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Abstract: The Geometric Bonferroni Mean (GBM), is an extension of The Bonferroni mean (BM), that 

combines both BM and the geometric mean, allowing for the representation of correlations among 

the combined factors while acknowledging the inherent uncertainty within the decision-making 

process. Within the framework of Pythagorean neutrosophic set (PNS) that encompasses truth, 

indeterminacy, and falsity-membership degrees, each criterion can be integrated into a unified PNS 

value, portraying the overall evaluation of that criterion by employing the Geometric Bonferroni 

mean. This study aims to enhance decision-making in Pythagorean neutrosophic framework by 

introducing an aggregation operator to PNS using the Geometric Bonferroni Mean. Additionally, it 

proposes a normalized approach to resolve decision-making quandaries within the realm of PNS, 

striving for improved solutions. The novel Pythagorean Neutrosophic Normalized Weighted 

Geometric Bonferroni Mean (PNNWGBM) aggregating operator has been tested in a case of multi-

criteria decision-making (MCDM) problem involving the selection of Halal products suppliers with 

several criteria. The result shows that this aggregating operator is offering dependable and 

pragmatic method for intricate decision-making challenges and able to effectively tackle uncertainty 

and ambiguity in MCDM problem. 

Keywords: aggregating operator; Bonferroni Mean (BM); Geometric Bonferroni Mean (GBM); 

Pythagorean neutrosophic set (PNS); multi-criteria decision-making (MCDM). 

 

 

1. Introduction 

Zadeh [1] proposed the concept of fuzzy sets as a category of entities characterized by a spectrum 

of membership grades. He broadened the concepts of inclusion, union, intersection, complement, 

relation, convexity, and others to apply to these sets, and elucidated several properties associated 

with these concepts within the framework of fuzzy sets. Intuitionistic Fuzzy Sets (IFS), first 
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introduced by Atanassov [2], assigns both membership and non-membership functions to elements 

of a universe, ensuring their combined sum is less than or equal to one. Consequently, IFS offers a 

more precise and definitive description compared to fuzzy sets. However, it's limited to handling 

incomplete and uncertain information, unable to address the indeterminate and inconsistent 

information frequently encountered in real-world scenarios. Hence, as an expansion of fuzzy sets and 

IFS, Smarandache introduced neutrosophic sets (NS) in 1995 and published his results in 1998 [3]. 

Smarandache's definition outlines that a NS, denoted as A within a universal set 𝑋, is distinguished 

by three distinct functions: a truth-membership function, denoted as 𝑇𝐴(𝑥) , an indeterminacy-

membership function, denoted as 𝐼𝐴(𝑥), and a falsity-membership function, denoted as 𝐹𝐴(𝑥). The 

main strength of the neutrosophic set lies in its enhancement of fuzzy set theory by integrating 

membership, non-membership, and indeterminacy parameters, which are crucial for effectively 

managing uncertainty in the decision-making process. Smarandache [4] and H. Wang et al. [5] 

additionally introduced the concept of a single-valued neutrosophic set (SVNS) through adjustments 

to the established conditions such that 𝑇𝐴(𝑥) , 𝐼𝐴(𝑥)  and 𝐹𝐴(𝑥)  ∈ [0,1]  and 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +

𝐹𝐴(𝑥) ≤ 3, which are better suited for addressing scientific and engineering problems. 

Throughout the years, numerous extensions of neutrosophic sets have been developed by other 

researchers because of their broad range of descriptive scenarios frequently encountered in various 

real-life situations. Example of neutrosophic set extensions are interval neutrosophic set [6], 

simplified neutrosophic set [7], neutrosophic soft set [8], multi-valued neutrosophic set [9] and rough 

neutrosophic set [10]. Over the past decade, a wealth of intriguing studies on neutrosophic sets has 

emerged across diverse domains within multi-criteria decision-making (MCDM), demonstrating 

their relevance and impact [11]-[17]. 

Another novel expansion of neutrosophic set is the Pythagorean neutrosophic sets (PNS). Jansi et 

al. [18] extends the theory of correlation coefficient from neutrosophic sets (NS) to Pythagorean 

neutrosophic sets (PNS), where 'T' and 'F' represent dependent neutrosophic components. This 

extension relaxes the constraint condition requiring the square sum of membership, non-membership, 

and indeterminacy to be less than two. The Pythagorean constraint helps in better modeling and 

representing complex situations where the interplay between truth, indeterminacy, and falsity is 

more intricate. This can be particularly useful in scenarios with high degrees of uncertainty or where 

traditional neutrosophic sets might be too rigid. Hence, PNS can provide more accurate and refined 

decision-making capabilities. They allow for more sophisticated aggregation and comparison 

techniques, leading to potentially better outcomes in decision-making processes involving uncertain 

or vague information. This makes PNS a valuable tool in fields where robust decision-making under 

uncertainty is essential [19].  

In multi-criteria decision-making (MCDM), an aggregating operator is a mathematical function 

or method used to combine multiple criteria or attributes into a single composite score or decision 

value. The purpose of these operators is to synthesize the diverse information provided by the 

different criteria to facilitate decision-making. Originally introduced as an enhancement of the 

arithmetic mean, the Bonferroni Mean (BM) is an aggregating operator celebrated for its unique 

ability to factor in the significance and interplay between element pairs during aggregation [20]. The 

geometric mean serves as an aggregation operator in various fields, particularly in situations where 

multiplication or compounding of values is relevant. As an aggregation operator, it combines 
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multiple values into a single representative value that retains essential information from the original 

dataset. Xia et al. [21] introduces Geometric Bonferroni Mean (GBM), an integration of geometric 

mean with BM. The Geometric Bonferroni Mean (GBM) extends the concept of BM by applying 

geometric aggregation functions, offering a more flexible approach to handling multiplicative 

interactions among variables. The Geometric Bonferroni Mean (GBM) specifically aggregates 

multiple criteria in decision-making by capturing their interrelationships, enhancing the accuracy 

and robustness of evaluations, particularly in complex scenarios with interdependent attributes. 

Moreover, within the realm of Pythagorean fuzzy environments, extensions like the Pythagorean 

fuzzy GBM operator have emerged to delineate the connections between parameters and explore 

their unique characteristics [22]. These advancements underscore the flexibility and versatility of the 

GBM concept across different decision-making contexts. To increase its adaptability and usefulness, 

the GBM has been expanded through various modifications. For example, the introduction of 

weighted GBM (WGBM) operators assign weights to indicate the relative importance of certain 

criteria or attributes, enhancing the aggregation precision. Additionally, the GBM aggregating 

operator harbors vast potential for application across a multitude of domains within the realm of 

fuzzy and neutrosophic sets [23]-[27]. In addition, many research works have addressed the 

significance of Pythagorean fuzzy environments with some mathematical technicals, for example, 

Edalatpanah [32-34] discussed the impact of some applications of Pythagorean fuzzy in feature 

selection. Dirik and others [35-39] used Pythagorean fuzzy to develop decision models. Mohammed 

et al. [40,41] combined the above model with developed topological concepts in topological spaces. 

Al-sharqi et al [42] introduced the MCDM method for decision-making based on multi-mathematical 

structures like complex fuzzy structure [43,44], fuzzy graph structure [45,46], and some algebraic 

structures [47,48]. Al-Quran et al and other [49-52] proposed approaches for the selection of MCDM 

technology by using the fuzzy set and its extension method, 

The motivation for this study arises from the capabilities of the Pythagorean neutrosophic set, 

which has garnered significant attention from researchers in MCDM techniques due to its impressive 

performance. A new aggregating operator that combines the strengths of the Geometric Bonferroni 

Mean with the versatile capabilities of Pythagorean neutrosophic sets would be a valuable addition 

to the field of multi-criteria decision-making. To the best of the authors' knowledge, such an 

aggregating operator has not yet been explored, thereby addressing a current gap in the research. 

The main objectives of this study are (i) To develop  Pythagorean Neutrosophic Geometric 

Bonferroni Mean (PNGBM), a novel aggregating operator that integrates PNS methodology with the 

classic GBM aggregating operator. (ii) To develop PNNWGBM, a normalized weighted Geometric 

Bonferroni Mean aggregating operator within the PNS framework. (iii) To test the applicability of the 

developed aggregating operator in a multi-criteria decision-making (MCDM) problem involving the 

selection of Halal product suppliers. 

The paper is structured as follows: Section 2 introduces fundamental PNS theories. Section 3 

thoroughly explains the proposed methodology. Section 4 demonstrates the application of the 

suggested methodology through a case study focusing on the selection of Halal products suppliers 

with several criteria for the decision makers. Lastly, Section 5 functions as the concluding remarks. 
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2. Experimental Section 

2.1 Preliminaries 

This section covers the fundamental theories essential for the development of PNNWGBM. 

 

Definition 1. [20] Let 𝑝, 𝑞 ≥ 0, and 𝑎𝑖 be a collection of positive real numbers (𝑖 = 1,2, … , 𝑛), 

then BM is defined as 

𝐵𝑀𝑝,𝑞(𝑎1, 𝑎2, … , 𝑎𝑛) =

[
 
 
 

1

𝑛(𝑛 − 1)
∑ 𝑎𝑖

𝑝
𝑎𝑗
𝑞

𝑛

𝑖,𝑗=1
𝑖≠𝑗 ]

 
 
 

1
𝑝+𝑞

 (1) 

Definition 2. [21] Let 𝑝, 𝑞 > 0, and 𝑎𝑖 be a set of non-negative numbers (𝑖 = 1,2, … , 𝑛). Then: 

𝐺𝐵𝑝,𝑞(𝑎1, 𝑎2, … , 𝑎𝑛) =
1

𝑝 + 𝑞
 ∏(𝑝𝑎𝑖 + 𝑞𝑎𝑗)

1
𝑛(𝑛−1)

𝑛

𝑖,𝑗=1
𝑖≠𝑗

 (2) 

Equation (2) is called Geometric Bonferroni Mean (GBM). The GBM possesses the following 

characteristics: 

1. 𝐺𝐵𝑝,𝑞(0,0, … ,0) = 0. 

