+rλ
λ = (〈rTij , r

I
ij , r

F
ij 〉)

N
λ = (〈rTij , r

I
ij , r

F
ij 〉)

N
λ .

By Lemma 3.9, we get (〈rTij , r
I
ij , r

F
ij 〉)

N+H = (〈rTij , r
I
ij , r

F
ij 〉)

N .

By Lemma 3.9, we have N ≥ k, d|H.

We first proof K = N. If k 6= N, due to the above discussion, we have k < N. By the definition

of N, ∃λ ∈ I ∋ k is not the index of (〈rTij , r
I
ij , r

F
ij 〉)λ. Thus (〈r

T
ij , r

I
ij , r

F
ij 〉)

k+H
λ 6= (〈rTij , r

I
ij , r

F
ij 〉)

k
λ.

From Lemma 3.9, we get (〈rTij , r
I
ij , r

F
ij 〉)

k+H 6= (〈rTij , r
I
ij , r

F
ij 〉)

k, a contradiction to the definition

of k.

Now we prove that d = H. Since d|H, so d ≤ H. If d < H, then by the definition of H, there

exists λ such that dλ|d. By Lemma 3.9, we have (〈rTij , r
I
ij , r

F
ij 〉)

k+d
λ 6= (〈rTij , r

I
ij , r

F
ij 〉λ)

k. From

Lemma 3.9, it follows that (〈rTij , r
I
ij , r

F
ij 〉)

k+d 6= (〈rTij , r
I
ij , r

F
ij 〉)

k, a contradiction to the definition

of d.

The above Theorem 3.10 is points out the relation of periodicity and index between a

FNSM and its CFNSM. This result provides a new approach to the study of periodicity

and index of FNSM.
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Corollary 3.11. A FNSM converges iff each of its cut fuzzy neutrosophic soft matrices

converges.

Corollary 3.12. The periodicity of a FNSM is a prime number p if and only if the periodicity

of each of its CFNSMs are p or 1.

4. Further Description of PFNSM

Let S be a strongly connected digraph, we let d(S) be the periodicity of S, h(S) the number

of all the different vertices of S, l(C) the length of directed cycle C,Gλ the corresponding

digraphs of 〈rTij , r
I
ij , r

F
ij 〉λ. The strong components of Gλ are called the SC.

Definition 4.1. Gλ ⊆ Gβ is that any point x, y ∈ Gλ, if there is a path between x and y in

Gλ, then this path is retained in Gβ , where λ, β ∈ I.

Gλ ∩ Gβ , Gλ ∪ Gβ , stand for the intersection and combination of paths in digraph Gλ and Gβ

respectively.

Definition 4.2. We say that S a SC of a FNSM 〈rTij , r
I
ij , r

F
ij 〉, if there is a λ ∈ I ∋ S is a SC

of CFNSM 〈rTij , r
I
ij , r

F
ij 〉λ.

Proposition 4.3. If h(S) = m, then l(C) ≤ m, where C is an arbitrary directed cycle of

SC S.

Proof: It is trivial from the definition of directed cycle.

Proposition 4.4. If h(S) = m, then d(S) ≤ m.

Proof: By referring to Lemma 3.9, Property 4.3 and the properties of g.c.d, the proof is clear.

Proposition 4.5. If S1,S2 are SCs and S1 ⊆ S2, then d(S2)|d(S1) and h(S1) ≤ h(S2).

Proof: From S1 ⊆ S2 we obtain that if C is cycle of S2 then C is also cycle of S. Hence the

cycle set of S2 includes the cycle set of S1. By Lemma 2.10 and the properties of g.c.d., we get

d(S1)|d(S2). By the definition of ⊆ we need h(S2) ≤ h(S1).

The l different elements of FNSM (〈rTij , r
I
ij , r

F
ij 〉) are denoted in an increasing order λ1 <

λ2 < ... < λl. Then (〈rTij , r
I
ij , r

F
ij 〉) has l different CFNSM (〈rTij , r

I
ij , r

F
ij 〉)λi

(i = 1, 2, ..., l). Gi

denote the corresponding digraph of (〈rTij , r
I
ij , r

F
ij 〉)λi

.

