
University of New Mexico

Similarity -Based Pattern Recognition for Disease Symptom

Extraction and Characterization

Priya Mathews1, Lovelymol Sebastian2 and Baiju Thankachan3,∗

1Department of Mathematics, St. Thomas College Kozhencherry, Pathanamthitta, Kerala,India-689641;

priyamathews91@gmail.com
2Department of Mathematics, MES College Nedumkandam, Idukki, Kerala, India.; lovelymaths95@gmail.com
3Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education,

Manipal, India-576104.; baiju.t@manipal.edu
∗Correspondence: baiju.t@manipal.edu; Tel.: +91-8217610206

Abstract. Neutrosophic Fuzzy Sets (NFS) expand upon classical fuzzy sets in the field of fuzzy set theory

by including measures of truth, indeterminacy, and falsity. This paper thoroughly examines the creation and

assessment of similarity measures for Single-Valued Neutrosophic Fuzzy Sets (SVNFS). The similarity measure is

a crucial metric that quantifies the extent of similarity between two sets. It finds extensive application in various

fields such as pattern recognition, medical diagnosis, and decision-making challenges. Nevertheless, the current

similarity measures of Neutrosophic Fuzzy Sets(NFS) suffer from limited practicality and interpretation, and do

not yield highly reliable outcomes. In order to tackle this issues,We provide a variety of new similarity measures,

including the Hausdorff similarity measure, Membership-grade based similarity measure, and Trigonometric

Hausdorff similarity measure specifically designed for Neutrosophic Fuzzy Sets(NFS). We conduct a comparison

of their performance against existing measures. We verify the efficacy of these approaches by conducting

thorough theoretical research and practical trials, showcasing their suitability in pattern recognition. The

findings demonstrate substantial enhancements in precision and resilience, offering vital tools for academics and

practitioners working with intricate and unpredictable data. The results of our research provide a foundation

for future progress in the Neutrosophic Fuzzy Set theory and its practical use in several areas.

Keywords: Nuetrosophic Fuzzy Sets; Single Valued Nuetrosophic Fuzzy Sets; Hausdorff similarity measure

between Nuetrosophic Fuzzy Sets; Enhanced cosine similarity measure between Nuetrosophic Fuzzy Sets

—————————————————————————————————————————-

1. Introduction

The fuzzy sets (FS) introduced by Zadeh [2] [6]have a wide variety of application in dif-

ferent fields of study. The fuzzy set handles uncertainty and ambiguity that the classical

set cannot handle. To handle uncertain, incomplete, imprecise and inconsistent informa-

tion,Smarandache [7]popularized the notion of a neutrosophic set (NS) from a philosophical

perspective, It expands upon the principles of classical sets and fuzzy sets. In the neutrosophic

set, a truth
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membership function T (x), an indeterminacy membership function I(x), and a falsity mem-

bership function F(x) are characterized independently, [3] where T (x), I(x), and F(x) are

real standard or non-standard subsets of ] -0,1 + [, such that T : X →] − 0, 1 + [, I : X →
]−0, 1+[, andF : X →]−0, 1+[. Thus, the sum of T (x), I(x), andF(x) satisfies the condition

−0 ≤ supT (x)+ supI(x)+ supF(x) ≤ 3+ [7].The neutrosophic set possesses the advantage of

representing imprecise and conflicting information, a capability that fuzzy sets (FSs) lack in ad-

dressing imprecise and inconsistent information. The neutrosophic set possesses philosophical

applications; however, its use in engineering is problematic. Consequently, the specified range

of T (x), I(x), and F(x) can be constrained to the real standard unit interval [0, 1] for practical

engineering applications [8]. Consequently, a single-valued neutrosophic set (SVNS) [9] was

established as a subfamily of a neutrosophic set. S. Das et al. created the concept of a neu-

trosophic fuzzy set (NFS) by integrating fuzzy set (FS) with neutrosophic set (NS), resulting

in the emergence of novel concepts. Due to the challenges that neutrosophic fuzzy sets (NFS)

encounter in addressing certain real-world issues stemming from the non-standard intervals

of neutrosophic components, the concept of single-valued neutrosophic fuzzy sets (SVNFS)

has been introduced [4]. Additionally, certain set-theoretic operations, numerical illustrations,

and distance-based metrics for assessing the similarity of single-valued neutrosophic fuzzy sets

(SVNFS) are proposed, and their properties are derived accordingly.