2. 𝐺𝐵𝑝,𝑞(𝑎, 𝑎, … , 𝑎) = 𝑎 𝑖𝑓 𝑎𝑖 = 𝑎, for all 𝑖. 

3. 𝐺𝐵𝑝,𝑞(𝑎1, 𝑎2, … , 𝑎𝑛) ≥ 𝐺𝐵𝑝,𝑞(𝑑1, 𝑑2, … , 𝑑𝑛), 𝑖. 𝑒. , 𝐺𝐵
𝑝,𝑞  is monotonic, if 𝑎𝑖 ≥ 𝑑𝑖 , for all 𝑖. 

4. 𝑚𝑖𝑛𝑖{𝑎𝑖} ≤ 𝐺𝐵𝑝,𝑞(𝑎1, 𝑎2, … , 𝑎𝑛) ≤ 𝑚𝑎𝑥𝑖{𝑎𝑖}. 

 

Definition 3. [28] Let 𝑝, 𝑞 > 0, and 𝑎𝑖  be a set of non-negative numbers (𝑖 = 1,2, … , 𝑛). 𝑤𝑖 

indicates the importance degree of 𝑎𝑖 , satisfying 𝑤𝑖 > 0 (𝑖 = 1,2, … , 𝑛), , for 𝑗 ≠ 𝑖 , 𝑣𝑖𝑗 

indicates the importance degree of 𝑎𝑖  for 𝑎𝑗 , satisfying 𝑣𝑖𝑗 > 0 (𝑗 ≠ 𝑖, 𝑗 = 1,2, … , 𝑛) , . 

Then we call 

𝑊𝐺𝐵𝑀𝑝,𝑞(𝑎1, 𝑎2, … , 𝑎𝑛) =
1

𝑝 + 𝑞
 ∏(𝑝𝑎𝑖 +∏(𝑞𝑎𝑗)

𝑣𝑖𝑗

𝑛

𝑗≠𝑖

)

𝑤𝑖𝑛

𝑖=1

 (3) 

the weighted Geometric Bonferroni Mean (WGBM). 

 

Definition 4. [29] Let 𝑋 be a non-empty set or a universe. We define a Pythagorean fuzzy set 

A as 

𝐴 = {(𝑥, 𝜏𝐴(𝑥), 𝜂𝐴(𝑥))|𝑥 ∈ 𝑋} (4) 

 

Where 𝜏𝐴(𝑥), 𝜂𝐴(𝑥) ∈ [0,1] indicate the truth membership and false membership respectively for 

each element 𝑥 ∈ 𝑋 to the set 𝐴, and 0 ≤ 𝜏𝐴
2(𝑥) + 𝜂𝐴

2(𝑥) ≤ 1  for each 𝑥 ∈ 𝑋. The indeterminacy 

membership is given by 𝜉𝐴(𝑥) = √1 − 𝜏𝐴
2(𝑥) − 𝜂𝐴

2(𝑥). 
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Definition 5. [5] Let 𝑋 be a universe or non-empty set. A single valued neutrosophic set 𝛽 in 

𝑋 is given by: 

 𝛽 = {(𝑥, 𝜏𝛽(𝑥), 𝜉𝛽(𝑥), 𝜂𝛽(𝑥))|𝑥 ∈ 𝑋} (5) 

 

Where 𝜏𝛽(𝑥), 𝜉𝛽(𝑥), 𝜂𝛽(𝑥) ∈ [0,1] and with no limitations on the sum of the components where 0 ≤

𝜏𝛽(𝑥) + 𝜉𝛽(𝑥) + 𝜂𝛽(𝑥) ≤ 3. 

 

Definition 6. [30] Let 𝑋 be a universe or non-empty set. A Pythagorean neutrosophic set with 

𝜏𝐴(𝑥) and 𝜂𝐴(𝑥) are dependent neutrosophic components that is given by: 

 

 𝐴 = {(𝑥, 𝜏𝐴(𝑥), 𝜉𝐴(𝑥), 𝜂𝐴(𝑥))|𝑥 ∈ 𝑋} (6) 

 

Where 𝜏𝐴 represent the degree of membership, 𝜉𝐴 represent the degree of indeterminacy and 𝜂𝐴 

represent the degree of non-membership respectively such that 𝜏𝐴(𝑥), 𝜉𝐴(𝑥), 𝜂𝐴(𝑥) ∈ [0,1]  and 

satisfying 

0 ≤ (𝜏𝐴(𝑥))
2
+ (𝜂𝐴(𝑥))

2 ≤ 1 (7) 

0 ≤ (𝜏𝐴(𝑥))
2
+ (𝜉𝐴(𝑥))

2
+ (𝜂𝐴(𝑥))

2 ≤ 2 (8) 

 

Definition 7. [31] Let 𝑥1 = (𝜏𝑥1 , 𝜉𝑥1 , 𝜂𝑥1  ), 𝑥2 = (𝜏𝑥2 , 𝜉𝑥2 , 𝜂𝑥2  ) and 𝑥 = (𝜏𝑥, 𝜉𝑥, 𝜂𝑥  ) are any two 

PNSs, then the following definitions apply to the operating rules for PNSs, which include addition, 

multiplication, scalar multiplication, and power operations: 

i. 𝑥1⨁ 𝑥2 = (√𝜏𝑥1
2 + 𝜏𝑥2

2 − 𝜏𝑥1
2𝜏𝑥2

2, 𝜉𝑥1𝜉𝑥2  , 𝜂𝑥1𝜂𝑥2) (9) 

ii. 𝑥1⨂ 𝑥2 = (𝜏𝑥1𝜏𝑥2 , 𝜉𝑥1 + 𝜉𝑥2 − 𝜉𝑥1𝜉𝑥2√𝜂𝑥1
2 + 𝜂𝑥2

2 − 𝜂𝑥1
2𝜂𝑥2

2) (10) 

iii. 𝜇𝑥 = (√1 − (1 − 𝜏𝑥
2)𝜇, 𝜉𝑥

𝜇 , 𝜂𝑥
𝜇) where 𝜇 ∈ ℜ  and 𝜇 ≥ 0 (11) 

iv. 𝑥𝜇 = (𝜏𝑥
𝜇 , 1 − (1 − 𝜉𝑥)

𝜇 , √1 − (1 − 𝜂𝑥
2)𝜇) where 𝜇 ∈ ℜ  and 𝜇 ≥ 0. (12) 

 

2.2 Proposed Method 

In this section, our goal is to enhance the capabilities of the GBM operator to accommodate 

situations where PNS are employed as input parameters. Therefore, our study involves 

implementing the PNGBM operator within the Pythagorean neutrosophic framework. 

 

Definition 8. Let 𝑝, 𝑞 ≥ 0  and 𝑥𝑖 = (𝜏𝑖(𝑥), 𝜉𝑖(𝑥), 𝜂𝑖(𝑥) )  be a set of non-negative numbers 

(𝑖 = 1,2, … , 𝑛). Then: 
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𝑃𝑁𝐺𝐵𝑀𝑝,𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) =
1

𝑝 + 𝑞
 (

𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   )
1

𝑛(𝑛−1)) (13) 

Equation (13) was formed based on the operating rules of PNS as mentioned in Definition 7. 

 

Proposition 1. Let 𝑝, 𝑞 ≥ 0  with 𝑥𝑖 = (𝜏𝑖(𝑥), 𝜉𝑖(𝑥), 𝜂𝑖(𝑥) )  where a PNS set consist of (𝑖 =

1,2,3, … , 𝑛). For any 𝑖, 𝑗 𝑎𝑛𝑑 𝑖 ≠ 𝑗: 

𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗 = (√1 − (1 − 𝜏𝑖
2)𝑝(1 − 𝜏𝑗

2)
𝑞
, 𝜉𝑖

𝑝 𝜉𝑗
𝑞 , 𝜂𝑖

𝑝𝜂𝑗
𝑞) (14) 

 

Proof Let two PNS sets 𝑥𝑖 = (𝜏𝑖(𝑥), 𝜉𝑖(𝑥), 𝜂𝑖(𝑥) ) and 𝑥𝑗 = (𝜏𝑗(𝑥), 𝜉𝑗(𝑥), 𝜂𝑗(𝑥) ). 

Using the operating rules (iii) in Definition 7, we have  

𝑝𝑥𝑖 = (√1 − (1 − 𝜏𝑖
2)𝑝, 𝜉𝑖

𝑝 , 𝜂𝑖
𝑝) 

𝑞𝑥𝑗 = (√1 − (1 − 𝜏𝑗
2)
𝑞
, 𝜉𝑗

𝑞 , 𝜂𝑗
𝑞) 

By commencing the operating rules (i) based on Definition 7, we get: 

𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗 = (√1 − (1 − 𝜏𝑖
2)𝑝, 𝜉𝑖

𝑝 , 𝜂𝑖
𝑝)⨁(√1 − (1 − 𝜏𝑗

2)
𝑞
, 𝜉𝑗

𝑞 , 𝜂𝑗
𝑞) 

          = (√1 − (1 − 𝜏𝑖
2)𝑝 + 1 − (1 − 𝜏𝑗

2)
𝑞
− (1 − (1 − 𝜏𝑖

2)𝑝)(1 − (1 − 𝜏𝑗
2)
𝑞
), 𝜉𝑖

𝑝 𝜉𝑗
𝑞 , 𝜂𝑖

𝑝𝜂𝑗
𝑞) 

          = (√1 − (1 − 𝜏𝑖
2)𝑝(1 − 𝜏𝑗

2)
𝑞
, 𝜉𝑖

𝑝 𝜉𝑗
𝑞 , 𝜂𝑖

𝑝𝜂𝑗
𝑞) 

Thus, Proposition 1 holds. 