Let Q = {S|S is a SC ofGi, i = 1, 2, ..., l}, M = {S1,S2, ...,Sr|Si and Sj have some common

vertices, Si,Sj ∈ Q, i 6= j}. Due to the idea of SC we know that if Si, Sj are SCs and Si, Sj

have common vertices, then Si,Sj belong to distint CFNSMs. without loss of genarality,

we assume that Si ∈ 〈rTij , r
I
ij , r

F
ij 〉λi

,Sj ∈ 〈rTij , r
I
ij , r

F
ij 〉λj

and λi < λj . From the fact that

〈rTij , r
I
ij , r

F
ij 〉λi

≥ 〈rTij , r
I
ij , r

F
ij 〉λj

and Si,Sj have common vertices, we conclude that Si ⊇ Sj .

So [M,⊆] is a partial order set and M is a subset of Q. The greatest element of [M,⊆]. So
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M 6= ϕ and there is a minimal elements in [M,⊆]. Next we will explain that the number of

set M is at least one.

Definition 4.6. Any S ∈ M is a Minimal Strong Component MSC if T ∈ M

and T ⊆ S ⇒ that T = S, ∀T ∈ M.

Example 4.7. This illustration clarify the notion of MSC.

(〈rTij , r
I
ij , r

F
ij 〉) =



〈0.9, 0.8, 0.1〉 〈0.5, 0.4, 0.5〉 〈0, 0, 1〉 〈0.5, 0.4, 0.5〉 〈0, 0, 1〉 〈0, 0, 1〉

〈0.3, 0.2, 0.7〉 〈0, 0, 1〉 〈0.5, 0.4, 0.5〉 〈0, 0, 1〉 〈0, 0, 1〉 〈0, 0, 1〉

〈0, 0, 1〉 〈0.5, 0.4, 0.5〉 〈0, 0, 1〉 〈0, 0, 1〉 〈0, 0, 1〉 〈0.1, 0.1, 0.9〉

〈0.5, 0.4, 0.5〉 〈0, 0, 1〉 〈0.1, 0.1, 0.9〉 〈0, 0, 1〉 〈0, 0, 1〉 〈0, 0, 1〉

〈0, 0, 1〉 〈0, 0, 1〉 〈0.3, 0.2, 0.7〉 〈0.1, 0.1, 0.9〉 〈0, 0, 1〉 〈0.3, 0.2, 0.7〉

〈0, 0, 1〉 〈0, 0, 1〉 〈0, 0, 1〉 〈0, 0, 1〉 〈0.3, 0.2, 0.7〉 〈0, 0, 1〉




• Then λ1 = 〈0, 0, 1〉, λ2 = 〈0.1, 0.1, 0.9〉, λ3 = 〈0.3, 0.2, 0.7〉, λ4 = 〈0.5, 0.4, 0.5〉,

λ5 = 〈0.9, 0.8, 0.1〉,

• Gi(i = 1, 2, ..., 4) can be represented as follows.

• In G〈0.9,0.8,0.1〉 there is only one SC S1 = {v1}.

• In G〈0.5,0.4,0.5〉 there are two SCs S2 = {v1, v4}, S3 = {v2, v3}.

• We notice that S3 is a SC which has no common vertices with S1 and S2. In this sense

we say that S3 is a newly appeared SC.

• In G〈0.3,0.2,0.7〉 there are two SCs S4 = {v1, v2, v3, v4},S5 = {v5, v6},S5 has no common

vertices with S1,S2,S3 and S4. So S5 is a newly appeared SCs in G〈0.3,0.2,0.7〉

• In G〈0.1,0.1,0.9〉 there is a only one component S6 = {v1, v2, x3, v4, v5, v6} there is a no

newly appeared SCs.