Similarity measurements are crucial in the application of fuzzy sets and neutrosophic sets. The

research of similarity measurement is of greatest significance. A primary challenge in fuzzy

set theory and neutrosophic set theory is the formulation of distance and similarity measure-

ments. A significant amount of effort has been dedicated to the development of distance and

similarity measures for fuzzy sets [10]. A degree of resemblance between sets of single-value

neutrosophic is essential for addressing multi-criteria decision-making challenges [11].Numer-

ous research studies have established numerous metrics of resemblance between collections of

single-valued neutrosophic data. This work delineated Hausdorff similarity measurements of

neutrosophic fuzzy sets, membership-grade-based similarity measures, and Enhanced Cosine

similarity measures, and examined their application in medical diagnostics.

This paper is organized as follows: The introductory portion comprises essential concepts

and findings necessary for our research. The subsequent sections contain the definitions of

the Hausdorff similarity measure, the membership grade-based similarity measure, and the

enhanced cosine similarity measure pertaining to neutrosophic fuzzy sets. In the subsequent

section, we demonstrate that the newly established similarity metrics fulfill their essential

properties. The clinical diagnosis utilizing similarity-based pattern recognition is elucidated

in a subsequent section. Concluding remarks are presented in the final section.
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2. Related Works

The existing similarity measures for fuzzy sets and intuitionistic fuzzy sets constituted the

initial endeavors in formulating similarity measures for neutrosophic sets. Numerous research

proposed modifications and expansions of these strategies to accommodate the additional di-

mension of indeterminacy in neutrosophic sets.Recent studies have introduced novel similarity

measures tailored for Neutrosophic Sets (NS). Ye, J. [17] proposed an enhanced cosine similar-

ity metric that incorporates the dimensions of truth, indeterminacy, and falsity in neutrosophic

numbers. This metric provides a more comprehensive comparative tool for complex datasets.

Combining various similarity measurements has proven to be an effective technique for leverag-

ing the benefits of different metrics. Peng et al. [18] introduced a hybrid similarity measure that

integrates the weighted Hamming distance with the Jaccard index. This integration enhances

the precision and reliability of similarity assessments within the framework of Neutrosophic

Set (NS).Entropy-based metrics have been examined to tackle the intrinsic uncertainty and

indeterminacy within Neutrosophic Sets (NS). The similarity measure presented by Broumi et

al. [19] is based on entropy and is used to assess the level of uncertainty between sets. This

approach provides a fresh perspective on measuring similarity.Geometric methodologies have

been modified for Neutrosophic Set(NS) in order to quantify similarity. Yang and Singh [20]

proposed a novel geometric distance-based similarity measure that takes into account the spa-

tial distribution of neutrosophic fuzzy elements. This measure has been found to be highly

effective in many image processing applications. Significant progress has been made in the use

of similarity measurements in medical diagnosis. In their study, Khan et al. [21] devised a sim-

ilarity measure utilizing the overlap coefficient for Neutrosophic Set(NS). This enhancement

resulted in improved precision in disease detection by effectively aligning patient symptoms

with corresponding medical conditions.The integration of similarity measurements with ma-

chine learning algorithms has become a promising field. In a study conducted by Li et al. [22],

it was shown that the combination of similarity measures for Neutrosophic Set(NS) with clus-

tering algorithms improved the effectiveness of clustering algorithms in intricate datasets.