 

Proposition 2. Let 𝑝, 𝑞 ≥ 0  and 𝑥𝑖 = (𝜏𝑖(𝑥), 𝜉𝑖(𝑥), 𝜂𝑖(𝑥) )  where a PNS set consist of (𝑖 =

1,2,3, … , 𝑛). For any 𝑖, 𝑗 𝑎𝑛𝑑 𝑖 ≠ 𝑗: 

(𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗)⨂(𝑝𝑥𝑗  ⨁ 𝑞𝑥𝑖) =  

(

  
 
√(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
)(1 − (1 − 𝜏𝑗

2)
𝑝
(1 − 𝜏𝑖

2)𝑞),

1 − (1 − 𝜉𝑖
𝑝 𝜉𝑗

𝑞)(1 − 𝜉𝑗
𝑝 𝜉𝑖

𝑞),

√1 − (1 − (𝜂𝑖
2𝑝𝜂𝑗

2𝑞)) (1 − (𝜂𝑗
2𝑝𝜂𝑖

2𝑞))
)

  
 

 (15) 

 

Proof By referring to the result from Proposition 1, we get: 

𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗 = (√1 − (1 − 𝜏𝑖
2)𝑝(1 − 𝜏𝑗

2)
𝑞
, 𝜉𝑖

𝑝 𝜉𝑗
𝑞 , 𝜂𝑖

𝑝𝜂𝑗
𝑞) and 

𝑝𝑥𝑗  ⨁ 𝑞𝑥𝑖 = (√1 − (1 − 𝜏𝑗
2)
𝑝
(1 − 𝜏𝑖

2)𝑞, 𝜉𝑗
𝑝 𝜉𝑖

𝑞 , 𝜂𝑗
𝑝𝜂𝑖

𝑞) 

 

By commencing the operating rules (ii) based on Definition 7, we get: 
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(𝑝𝑥𝑖  ⨁ 𝑞𝑥𝑗)⨂(𝑝𝑥𝑗  ⨁ 𝑞𝑥𝑖) =  

(

  
 
√1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
√1 − (1 − 𝜏𝑗

2)
𝑝
(1 − 𝜏𝑖

2)𝑞,

𝜉𝑖
𝑝 𝜉𝑗

𝑞 + 𝜉𝑗
𝑝 𝜉𝑖

𝑞 − (𝜉𝑖
𝑝 𝜉𝑗

𝑞)(𝜉𝑗
𝑝 𝜉𝑖

𝑞),

√(𝜂𝑖
𝑝𝜂𝑗

𝑞)
2
+ (𝜂𝑗

𝑝𝜂𝑖
𝑞)

2
− (𝜂𝑖

𝑝𝜂𝑗
𝑞)

2
(𝜂𝑗

𝑝𝜂𝑖
𝑞)

2

)

  
 

 

                    =  

(

  
 
√(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
)(1 − (1 − 𝜏𝑗

2)
𝑝
(1 − 𝜏𝑖

2)𝑞),

1 − (1 − 𝜉𝑖
𝑝 𝜉𝑗

𝑞)(1 − 𝜉𝑗
𝑝 𝜉𝑖

𝑞),

√1 − (1 − (𝜂𝑖
𝑝𝜂𝑗

𝑞)
2
) (1 − (𝜂𝑗

𝑝𝜂𝑖
𝑞)

2
)

)

  
 

 

                      =  

(

  
 
√(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
)(1 − (1 − 𝜏𝑗

2)
𝑝
(1 − 𝜏𝑖

2)𝑞),

1 − (1 − 𝜉𝑖
𝑝 𝜉𝑗

𝑞)(1 − 𝜉𝑗
𝑝 𝜉𝑖

𝑞),

√1 − (1 − (𝜂𝑖
2𝑝𝜂𝑗

2𝑞)) (1 − (𝜂𝑗
2𝑝𝜂𝑖

2𝑞))
)

  
 

 

Therefore, Proposition 2 is valid. 

 

 Proposition 3. Let 𝑝, 𝑞 ≥ 0  and 𝑥𝑖 = (𝜏𝑖(𝑥), 𝜉𝑖(𝑥), 𝜂𝑖(𝑥) )  where a PNS set consist of (𝑖 =

1,2,3, … , 𝑛). Provided the value of 𝑓 at which 1 ≤ 𝑓 < 𝑛, we have: 

𝑓
⊗
𝑖 = 1

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑓+1) =

(

 
 
 
 
 √∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑓+1
2)
𝑞
)

𝑓

𝑖=1

, 1 −∏(1 − 𝜉𝑖
𝑝 𝜉𝑓+1

𝑞),

𝑓

𝑖=1

√1 −∏(1 − (𝜂𝑖
2𝑝𝜂𝑓+1

2𝑞))

𝑓

𝑖=1 )

 
 
 
 
 

 (16) 

 

Proof Referring to Equation (14) in Proposition 1, when 𝑓 = 2, we obtain: 

𝑝𝑥𝑖 ⨁ 𝑞𝑥2+1 = (√1 − (1 − 𝜏𝑖
2)𝑝(1 − 𝜏2+1

2)𝑞, 𝜉𝑖
𝑝 𝜉2+1

𝑞 , 𝜂𝑖
𝑝𝜂2+1

𝑞) 

            = (√1 − (1 − 𝜏𝑖
2)𝑝(1 − 𝜏3

2)𝑞, 𝜉𝑖
𝑝 𝜉3

𝑞 , 𝜂𝑖
𝑝𝜂3

𝑞) 

 

Then, 
2
⊗
𝑖 = 1

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥3) = (𝑝𝑥1 ⨁ 𝑞𝑥3)⨂(𝑝𝑥2 ⨁ 𝑞𝑥3) 

                                                =

(

 
 
√(1 − (1 − 𝜏1

2)𝑝(1 − 𝜏3
2)𝑞)(1 − (1 − 𝜏2

2)𝑝(1 − 𝜏3
2)𝑞),

1 − (1 − 𝜉1
𝑝 𝜉3

𝑞)(1 − 𝜉2
𝑝 𝜉3

𝑞),

√1 − (1 − (𝜂1
2𝑝𝜂3

2𝑞))(1 − (𝜂2
2𝑝𝜂3

2𝑞))
)

 
 

 

 

By referring Equation (15), let 𝑓 = 𝑓0 to obtain the following general form: 
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𝑓0
⊗
𝑖 = 1

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑓0+1) =

(

 
 
 
 
 √∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑓0+1
2)
𝑞
)

𝑓0

𝑖=1

, 1 −∏(1 − 𝜉𝑖
𝑝 𝜉𝑓0+1

𝑞),

𝑓0

𝑖=1

√1 −∏(1 − (𝜂𝑖
2𝑝𝜂𝑓0+1

2𝑞))

𝑓0

𝑖=1 )

 
 
 
 
 

 

 

Thus, Equation (16) as stated in Proposition 3 is applicable when 𝑓 = 𝑓0. 

 

Next, let 𝑓 = 𝑓0 + 1  

𝑓0 + 1
⊗
𝑖 = 1

  (𝑝𝑥𝑖  ⨁ 𝑞𝑥𝑓0+1+1) =
𝑓0 + 1
⊗
𝑖 = 1

  (𝑝𝑥𝑖  ⨁𝑞𝑥𝑓0+2)      

 

                            =
𝑓0
⊗
𝑖 = 1

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑓0+2)⨂(𝑝𝑥𝑓0+1 ⨁ 𝑞𝑥𝑓0+2) 

                                                =

(

 
 
 
 
 √∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑓0+1
2)
𝑞
)

𝑓0

𝑖=1

, 1 −∏(1 − 𝜉𝑖
𝑝 𝜉𝑓0+1

𝑞),

𝑓0

𝑖=1

√1 −∏(1 − (𝜂𝑖
2𝑝𝜂𝑓0+1

2𝑞))

𝑓0

𝑖=1 )

 
 
 
 
 

⨂ 

                                                      (√1 − (1 − 𝜏𝑓0+1
2)
𝑝
(1 − 𝜏𝑓0+2

2)
𝑞
, 𝜉𝑓0+1

𝑝 𝜉𝑓0+2
𝑞 , 𝜂𝑓0+1

𝑝𝜂𝑓0+2
𝑞) 

                                                =

(

 
 
 
 
 √∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑓0+2
2)
𝑞
)

𝑓0

𝑖=1

, 1 −∏(1 − 𝜉𝑖
𝑝 𝜉𝑓0+2

𝑞),

𝑓0

𝑖=1

√1 −∏(1 − (𝜂𝑖
2𝑝𝜂𝑓0+2

2𝑞))

𝑓0

𝑖=1 )

 
 
 
 
 

 

This proof also applies to the case where 𝑓 = 𝑓0 + 1 . Thus, Proposition 3 remains valid. 

Consequently, we can infer the following Proposition 4 directly from Proposition 3 as stated earlier. 