• Noticing that each element of (〈rTij , r
I
ij , r

F
ij 〉)0 is 1 we claim that G〈0,0,1〉 is a SCs by

itself. We denote this SCs as S7. Clearly, the number of vertices in S7 is the same as

in S6 and S6 ⊆ S7. Hence we obtain that

• Q = {S1,S2,S3,S4,S5,S6,S7},

• M1 = {S1,S2,S4,S6,S7}, where S1 ⊆ S2 ⊆ S4 ⊆ S6 ⊆ S7,

• M2 = {S3,S4,S6,S7}, where S3 ⊆ S4 ⊆ S6 ⊆ S7,

• M3 = {S5,S6,S7}, where S5 ⊆ S6 ⊆ S7.

• The set of all MSC of FNSM(〈rTij , r
I
ij , r

F
ij 〉) is Ψ = {S1,S3,S5}.

b

b

b

b

v1
v2

v3v4

Fig-2.Graph of G〈0.5, 0.4, 0.9〉

b

v1

Fig-1. Graph of G〈0.9, 0.8, 0.1〉
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b

b

b

b

v1
v2

v3v4

Fig-2.Graph of G〈0.3, 0.2, 0.7〉

b b
v5 v6

b b

b b

bb

v1 v2

v3v4

v5 v6

Fig-4 Group of G(0.1, 0.1,0.9)

Lemma 4.8. If Ψ = {S|S is a MSC of FNSM}, then
∑
s∈Ψ

d(S) ≤
∑
s∈Ψ

h(S) ≤ n.

Proof: First we take that if S, T ∈ Ψ,S 6= T , then S ∩ T 6= φ.

If S, T belong to the same CFNSM, by the definition of SC, we have S ∩ T 6= φ.

If 〈αT
ij , α

I
ij , α

F
ij〉 > 〈βT

ij , β
I
ij , β

F
ij 〉, S ⊆ G〈αT

ij ,α
I
ij ,α

F
ij〉
, T ⊆ G〈βT

ij ,β
I
ij ,β

F
ij 〉

and S ∩ T 6= φ, then λα >

λβ ,Rλα
≤ Rλβ

. From the definition of the coresponding matrix of an ordinary digraph, we

get G〈αT
ij ,α

I
ij ,α

F
ij〉)

⊆ G〈βT
ij ,β

I
ij ,β

F
ij 〉
. By the definition of ⊆,S is also strongly connected in digraph

G〈βT
ij ,β

I
ij ,β

F
ij 〉
. If S ⊆ S

′
, where S

′
is a strong component of G〈βT

ij ,β
I
ij ,β

F
ij 〉
. then S

′
∩T ⊇ S∩T 6= φ.

By our known definition of strong component and from the fact that S
′
, T are both strong

components of G〈βT
ij ,β

I
ij ,β

F
ij 〉
, we have S

′
= T . Hence S ⊆ S

′
= T . However, S 6= T , so S ⊂ T ,

a contradiction to the fact that T is a MSC. Thus S ∩ T = φ.

Let X = {x1, x2, ..., xn} stand for the set of n different vertices of corresponding digraph of

every CFNSM. From the fact that set of all the different vertices of every MSC is included

in X and for ∀S, T ∈ Ψ if S 6= T , then S ∩ T = φ, we say that
∑
s∈Ψ

h(S) = h(
⋃
s∈Ψ

S) ≤ n holds.

By property 4.4, we get
∑
s∈Ψ

d(S) ≤
∑
s∈Ψ

h(S) ≤ n.

Corollary 4.9. The number of MSC of an arbitrary SFNSM (〈rTij , r
I
ij , r

F
ij 〉) is not greater

than n.

In the below content, we first give the description of periodicity of an arbitrary SFNSM

by using the concept of MSC.

Theorem 4.10. If (〈rTij , r
I
ij , r

F
ij 〉) is a FNSM,

Ψ = {S1,S2, ...,Sw}, then d(〈rTij , r
I
ij , r

F
ij 〉) = [d(Si)]si ∈ Ψ.

Proof: Here Ψ,Q are the same as above. If the number of elements in Ψ,Q are w and u,

respectively, then w ≤ u. For ∀T ∈ Q|Ψ, since T is not a minimal element, ∃S ∈ Ψ ∋ S ⊆ T .

By property 4.4, we get

d(T )|d(S). (∗)

From Lemma 2.10 and Theorem 3.10

d(〈rTij , r
I
ij , r

F
ij 〉) = [d(〈rTij , r

I
ij , r

F
ij 〉λi

)]i=1,2,...,l = [[d(S)]s∈Gi
]i=1,2,...,l
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= [d(S)]S∈Q

= [d(S1), ..., d(Sw), d(T1), ..., d(Th)], Tj ∈ Q|Ψ(j = 1, 2, ..., h).

By (*), for Tj ∈ Q Ψ, there exists an S ∈ {S1,S2, ...,Sw} satisfying d(Tj)|d(S). So

d(〈rTij , r
I
ij , r

F
ij 〉) = [d(S1), ..., d(Sw)] = [d(Si)]si∈Ψ.

Theorem 4.11. For given positive integer n, the greastest value of periodicity of all square

FNSM is max
∑
li=n

[li] (1 ≤ i ≤ n).

Proof: Let M = {[l1, ..., lw]|
w∑
i=1

li ≤ n, li ∈ Z
+, 1 ≤ w ≤ n}. By Theorem 5.1, for an arbi-

trary SFNSM〈rTij , r
I
ij , r

F
ij 〉,

d(〈rTij , r
I
ij , r

F
ij 〉) = [d(S1), ..., d(Sw)] ∈ M,

Si ∈ Ψ, 1 ≤ d(Si) ≤ n,
w∑
i=1

d(Si) ≤ n.

On the other hand, for ∀[l1, ..., lw] ∈ M,
w∑
i=l

li ≤ n, we can find a fuzzy neutrosophic soft

matrix 〈rTij , r
I
ij , r

F
ij 〉 such that d(A) = [l1, ..., lw]. In fact, the periodicity of the li × li Block

Boolean Fuzzy Neutrosophic Soft Matrix (BBFNSM)

A =




〈0, 0, 1〉
... E

. . . . . . . . . . . . . . . . . . .

〈1, 1, 0〉
... 〈0, 0, 1〉




is li, where E is the unit matrix. The periodicity of the SBBFNSM

An =




〈rTij , r
I
ij , r

F
ij 〉1 〈0, 0, 1〉

... 〈0, 0, 1〉
. . .

〈0, 0, 1〉 〈rTij , r
I
ij , r

F
ij 〉W

... 〈0, 0, 1〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

〈0, 0, 1〉 〈0, 0, 1〉
... E




is [l1, ..., lW ]. Hence, the greatest periodicity of square FNSM(〈rTij , r
I
ij , r

F
ij 〉) is the greatest

value of M.

For
W∑
i=1

li ≤ n, we need [l1, ..., lW ] ≤ [l1, ..., lW , n−
W∑
i=1

li] ≤ max∑
li=n

[l1, ..., lW ]. So

max∑
li≤n

[l1, ..., lW ] = max∑
li=n

[l1, ..., lW ].

5. An Algorithm to Find the Period

• According to Theorem 5.1, we can determine the following algorithm to obtain the

periodicity d for an arbitrary CFNSM (〈rTij , r
I
ij , r

F
ij 〉).
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• Step 1: Compute the CFNSM according to the different elements of R =

(〈rTij , r
I
ij , r

F
ij 〉).

• Let (〈rTij , r
I
ij , r

F
ij 〉)λa

be the first CFNSM such that has at least one directed cycle,

and 〈rTij , r
I
ij , r

F
ij 〉λa

the first CFNSM such that the number of vertices of all its SCs is

n.

• Step 2: Determine λa, λb.

• Step 3: Find MSCs of (〈rTij , r
I
ij , r

F
ij 〉)λa

, ..., (〈rTij , r
I
ij , r

F
ij 〉)λb

.

• From the definition of MSC and Lemma 3.9, we can find MSCs by the following method.