 

     Proposition 4. Let 𝑝, 𝑞 ≥ 0  and 𝑥𝑖 = (𝜏𝑖(𝑥), 𝜉𝑖(𝑥), 𝜂𝑖(𝑥) )  where a PNS set consist of (𝑖 =

1,2,3, … , 𝑛). Provided the value of 𝑓 at which 1 ≤ 𝑓 < 𝑛, we have: 

 

𝑓
⊗
𝑗 = 1

  (𝑝𝑥𝑓+1 ⨁ 𝑞𝑥𝑗) =

(

 
 
 
 
 √∏(1 − (1 − 𝜏𝑓+1

2)
𝑝
(1 − 𝜏𝑗

2)
𝑞
)

𝑓

𝑖=1

, 1 −∏(1 − 𝜉𝑓+1
𝑝 𝜉𝑗

𝑞),

𝑓

𝑖=1

√1 −∏(1 − (𝜂𝑓+1
2𝑝𝜂𝑗

2𝑞))

𝑓

𝑖=1 )

 
 
 
 
 

 (17) 
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     Proposition 5. Let 𝑝, 𝑞 ≥ 0  and 𝑥𝑖 = (𝜏𝑖(𝑥), 𝜉𝑖(𝑥), 𝜂𝑖(𝑥) )  where a PNS set consist of (𝑖 =

1,2,3, … , 𝑛). For any 𝑖, 𝑗 𝑎𝑛𝑑 𝑖 ≠ 𝑗: 

𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   ) =

(

 
 
 
 
 √∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
)

𝑛

𝑖=1

, 1 −∏(1 − 𝜉𝑖
𝑝 𝜉𝑗

𝑞),

𝑛

𝑖=1

√1 −∏(1 − (𝜂𝑖
2𝑝𝜂𝑗

2𝑞))

𝑛

𝑖=1 )

 
 
 
 
 

 (18) 

 

Proof Proposition 5 can be proven as follows by combining the results from Propositions 2 to 4. 

By using Equation (15) and letting 𝑛 = 2, we get: 

2
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   ) = (𝑝𝑥1 ⨁ 𝑞𝑥2)⨂(𝑝𝑥2 ⨁ 𝑞𝑥1)  

                    = 

(

 
 
√(1 − (1 − 𝜏1

2)𝑝(1 − 𝜏2
2)𝑞)(1 − (1 − 𝜏2

2)𝑝(1 − 𝜏1
2)𝑞),

1 − (1 − 𝜉1
𝑝 𝜉2

𝑞)(1 − 𝜉2
𝑝 𝜉1

𝑞),

√1 − (1 − (𝜂1
2𝑝𝜂2

2𝑞))(1 − (𝜂2
2𝑝𝜂1

2𝑞))
)

 
 

 

and if 𝑛 = 𝑓, the equation becomes: 

𝑓
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   ) =

(

 
 
 
 
 
 
 
√∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
)

𝑓

𝑖,𝑗=1
𝑖≠𝑗

, 1 −∏(1 − 𝜉𝑖
𝑝 𝜉𝑗

𝑞),

𝑓

𝑖,𝑗=1
𝑖≠𝑗

√1 −∏(1 − 𝜂𝑖
2𝑝𝜂𝑗

2𝑞)

𝑓

𝑖,𝑗=1
𝑖≠𝑗

)

 
 
 
 
 
 
 

  

Next, let 𝑛 = 𝑓 + 1 

 

𝑓 + 1
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   ) =

𝑓
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   )
𝑓
⊗
𝑖 = 1

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑓+1  )
𝑓
⊗
𝑗 = 1

  (𝑝𝑥𝑓+1 ⨁ 𝑞𝑥𝑗   ) 

 

where 
𝑓
⊗
𝑖 = 1

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑓+1  ) can be referred from Proposition 3, which is 
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(

 
 
 
 
 √∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑓+1
2)
𝑞
)

𝑓

𝑖=1

, 1 −∏(1 − 𝜉𝑖
𝑝 𝜉𝑓+1

𝑞),

𝑓

𝑖=1

√1 −∏(1 − (𝜂𝑖
2𝑝𝜂𝑓+1

2𝑞))

𝑓

𝑖=1 )

 
 
 
 
 

 

and 
𝑓
⊗
𝑗 = 1

  (𝑝𝑥𝑓+1 ⨁ 𝑞𝑥𝑗) can be referred from Proposition 4, which is 

(

 
 
 
 
 √∏(1 − (1 − 𝜏𝑓+1

2)
𝑝
(1 − 𝜏𝑗

2)
𝑞
)

𝑓

𝑖=1

, 1 −∏(1 − 𝜉𝑓+1
𝑝 𝜉𝑗

𝑞),

𝑓

𝑖=1

√1 −∏(1 − (𝜂𝑓+1
2𝑝𝜂𝑗

2𝑞))

𝑓

𝑖=1 )

 
 
 
 
 

 

Therefore, operations are performed for 

𝑓 + 1
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   ) : 

𝑓 + 1
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   ) =

(

 
 
 
 
 √∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
)

𝑓+1

𝑖=1

, 1 −∏(1 − 𝜉𝑖
𝑝 𝜉𝑗

𝑞),

𝑓+1

𝑖=1

√1 −∏(1 − (𝜂𝑖
2𝑝𝜂𝑗

2𝑞))

𝑓+1

𝑖=1 )

 
 
 
 
 

 

 

Given that Equation (18) remains applicable for 𝑛 = 𝑓 + 1. Thus, Proposition 5 holds. 

 

     Proposition 6. Let 𝑝, 𝑞 ≥ 0  and 𝑥𝑖 = (𝜏𝑖(𝑥), 𝜉𝑖(𝑥), 𝜂𝑖(𝑥) )  where a PNS set consist of (𝑖 =

1,2,3, … , 𝑛). For any 𝑖, 𝑗 𝑎𝑛𝑑 𝑖 ≠ 𝑗: 

1

𝑝 + 𝑞
 

(

 
 

𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   )

)

 
 
=

(

 
 
 
 
 
 
 
 
 √∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
)

1
𝑝+𝑞

𝑛

𝑖,𝑗=1
𝑖≠𝑗

,

1 −∏(1 − 𝜉𝑖
𝑝 𝜉𝑗

𝑞)
1

𝑝+𝑞 ,

𝑛

𝑖,𝑗=1
𝑖≠𝑗

√1 −∏(1 − 𝜂𝑖
2𝑝𝜂𝑗

2𝑞)
1

𝑝+𝑞

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 
 
 
 
 
 
 
 

 (19) 

 

Proof Referring to Proposition 5, we possess the following: 
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𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   ) =

(

 
 
 
 
 √∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
)

𝑛

𝑖=1

, 1 −∏(1 − 𝜉𝑖
𝑝 𝜉𝑗

𝑞),

𝑛

𝑖=1

√1 −∏(1 − (𝜂𝑖
2𝑝𝜂𝑗

2𝑞))

𝑛

𝑖=1 )

 
 
 
 
 

 

 

By commencing the operating rules (iii) based on Definition 6, we get: 

1

𝑝 + 𝑞
 

(

 
 

𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   )

)

 
 
=

(

 
 
 
 
 
 
 
 
 √∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
)

1
𝑝+𝑞

𝑛

𝑖,𝑗=1
𝑖≠𝑗

,

1 −∏(1 − 𝜉𝑖
𝑝 𝜉𝑗

𝑞)
1

𝑝+𝑞 ,

𝑛

𝑖,𝑗=1
𝑖≠𝑗

√1 −∏(1 − 𝜂𝑖
2𝑝𝜂𝑗

2𝑞)
1

𝑝+𝑞

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 
 
 
 
 
 
 
 

 

Hence, Proposition 6 holds. Subsequently, through the application of PNGBM as outlined in 

Definition 8, we embark on deducing the PNNWGBM operator in the following steps: 

 

Definition 9. Let 𝑝, 𝑞 ≥ 0  and 𝑥𝑖 = (𝜏𝑖(𝑥), 𝜉𝑖(𝑥), 𝜂𝑖(𝑥) )  where a PNS set consist of (𝑖 =

1,2,3, … , 𝑛) , then PNNWGBM (Pythagorean Neutrosophic Normalized Weighted Geometric 

Bonferroni Mean) is defined for all sets of PNS as follows: 

𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) =  (

𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

 
𝜔𝑖𝜔𝑗

1 − 𝜔𝑖
 (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   )

1
𝑛(𝑛−1)) (20) 

 

where the weight vector, 𝑊 = (𝜔1, 𝜔2, 𝜔3, … , 𝜔𝑛)
𝑇  signifies the level of importance of 𝑥𝑖  for 

(𝑖 = 1,2,3, … , 𝑛) with the condition ∑ 𝜔𝑗 = 1𝑛
𝑗=1  and 𝜔𝑗 ∈ [0,1]. 