• SC of (〈rTij , r
I
ij , r

F
ij 〉)λa

are MSC of (〈rTij , r
I
ij , r

F
ij 〉).

• For (〈rTij , r
I
ij , r

F
ij 〉)λk

, (〈rTij , r
I
ij , r

F
ij 〉)λk+1

(a ≤ k ≤ b−1), if S is a SC of (〈rTij , r
I
ij , r

F
ij 〉)λk+1

and for an arbitary strong component T if (〈rTij , r
I
ij , r

F
ij 〉)λk

,

S ∩ T = φ holds, then S is a MSC.

• Step 4: Find all the directed cycles of MSC of (〈rTij , r
I
ij , r

F
ij 〉).

• Step 5: Evaluate d(R) = [L∞,L∈, ...,L⊓〉
]i=1,2,...,w.

Flowchart to obtain the periodicity d for an arbitrary fuzzy neutrosophic soft matrix R =

(〈rTij , r
I
ij , r

F
ij 〉).

Start

Let as take CFNSM of R

Determine the λa, λb

Evaluate the MSC of R

For Rλk
,Rλk+1

; (a ≤ k ≤ b− 1)

and Rλk
S ∩ T = φ

S is SC of Rλk+1If

Then S is MSC

Find all the cycles of MSC of R

Compute d(R) = L1, ...

Stop
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Theorem 5.1. The periodicity of square fuzzy neutrosophic soft matrix (〈rTij , r
I
ij , r

F
ij 〉) is

d(〈rTij , r
I
ij , r

F
ij 〉) = [L1,L2, ...,Lui

]i=1,2,...,W , where () stand for the g.c.d.

Proof: All of the different elements and CFNSM (〈rTij , r
I
ij , r

F
ij 〉) are assumed as above. By

the definition of CFNSM, we can find λa, λb ∈ I(λa ≥ λb) satisfying the next conditions.

(〈rTij , r
I
ij , r

F
ij 〉)λa

has at least one directed cycle. But if λj > λa ⇒ 〈rTij , r
I
ij , r

F
ij 〉λj

≤

〈rTij , r
I
ij , r

F
ij 〉λa

then 〈rTij , r
I
ij , r

F
ij 〉λj

has no cycles. Thus d(〈rTij , r
I
ij , r

F
ij 〉λj

) = 1.

(ii) 〈rTij , r
I
ij , r

F
ij 〉λb

is the first CFNSM λ that number of different vertices of all its SCs is n.

If λj < λb ⇒ (〈rTij , r
I
ij , r

F
ij 〉)λj

≥ (〈rTij , r
I
ij , r

F
ij 〉)λa

, then the number of different vertices of all

its SCs for (〈rTij , r
I
ij , r

F
ij 〉)λj

is also n.

From the definition of MSC, for (〈rTij , r
I
ij , r

F
ij 〉λj

) mentioned in (i) and (ii) (〈rTij , r
I
ij , r

F
ij 〉)λj

has

no MSC.

Therefore Ψ = {S|S ∈ (〈rTij , r
I
ij , r

F
ij 〉)λj

, λa ≥ λj ≥ λb}.

Theorem 5.1 we known that d(R) = [L1,L1, ...,Lui
]i=1,2,...,w.

Example 5.2. Let 〈rTij , r
I
ij , r

F
ij 〉 be the fuzzy neutrosophic soft matrix mentioned in Example

4.7. Then λa = 〈0.9, 0.8, 0.1〉, λb = 〈0.3, 0.2, 0.7〉

d(〈rTij , r
I
ij , r

F
ij 〉) = [d(S1), d(S3), , d(S5)] = [1, 2, 2] = 2

6. Conclusion

We have defined the concept of MSC, and obtained the periodicity of fuzzy neutrosophic

soft matrices by the periodicity of its MSC. We have also pointed out that the index of FNSM

is the greatest value of indices of its CFNSM. Future scope of this research work could be to

investigate the oscillating period index, strongly connected boolean matrix in the freamework

of FNSM. We will applied this results for decision making problems.
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