     Theorem 1. Let 𝑝, 𝑞 ≥ 0  and 𝑥𝑖 = (𝜏𝑖(𝑥), 𝜉𝑖(𝑥), 𝜂𝑖(𝑥) )  where a PNS set consist of (𝑖 =

1,2,3, … , 𝑛) , the value computed by the PNNWGBM operator in Equation (20) represents a 

Pythagorean neutrosophic number with the following components: 

𝜏𝑖(𝑥) =

(

 
 
√∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
)

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑛(𝑛−1)

, 𝜉𝑖(𝑥) = 1 −

(

 
 
∏(1 − 𝜉𝑖

𝑝 𝜉𝑗
𝑞)

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑛(𝑛−1)

, 

 

𝑎𝑛𝑑 𝜂𝑖(𝑥) =

√
  
  
  
  
  
 

1 −

(

 
 
∏ (1 − (𝜂𝑖

2𝑝𝜂𝑗
2𝑞))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑛(𝑛−1)

. 
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Proof Theorem 1 can be established by using the derived equations from Propositions 1 to 6: 

We possess 𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗 = (√1 − (1 − 𝜏𝑖
2)𝑝(1 − 𝜏𝑗

2)
𝑞
, 𝜉𝑖

𝑝 𝜉𝑗
𝑞 , 𝜂𝑖

𝑝𝜂𝑗
𝑞), then 

𝜔𝑖𝜔𝑗

1 − 𝜔𝑖
(𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗) = (√(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
)

𝜔𝑖𝜔𝑗
1−𝜔𝑖 , (𝜉𝑖

𝑝 𝜉𝑗
𝑞)

𝜔𝑖𝜔𝑗
1−𝜔𝑖  , (𝜂𝑖

𝑝𝜂𝑗
𝑞)

𝜔𝑖𝜔𝑗
1−𝜔𝑖) 

Next, we get: 

𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

 
𝜔𝑖𝜔𝑗

1 − 𝜔𝑖
 (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   ) =

(

 
 
 
 
 
 
 
 
 √∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
)

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗

,

1 −∏(1 − 𝜉𝑖
𝑝 𝜉𝑗

𝑞)
𝜔𝑖𝜔𝑗
1−𝜔𝑖 ,

𝑛

𝑖,𝑗=1
𝑖≠𝑗

√1 −∏ (1 − (𝜂𝑖
2𝑝𝜂𝑗

2𝑞))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 
 
 
 
 
 
 
 

 

Therefore,  

𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) =  (

𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

 
𝜔𝑖𝜔𝑗

1 − 𝜔𝑖
 (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   )

1
𝑛(𝑛−1)) 

                              =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
√∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
)

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑛(𝑛−1)

,

1 −

(

  
 
1 −

(

 
 
1 −∏(1 − 𝜉𝑖

𝑝 𝜉𝑗
𝑞)

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

)

  
 

1
𝑛(𝑛−1)

,

√
  
  
  
  
  
  

1 −

(

  
 
1 −

(

 
 
1 −∏ (1 − (𝜂𝑖

2𝑝𝜂𝑗
2𝑞))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

)

  
 

1
𝑛(𝑛−1)

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Furthermore, we can simplify the equation to get: 
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𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
√∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
)

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑛(𝑛−1)

,

1 −

(

 
 
∏(1 − 𝜉𝑖

𝑝 𝜉𝑗
𝑞)

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑛(𝑛−1)

,

√
  
  
  
  
  
 

1 −

(

 
 
∏ (1 − (𝜂𝑖

2𝑝𝜂𝑗
2𝑞))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑛(𝑛−1)

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (21) 

𝑤ℎ𝑒𝑟𝑒 0 ≤

(

 
 
√∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
)

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑛(𝑛−1)

≤ 1,  

0 ≤ 1 −

(

 
 
∏(1 − 𝜉𝑖

𝑝 𝜉𝑗
𝑞)

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑛(𝑛−1)

≤ 1 𝑎𝑛𝑑 0 ≤

√
  
  
  
  
  
 

1 −

(

 
 
∏ (1 − (𝜂𝑖

2𝑝𝜂𝑗
2𝑞))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑛(𝑛−1)

≤ 1 

satisfying Equation (7) and (8). Hence, this validates Theorem 1. Building on the established Theorem 

1, we can additionally deduce the important properties of the 𝑃𝑁𝐺𝐵𝑀𝑝,𝑞 , namely reducibility, 

commutativity, idempotency, monotonicity, and boundedness. 

 

     Theorem 2. Reducibility: Let 𝜔 = (
1

𝑛
,
1

𝑛
,
1

𝑛
, … ,

1

𝑛
) then 

𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑃𝑁𝐺𝐵𝑀𝑝,𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) (22) 

 

Proof Considering 𝜔 = (
1

𝑛
,
1

𝑛
,
1

𝑛
, … ,

1

𝑛
), then in line with Definition 9, it follows that 

𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) =  (

𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

 
𝜔𝑖𝜔𝑗

1 − 𝜔𝑖
 (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   )

1
𝑛(𝑛−1)) 

                                                        =  (

𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

 
1

𝑝 + 𝑞
 (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   )

1
𝑛(𝑛−1)) 

                                                        =
1

𝑝 + 𝑞
 (

𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

  (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗  )
1

𝑛(𝑛−1)) 

                                                        = 𝑃𝑁𝐺𝐵𝑀𝑝,𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) 
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thus, completing the proof of Theorem 2. 

 

    Theorem 3. Idempotency: Let 𝑥𝑖 = 𝑥 where (𝑖 = 1,2,3, … , 𝑛) then 

 

𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑥 (23) 

 

Proof Given that 𝑥𝑖 = 𝑥 for every 𝑖, it follows that 

𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) = (

𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

 
𝜔𝑖𝜔𝑗

1−𝜔𝑖
 (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   )

1

𝑛(𝑛−1))  

                            = (

𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

 
𝜔𝑖𝜔𝑗

1−𝜔𝑖
 (𝑝𝑥 ⨁ 𝑞𝑥  )

1

𝑛(𝑛−1)) 

                            = (

𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

 
𝜔𝑖𝜔𝑗

1−𝜔𝑖
 (𝑥(𝑝 ⨁ 𝑞))

1

𝑛(𝑛−1)) 

                            = 𝑥(

𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

 
𝜔𝑖𝜔𝑗

1−𝜔𝑖
 )

1

𝑛(𝑛−1)

= 𝑥 

thus, concluding the proof of Theorem 3. 

 

    Theorem 4. Commutativity: (�̃�1, �̃�2, … , �̃�𝑛) is any permutation of Pythagorean neutrosophic 

numbers (𝑥1, 𝑥2, … , 𝑥𝑛). For any 𝑝, 𝑞 > 0, 

 

𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑥1̃, 𝑥2̃, … , 𝑥�̃�) (24) 

 

Proof Let (�̃�1, �̃�2, … , �̃�𝑛) be any permutation of Pythagorean neutrosophic numbers (𝑥1, 𝑥2, … , 𝑥𝑛). 

Then 

𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) = (

𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

 
𝜔𝑖𝜔𝑗

1−𝜔𝑖
 (𝑝𝑥𝑖 ⨁ 𝑞𝑥𝑗   )

1

𝑛(𝑛−1))  

                            = (

𝑛
⊗

𝑖, 𝑗 = 1
𝑖 ≠ 𝑗

 
𝜔𝑖𝜔𝑗

1−𝜔𝑖
 (𝑝�̃�𝑖  ⨁ 𝑞�̃�𝑗   )

1

𝑛(𝑛−1)) 

thus, completing the proof of Theorem 4. 

 

    Theorem 5. Monotonicity: Let 𝑥𝑖 = (𝜏𝑖(𝑥), 𝜉𝑖(𝑥), 𝜂𝑖(𝑥) )  where (𝑖 = 1,2,3,… , 𝑛)  and 𝑦𝑖 =

(𝜏𝑖(𝑦), 𝜉𝑖(𝑦), 𝜂𝑖(𝑦) )  where (𝑖 = 1,2,3, … , 𝑛)  be two collections of PNSs. For any 𝑖 , 𝜏𝑖(𝑥) ≥ 𝜏𝑖(𝑦) , 

𝜉𝑖(𝑥) ≤ 𝜉𝑖(𝑦) and 𝜂𝑖(𝑥) ≤ 𝜂𝑖(𝑦), then 
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𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) ≥ 𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑦1, 𝑦2, … , 𝑦𝑛) (25) 

 

Proof For the degree of truth, we have 𝜏𝑖(𝑥) ≥ 𝜏𝑖(𝑦) for all 𝑖 and 𝑝, 𝑞 > 0. Thus, 𝑝𝜏𝑖(𝑥) ≥ 𝑝𝜏𝑖(𝑦) 

and 𝑞𝜏𝑖(𝑥) ≥ 𝑞𝜏𝑖(𝑦). Following that 

1 − 𝑝𝜏𝑖(𝑥) 𝑞𝜏𝑗(𝑥) ≤ 1 − 𝑝𝜏𝑖(𝑦) 𝑞𝜏𝑗(𝑦) 

∏(1− 𝑝𝜏𝑖(𝑥) 𝑞𝜏𝑗(𝑥))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗

≤ ∏ (1 − 𝑝𝜏𝑖(𝑦) 𝑞𝜏𝑗(𝑦))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗

 

√
  
  
  
  
  
 

(

 
 
1 −∏ (1 − 𝑝𝜏𝑖(𝑥) 𝑞𝜏𝑗(𝑥))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑝+𝑞

≥

√
  
  
  
  
  
 

(

 
 
1 −∏ (1 − 𝑝𝜏𝑖(𝑦) 𝑞𝜏𝑗(𝑦))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑝+𝑞

 

 

For the degree of indeterminacy, since 𝜉𝑖(𝑥) ≤ 𝜉𝑖(𝑦)  for all 𝑖  and 𝑝, 𝑞 > 0 , then we get (1 −

𝑝𝜉𝑖(𝑥)) ≥ (1 − 𝑝𝜉𝑖(𝑦)) and (1 − 𝑞𝜉𝑗(𝑥)) ≥ (1 − 𝑞𝜉𝑗(𝑦)). Therefore,  

 

(1 − 𝑝𝜉𝑖(𝑥)) (1 − 𝑞𝜉𝑗(𝑥)) ≥ (1 − 𝑝𝜉𝑖(𝑦)) (1 − 𝑞𝜉𝑗(𝑦)) 

∏(1− (1 − 𝑝𝜉𝑖(𝑥)) (1 − 𝑞𝜉𝑗(𝑥)))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗

≤ ∏ (1 − (1 − 𝑝𝜉𝑖(𝑦)) (1 − 𝑞𝜉𝑗(𝑦)))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗

 

 

(

 1 −∏(1 − (1 − 𝑝𝜉𝑖(𝑥)) (1 − 𝑞𝜉𝑗(𝑥)))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 

1
𝑝+𝑞

≥

(

 1 −∏(1 − (1 − 𝑝𝜉𝑖(𝑦)) (1 − 𝑞𝜉𝑗(𝑦)))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 

1
𝑝+𝑞

 

 

1 −

(

 
 
1 −∏ (1 − (1 − 𝑝𝜉𝑖(𝑥)) (1 − 𝑞𝜉𝑗(𝑥)))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑝+𝑞

≤ 1 −

(

 
 
1 −∏ (1 − (1 − 𝑝𝜉𝑖(𝑦)) (1 − 𝑞𝜉𝑗(𝑦)))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑝+𝑞

 

 

Likewise, for the degree of falsity, we can observe that: 

 

√
  
  
  
  
  
 

1 −

(

 
 
1 −∏ (1 − (1 − 𝑝𝜉𝑖(𝑥)) (1 − 𝑞𝜉𝑗(𝑥)))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑝+𝑞

≤

√
  
  
  
  
  
 

1 −

(

 
 
1 −∏ (1 − (1 − 𝑝𝜉𝑖(𝑦)) (1 − 𝑞𝜉𝑗(𝑦)))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑝+𝑞
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Hence, considering that 𝜏𝑖(𝑥) ≥ 𝜏𝑖(𝑦), 𝜉𝑖(𝑥) ≤ 𝜉𝑖(𝑦) and 𝜂𝑖(𝑥) ≤ 𝜂𝑖(𝑦), we managed to conclude 

that 𝑥 ≥ 𝑦, thereby concluding the proof of Theorem 5. 

 

    Theorem 6. Boundedness: Let 𝑥𝑖 = (𝜏𝑖(𝑥), 𝜉𝑖(𝑥), 𝜂𝑖(𝑥) )  where a PNS set consist of (𝑖 =

1,2,3, … , 𝑛) and 𝑥− = (𝑚𝑖𝑛𝑖{𝜏𝑖},𝑚𝑎𝑥𝑖{𝜉𝑖},𝑚𝑎𝑥𝑖{𝜂𝑖}), 𝑥
+ = (𝑚𝑎𝑥𝑖{𝜏𝑖},𝑚𝑖𝑛𝑖{𝜉𝑖},𝑚𝑖𝑛𝑖{𝜂𝑖}), then 

 

𝑥− ≤ 𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) ≤ 𝑥+ (26) 

 

Proof Since 𝑥𝑖 ≥ 𝑥−, using Theorem 3 and 5 as a basis, we obtain: 

 

𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) ≥ 𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑥−, 𝑥−, … , 𝑥−) = 𝑥− 

 

In a similar manner, we can derive: 

 

𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) ≤ 𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑥+, 𝑥+, … , 𝑥+) = 𝑥+ 

 

Thus, boundedness is obtained, and Theorem 6 proof has been concluded. 

3. Results and Discussion  

This section may be divided by subheadings. It should provide a concise and precise description 

of the experimental results, their interpretation as well as the experimental conclusions that can be 

drawn. 

3.1. The Multi-Criteria Decision-Making Method Based on PNNWGBM Operator 

In this section, we introduce a Multiple Criteria Decision-Making (MCDM) problem within a 

Pythagorean neutrosophic setting. Let 𝑆 = {𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑛}  as the list of suppliers and 𝐶 =

{𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑛}  as the list of criteria. Then 𝜔𝑗  is the weight assigned to criterion 𝐶𝑗  for 𝑗 =

1,2, … ,𝑚  such that 0 ≤ 𝜔𝑗 ≤ 1  and ∑ 𝜔𝑗 = 1𝑛
𝑗=1 . We propose the PNNWGBM operator to 

consolidate the overall criteria for each supplier into a singular, aggregated preference. The 

computational steps for this method are detailed below. 

Step 1. Construct the decision matrix in the form of a Pythagorean neutrosophic set (PNS), 

denoted as (𝑥𝑖𝑗)𝑚×𝑛 = (𝜏𝑖𝑗(𝑥), 𝜉𝑖𝑗(𝑥), 𝜂𝑖𝑗(𝑥) )𝑚×𝑛. A direct-relation matrix, incorporating the criteria 

score for each supplier, is formed. Afterward, each criterion is converted to Pythagorean 

neutrosophic numbers. The rating scale for PNS numbers is determined by using seven linguistic 

scores ranging from negligible to exceptionally significant effect, employing Pythagorean 

neutrosophic linguistic variables, as detailed in Table 1. 

 

Table 1. The new Pythagorean neutrosophic linguistic variable [31]. 

Score Linguistic Variable Rating Scale in Pythagorean 

Neutrosophic Set 
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1 No Effect 〈0.10, 0.80, 0.90〉 

2 Low Effect 〈0.20, 0.70, 0.80〉 

3 Medium Low Effect 〈0.35, 0.60, 0.60〉 

4 Medium Effect 〈0.50, 0.40, 0.45 〉 

5 Medium High Effect 〈0.65, 0.30, 0.25〉 

6 High Effect 〈0.80, 0.20, 0.15〉 

7 Very High Effect 〈0.90, 0.10, 0.10〉 

 

Step 2. Each criterion for each supplier is aggregated into a unified value by using PNNWGBM 

aggregating operator and the weight vector 𝜔 = (𝜔1, 𝜔2, 𝜔3, … , 𝜔𝑚)
𝑛 that represents the importance 

of each criterion 𝑥𝑖 with 𝑖 varying from 1 to 𝑛. The weight vector satisfies the condition ∑ 𝜔𝑗 = 1𝑛
𝑗=1  

and 𝜔𝑗 ∈ [0,1]. 

𝑃𝑁𝑁𝑊𝐺𝐵𝑀𝑝,𝑞(𝑎𝑖𝑗
1 , 𝑎𝑖𝑗

2 , … , 𝑎𝑖𝑗
𝑚) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
√∏(1 − (1 − 𝜏𝑖

2)𝑝(1 − 𝜏𝑗
2)
𝑞
)

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑛(𝑛−1)

,

1 −

(

 
 
∏(1 − 𝜉𝑖

𝑝 𝜉𝑗
𝑞)

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑛(𝑛−1)

,

√
  
  
  
  
  
 

1 −

(

 
 
∏ (1 − (𝜂𝑖

2𝑝𝜂𝑗
2𝑞))

𝜔𝑖𝜔𝑗
1−𝜔𝑖

𝑛

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑛(𝑛−1)

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Step 3. The aggregated values should adhere to the PNS number conditions outlined in Definition 6 

such that 

0 ≤ (𝜏𝐴(𝑥))
2
+ (𝜂𝐴(𝑥))

2 ≤ 1 

0 ≤ (𝜏𝐴(𝑥))
2
+ (𝜉𝐴(𝑥))

2
+ (𝜂𝐴(𝑥))

2 ≤ 2 

 

     Step 4. Deneutrosophicate the PNS numbers, (𝜏𝐴(𝑥), 𝜉𝐴(𝑥), 𝜂𝐴(𝑥))  into a crisp value by using 

the following formula: 

𝐾 =
𝜏𝐴(𝑥) + 𝜉𝐴(𝑥) + 𝜂𝐴(𝑥)

3
 

 

     Step 5. According to the crisp value, each supplier is ranked from highest to lowest value which 

represents the most ideal supplier for the decision makers to the least ideal. 

3.2. Illustrative Example 

To illustrate the feasibility of the proposed method, we present an example of a multi-criteria 

decision-making problem. A company wants to choose a Halal products supplier for their business. 
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Then there are four different suppliers to choose from. Each of these suppliers is going to be evaluated 

based on four criteria which are, (𝐶1) Quality of Products, (𝐶2) Product Variety, (𝐶3)  Cost and 

Pricing, (𝐶4)  Customer Service and Support and (𝐶5)  Location and Delivery Options. 

 

     Step 1. By using the five criteria 𝐶𝑖(𝑖 = 1,2,3,4,5) and four potential Halal products suppliers 

𝑆𝑖(𝑖 = 1,2,3,4), the 4 × 5 initial direct-relation matrix, 𝑋 is obtained Table 2. These values then are 

transformed into Pythagorean neutrosophic numbers, which encompass the degrees of truth, 

indeterminacy, and falsity. 

 

               Table 2. Initial direct-relation matrix, 𝑋. 

  C1 C2 C3 C4 C5 

S1 6 3 1 7 7 

S2 5 3 6 6 1 

S3 5 4 5 6 1 

S4 2 7 3 4 2 

 

     Step 2. The aggregated value was computed using the PNNWGBM operator from Equation (21) 

to depict the criterion selection for each supplier. The decision-makers employ a weighting vector 

𝑤 = (0.25, 0.18, 0.32,0.10,0.15) and the result obtained is shown in Table 3.  

 

    Table 3. The aggregated value using PNNWGBM operator. 

 PNNWGBM 

S1 (0.9867,0.0091,0.055) 

S2 (0.9872,0.0082,0.0417) 

S3 (0.9856,0.008,0.0377) 

S4 (0.9712,0.0165,0.0901) 

      Step 3. The aggregated PNS set has been verified and it satisfies the conditions outlined in 

Definition 6 where 0 ≤ (𝜏𝐴(𝑥))
2
+ (𝜂𝐴(𝑥))

2 ≤ 1  and  0 ≤ (𝜏𝐴(𝑥))
2
+ (𝜉𝐴(𝑥))

2
+ (𝜂𝐴(𝑥))

2 ≤ 2  as 

shown in Table 4.  

 

     Table 4. PNS number verification. 

 𝝉 𝝃 𝜼 𝝉𝟐 + 𝜼𝟐 𝝉𝟐 + 𝝃𝟐 + 𝜼𝟐 

S1 0.98673 0.00909 0.05501 0.97666 0.97674 

S2 0.98718 0.00823 0.04171 0.97626 0.97633 

S3 0.98557 0.00795 0.03768 0.97277 0.97284 

S4 0.97118 0.01652 0.09007 0.9513 0.95157 

 

     Step 4. The aggregated PNS set has been deneutrosophicated into a crisp value to represent the 

overall criterion for each supplier. 
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       Table 5. Crisp value. 

S1 0.3503 

S2 0.3457 

S3 0.3437 

S4 0.3593 

 

     Step 5. Table 6 presents the ranking of the suppliers according to the crisp value that has been 

aggregated by PNNWGBM operator. Therefore, Supplier 4 is the most recommended alternative for 

the company to choose.  

      Table 6. The rankings of suppliers. 

  PNNWGBM Rank 

S1 0.3503 2 

S2 0.3457 3 

S3 0.3437 4 

S4 0.3593 1 

4. Conclusions 

This paper has discussed the application of Geometric Bonferroni Mean (GBM) operator to 

Pythagorean neutrosophic set framework. The primary aim was to introduce and verify a novel  

normalized weighted Geometric Bonferroni Mean, termed PNNWGBM tailored for Pythagorean 

neutrosophic sets. The integration of GBM into PNS setting provides a new reliable means for 

decision makers in the MCDM problems, offering a nuanced approach to capturing interactions 

among variables in decision-making processes. The proposed PNNWGBM method exhibited 

promising results, validated through the illustrative example of case study pertaining to Halal 

products supplier selection. Moreover, this study contributes to existing literature by broadening the 

applications of the Geometric Bonferroni Mean operator and assessing its efficacy in Pythagorean 

neutrosophic settings. The findings underscore the potential of PNNWGBM to be applied to existing 

MCDM methodologies such as TOPSIS, AHP, PROMETHEE and DEMATEL. 

The advantages of this newly developed PNNWGBM aggregating operator compared to 

existing operators lie in Pythagorean neutrosophic sets, which provide a more flexible framework for 

representing uncertainty than traditional fuzzy sets. By incorporating Pythagorean neutrosophic sets, 

the new operator can better capture and process degrees of truth, indeterminacy, and falsity, leading 

to more accurate decision-making. Moreover, the combination of PNS methodology with the GBM 

aggregating operator enables effective aggregation of information while considering 

interdependencies and correlations between different criteria, resulting in a more comprehensive 

assessment. Lastly, this new operator can be applied to a wide range of multi-criteria decision-making 

(MCDM) problems in fields such as engineering, economics, and social sciences. Its ability to handle 

complex and uncertain information makes it suitable for real-world applications where traditional 

methods may fall short. 

Future research for the GBM operator in Pythagorean neutrosophic set theory encompasses 

algorithm development, decision-making applications, uncertainty modelling, integration with other 

operators, real-world applications, extensions to fuzzy and neutrosophic sets, theoretical analysis, 

robustness and sensitivity analysis, machine learning integration, and comparative studies. These 

investigations aim to enhance computational efficiency, explore practical applications, understand 

theoretical properties, and assess performance in uncertain environments, ultimately advancing the 



Neutrosophic Sets and Systems, Vol. 75, 2025     158  

 

 

Mohammad Shafiq bin Mohammad Kamari,  Zahari Bin Md. Rodzi,  Deciphering the Geometric Bonferroni Mean 

Operator in Pythagorean Neutrosophic Sets Framework   

utility and understanding of this operator. Overall, this study lays the groundwork for utilizing the 

Geometric Bonferroni Mean aggregation operator in Pythagorean neutrosophic decision-making.  

The integration of the Geometric Bonferroni Mean (GBM) with Pythagorean neutrosophic set, 

despite its advantages, has limitations including increased computational complexity, sensitivity to 

parameter selection, and high data quality requirements. It can also suffer from reduced 

interpretability and scalability issues as the number of criteria and interactions increase. The 

subjectivity in defining neutrosophic membership functions introduces potential biases, and there 

are limited practical applications and case studies validating this approach. Additionally, validating 

the outcomes can be challenging due to the abstract and complex nature of the method. 

  

Funding: We would like to acknowledge the Ministry of Higher Education Malaysia for their sponsorship of the 

Fundamental Research Grant Scheme (Project Code: FRGS/1/2023/STG06/UITM/02/5). This financial support has 

been crucial in advancing our research efforts, and we are grateful for their assistance. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

[1]    L. A. Zadeh, “Fuzzy Sets,” Information and Control 8, pp. 338–353, 1965. 

[2] K. T. Atanassov, “Intuitionistic Fuzzy Sets,” Fuzzy Sets and Systems 20, pp. 87–96, 1986. 

[3] F. Smarandache, Neutrosophy: neutrosophic probability, set, and logic: analytic synthesis & synthetic 

analysis. 1998. 

[4] F. Smarandache, A unifying field in logics : Neutrosophic logic. 1999. 

[5] H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, “Single Valued Neutrosophic Sets,” 

Infinite study, vol. 12, no. 20110, 2010, [Online]. Available: 

https://www.researchgate.net/publication/262034557 

[6] H. Wang, F. Smarandache, Y.-Q. Zhang, and R. Sunderraman, “Interval neutrosophic sets and 

logic: theory and applications in computing: Theory and applications in computing (Vol. 5). 

Infinite Study. 

[7] J. Ye, “A multicriteria decision-making method using aggregation operators for simplified 

neutrosophic sets,” Journal of Intelligent and Fuzzy Systems, vol. 26, no. 5, pp. 2459–2466, 2014, doi: 

10.3233/IFS-130916. 

[8] P. K. Maji, “Neutrosophic soft set,” Annals of Fuzzy Mathematics and Informatics, vol. 5, no. 1, pp. 

157–168, 2013, [Online]. Available: http://www.afmi.or.kr@FMIhttp://www.kyungmoon.com 

[9] J. Q. Wang and X. E. Li, “An application of the TODIM method with multi-valued neutrosophic 

set,” Control Decis, vol. 30, pp. 1139–1142, 2015. 

[10] S. Broumi, F. Smarandache, and M. Dhar, “Said Broumi, and Florentin Smarandache, Mamoni 

Dhar, Rough Neutrosophic Sets Rough Neutrosophic Sets,” 2014. 

[11] V. Uluçay, I. Deli, and M. Şahin, “Similarity measures of bipolar neutrosophic sets and their 

application to multiple criteria decision making,” Neural Comput Appl, vol. 29, no. 3, pp. 739–748, 

Feb. 2018, doi: 10.1007/s00521-016-2479-1. 

[12] V. Christianto and F. Smarandache, “A Refined Neutrosophic Components into Subcomponents 

with Plausible Applications to Long Term Energy Planning Predominated by Renewable 

Energy,” Plithogenic Logic and Computation, vol. 1, pp. 54–60, Jan. 2024, doi: 

10.61356/j.plc.2024.19060. 



Neutrosophic Sets and Systems, Vol. 75, 2025     159  

 

 

Mohammad Shafiq bin Mohammad Kamari,  Zahari Bin Md. Rodzi,  Deciphering the Geometric Bonferroni Mean 

Operator in Pythagorean Neutrosophic Sets Framework   

[13] A. Siraj, T. Fatima, D. Afzal, K. Naeem, and F. Karaaslan, “Pythagorean m-polar Fuzzy 

Neutrosophic Topology with Applications,” Neutrosophic Sets and Systems, vol. 48, pp. 251–290, 

2022. 

[14] A. Siraj, K. Naeem, and B. Said, “Pythagorean m-polar Fuzzy Neutrosophic Metric Spaces,” 

Neutrosophic Sets and Systems, vol. 53, pp. 562–579, 2023. 

[15]   A. Darvesh et al., “Time for a New Player in Business Analytics: An MCDM Scheme Based on 

One-Dimensional Uncertain Linguistic Interval-Valued Neutrosophic Fuzzy Data Adil Darvesh 

et al., Time for a New Player in Business Analytics: An MCDM Scheme Based on One-

Dimensional Uncertain Linguistic Interval-Valued Neutrosophic Fuzzy Data,” 2023. 

[16] V. Uluçay, “Some concepts on interval-valued refined neutrosophic sets and their applications,” 

J Ambient Intell Humaniz Comput, vol. 12, no. 7, pp. 7857–7872, 2021. 

[17] V. Uluçay, “Q-neutrosophic soft graphs in operations management and communication 

network,” Soft comput, vol. 25, no. 13, pp. 8441–8459, 2021. 

[18] R. Jansi, K. Mohana, and F. Smarandache, “Correlation Measure for Pythagorean Neutrosophic 

Fuzzy Sets with T and F as Dependent Neutrosophic Components,” Neutrosophic Sets and Systems, 

vol. 30, 2019. 

[19]   R. K. Saini, A. Ahirwar, F. Smarandache, and M. Kushwaha, “Multi-Criteria Group Decision-

Making with ELECTRE-III Method for Selection of Female Spouse in Pythagorean Neutrosophic 

Environment,” Plithogenic Logic and Computation, vol. 1, pp. 36–53, Jan. 2024, doi: 

10.61356/j.plc.2024.18960. 

[20] C. Bonferroni, Sulle medie multiple di potenze. Bollettino Dell’Unione Matematica Italiana, vol. 5(3–4). 

1950. 

[21] M. Xia, Z. Xu, and B. Zhu, “Geometric Bonferroni means with their application in multi-criteria 

decision making,” Knowl Based Syst, vol. 40, pp. 88–100, Mar. 2013, doi: 

10.1016/j.knosys.2012.11.013. 

[22] D. Liang, Zeshui Xu, and Adjei Peter Darko, “Projection Model for Fusing the Information of 

Pythagorean Fuzzy Multicriteria Group Decision Making Based on Geometric Bonferroni Mean,” 

International Journal of Intelligent Systems, vol. 32, no. 9, pp. 966–987, 2017. 

[23] Z. Xu and R. R. Yager, “Some geometric aggregation operators based on intuitionistic fuzzy sets,” 

Int J Gen Syst, vol. 35, no. 4, pp. 417–433, Aug. 2006, doi: 10.1080/03081070600574353. 

[24] Q. H. B. Hasnan et al., “Revolutionizing Multi-Criteria Decision Making with the Triangular 

Fuzzy Geometry Bonferroni Mean Operator (TFGBM),” Science and Technology Indonesia, vol. 9, 

no. 1, pp. 1–6, Jan. 2024, doi: 10.26554/sti.2024.9.1.1-6. 

[25] Z. M. Rodzi and A. G. Ahmad, “Application of parameterized hesitant fuzzy soft set theory in 

decision making,” Mathematics and Statistics, vol. 8, no. 3, pp. 244–253, 2020, doi: 

10.13189/ms.2020.080302. 

[26] Z. M. Rodzi, M. N. H. B. Kamarulamirin, N. Q. B. A. Halim, and Y. B. Ya’akop, “The DEMATEL 

Approach to Analyzing the Factors Influencing University Students’ Purchase of Smartphones,” 

in 2021 2nd International Conference on Artificial Intelligence and Data Sciences, AiDAS 2021, Institute 

of Electrical and Electronics Engineers Inc., Sep. 2021. doi: 10.1109/AiDAS53897.2021.9574256. 

[27] D. Ajay, S. Broumi, and J. Aldring, “An MCDM Method under Neutrosophic Cubic Fuzzy Sets 

with Geometric Bonferroni Mean Operator,” 2020. 



Neutrosophic Sets and Systems, Vol. 75, 2025     160  

 

 

Mohammad Shafiq bin Mohammad Kamari,  Zahari Bin Md. Rodzi,  Deciphering the Geometric Bonferroni Mean 

Operator in Pythagorean Neutrosophic Sets Framework   

[28] D. Li, W. Zeng, and J. Li, “Geometric Bonferroni Mean Operators,” International Journal of 

Intelligent Systems, vol. 31, no. 12, pp. 1181–1197, Dec. 2016, doi: 10.1002/int.21822. 

[29]   R. R. Yager, “Pythagorean Membership Grades in Multicriteria Decision Making,” IEEE 

Transactions on Fuzzy Systems, vol. 22, no. 4, pp. 958–965, 2014. 

[30] R. Radha, A. Stanis, and A. Mary, “Neutrosophic Pythagorean Soft Set With T and F as 

Dependent Neutrosophic Components,” 2021. 

[31] J. N. Ismail, Z. Md Rodzi, F. Al-Sharqi, A. Al-Quran, H. Hashim, and N. H. Sulaiman, “Algebraic 

Operations on Pythagorean neutrosophic sets (PNS): Extending Applicability and Decision-

Making Capabilities,” International Journal of Neutrosophic Science, vol. 21, no. 4, pp. 127–134, 2023, 

doi: 10.54216/IJNS.210412. 

[32]   Edalatpanah, S. A. (2020). Neutrosophic structured element. Expert systems, 37(5), e12542. 

[33]  Akram, M., Ullah, I., Allahviranloo, T., & Edalatpanah, S. A. (2021). LR-type fully Pythagorean 

fuzzy linear programming problems with equality constraints. Journal of Intelligent & Fuzzy 

Systems, 41(1), 1975-1992. 

[34]  Radha, R., Mary, A. S. A., Broumi, S., Jafari, S., & Edalatpanah, S. A. (2023). Effectiveness on 

impact of COVID vaccines on correlation coefficients of pentapartitioned neutrosophic 

pythagorean statistics. In Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics 

(pp. 335-356). Academic Press.  

[35]  Dirik, M. (2023). Fire extinguishers based on acoustic oscillations in airflow using fuzzy 

classification. Journal of fuzzy extension and applications, 4(3), 217-234. 

[36]  Smarandache, F. (2024). The dynamic interplay of opposites in Zoroastrianism. Journal of Fuzzy 

Extension and Applications, 5(1), 1-15. 

[37] Ur Rahman A, Saeed M, Saeed MH, Zebari DA, Albahar M, Abdulkareem KH, Al-Waisy AS, 

Mohammed MA. A Framework for Susceptibility Analysis of Brain Tumours Based on Uncertain 

Analytical Cum Algorithmic Modeling. Bioengineering. 2023; 10(2):147  

[38]  El-Morsy, S. (2023). Stock portfolio optimization using Pythagorean fuzzy numbers. Journal of 

Operational and Strategic Analytics, 1(1), 8-13. 

[39] Adak, A. K., Kumar, D., & Edalatpanah, S. A. (2024). Some new operations on Pythagorean fuzzy 

sets. Uncertainty Discourse and Applications, 1(1), 11-19. 

[40] Khaled, Z. A., & Mohammed, F. M. (2023). An Introduction to M-Open Sets in Fuzzy 

Neutrosophic Topological Spaces. International Journal of Neutrosophic Science, (4), 36-6. 

[41] Ali, T. M., & Mohammed, F. M. (2022). Some Perfectly Continuous Functions via Fuzzy 

Neutrosophic Topological Spaces. International Journal of Neutrosophic Science, 18(4), 174-183. 

[42] F. Al-Sharqi, A. Al-Quran and Z. M. Rodzi, Multi-Attribute Group Decision-Making Based on Aggregation 

Operator and Score Function of Bipolar Neutrosophic Hypersoft Environment, Neutrosophic Sets and 

Systems, 61(1), 465-492, 2023. 

[43] M. U. Romdhini, F. Al-Sharqi, A. Nawawi, A. Al-Quran and H. Rashmanlou, Signless Laplacian Energyof 

Interval-Valued Fuzzy Graph and its Applications, Sains Malaysiana 52(7), 2127-2137, 2023 

[44] F. Al-Sharqi, Y. Al-Qudah and N. Alotaibi, Decision-making techniques based on similarity measures of 

possibility neutrosophic soft expert sets. Neutrosophic Sets and Systems, 55(1) (2023), 358-382.  



Neutrosophic Sets and Systems, Vol. 75, 2025     161  

 

 

Mohammad Shafiq bin Mohammad Kamari,  Zahari Bin Md. Rodzi,  Deciphering the Geometric Bonferroni Mean 

Operator in Pythagorean Neutrosophic Sets Framework   

[45] Z. bin M. Rodzi et al., “Integrated Single-Valued Neutrosophic Normalized Weighted Bonferroni Mean 

(SVNNWBM)-DEMATEL for Analyzing the Key Barriers to Halal Certification Adoption in Malaysia,” Int. 

J. Neutrosophic Sci., vol. 21, no. 3, pp. 106–114, 2023. 

[46] Abed, M. M., Hassan, N., & Al-Sharqi, F. (2022). On neutrosophic multiplication module. Neutrosophic Sets 

and Systems, 49(1), 198-208. 

[47] Ashraf Al-Quran, Faisal Al-Sharqi, Zahari Md. Rodzi, Mona Aladil, Rawan A. shlaka, Mamika Ujianita 

Romdhini, Mohammad K. Tahat, Obadah Said Solaiman. (2023). The Algebraic Structures of Q-Complex 

Neutrosophic Soft Sets Associated with Groups and Subgroups. International Journal of Neutrosophic 

Science, 22 ( 1 ), 60-76. 

[48] A. Al-Quran, F. Al-Sharqi, A. U. Rahman and Z. M. Rodzi, The q-rung orthopair fuzzy-valued neutrosophic 

sets: Axiomatic properties, aggregation operators and applications. AIMS Mathematics, 9(2), 5038-5070, 

2024. 

[49] Al-Quran, A., Hassan, N., & Alkhazaleh, S. (2019). Fuzzy parameterized complex neutrosophic soft expert 

set for decision under uncertainty. Symmetry, 11(3), 382.   

[50] A. Al-Quran, F. Al-Sharqi, K. Ullah, M. U. Romdhini, M. Balti and M. Alomai, Bipolar fuzzy hypersoft set 

and its application in decision making, International Journal of Neutrosophic Science, vol. 20, no. 4, pp. 65-

77, 2023. 

[51] Rahman, A. U., Saeed, M., Mohammed, M. A., Abdulkareem, K. H., Nedoma, J., & Martinek, R. (2023). An 

innovative mathematical approach to the evaluation of susceptibility in liver disorder based on fuzzy 

parameterized complex fuzzy hypersoft set. Biomedical signal processing and control, 86, 105-204. 

[52] Rahman, A. U., Saeed, M., Mohammed, M. A., Abdulkareem, K. H., Nedoma, J., & Martinek, R. (2023). 

Fppsv-NHSS: Fuzzy parameterized possibility single valued neutrosophic hypersoft set to site selection for 

solid waste management. Applied soft computing, 140, 110273. 

 

 

Received: June 27, 2024. Accepted: Oct 12, 2024 