Fuzzy set theory is proficient in managing uncertainty, while neutrosophic set theory proves

beneficial in handling indeterminate and inconsistent data. However, if the available knowledge

is both unreliable and contradictory, then neither the Fuzzy Set (FS) nor the Neutrosophic Set

(NS) can effectively manage it separately. A combination of Fuzzy Set (FS) and Neutrosophic

Set (NS) is necessary to accomplish the objective. This particular challenge required the

extension of the fuzzy set concept within the framework of NS. In fuzzy set theory, the mem-

bership grade is represented by a specific real integer [2]. A wide range of theorems has been

formulated to address the problem of ambiguous membership grades, predominantly through

diverse extensions of fuzzy sets. When the degree of membership is vague and inconsistent,
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it is crucial to delineate the membership grade utilizing neutrosophic components—namely,

truth, indeterminacy, and falsity membership values—to accurately represent the uncertain

and inconsistent information. Nonetheless, to the best of our knowledge, S. Das et al. [4] were

the first to incorporate neutrosophic components with fuzzy membership grades to precisely

represent an environment characterized by ambiguity and inconsistency. Furthermore, they

introduced the notion of Euclidean distance and similarity metrics, along with their practical

applications in decision-making [4]. Our work sought to provide more accurate similarity mea-

sures than those already available and to investigate their application in pattern recognition.

3. Preliminaries

This section establishes a solid framework for our study by introducing essential definitions

and properties.

Definition 3.1. [2] Let X be the universal set, Then a fuzzy set F over X is defined by

F = {(x, µF (x))/x ∈ X, where µF : X → [0, 1] is called the membership function of X. The

value µF (x) for each x ∈ X,reflects the degree to which x is a member of the fuzzy set F.

Definition 3.2. [3] Consider the universal set X and x ∈ X. A single-valued neu-

trosophic set (SVNS) N in X is distinguished by the function of truth membership TN ,

the function of indeterminacy membership IN and the function of falsity membership FN .

For each point x in X, TN (x), IN (x), FN (x) ∈ [0, 1]. Thus, an SVNS N is denoted by

N = {(x, TN (x), IN (x), FN (x))|x ∈ X}

Definition 3.3. [4] Let X be the universal set. Then an NFS NF on X is defined by

NF = {(x, µNF (x), TNF (x, µ), INF (x, µ), FNF (x, µ))/x ∈ X} where each membership value

is represented by a membership degree for truth, indeterminacy, and falsity, which are indi-

cated as TNF (x, µ), INF (x, µ) and FNF (x, µ). Furthermore, TNF , INF and FNF are existing

standard or non-standard subsets of ]0−, 1+[ , That is,

TNF : E →]0−, 1+[,

INF : E →]0−, 1+[,

FNF : E →]0−, 1+[.

where,0− ≤ Sup(TNF ) + Sup(INF ) + Sup(FNF ) ≤ 3+.

Definition 3.4. [4] Let X be a universal set. then Single -Valued Neutrosophic Fuzzy Set SNF

on X is defined by SNF = {(x, µSNF (x), TSNF (x, µ), ISNF (x, µ), FSNF (x, µ))/x ∈ X}, where
TSNF (x, µ), ISNF (x, µ), FSNF (x, µ) ∈ [0, 1],and 0 ≤ TSNF (x, µ)+ISNF (x, µ)+FSNF (x, µ) ≤ 3.

Definition 3.5. [1] Consider two sets S = {s1, s2, ....sp} and T = {t1, t2, ...., tq} The Hausdorff
distance between S and T is denoted by H(S, T ) and is defined as
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H(S, T ) = max{h(S, T ), h(T, S)} where, h(S, T ) = max
s∈S

min
t∈T

d(s, t)

Here, s and t are elements of S and T , respectively, and d(s, t) is the metric between s and t.

Definition 3.6. [5] Consider two Nuetrosophic Sets K1 and K2 on X, then the Hausdorff

distance between K1 and K2 is denoted by dHNS(K1,K2) and is defined as follows:

dHNS(K1,K2) =
1
n

∑n
i=1max{|TK1(xi)− TK2(xi)|, |IK1(xi)− IK2(xi)|, |FK1(xi)− FK2(xi)|}

Theorem 3.7. [5] The Hausdorff Distance between K1 and K2 satisfies the following prop-

erties

(1) dHNS(K1,K2) ≥ 0

(2) dHNS(K1,K2) = 0 if and only if K1 = K2

(3) dHNS(K1,K2) = dHNS(K2,K1)

(4) If K1 ⊆ K2 ⊆ K3 then dHNS(K1,K3) ≥ dHNS(K1,K2) and dHNS(K1,K3) ≥
dHNS(K2,K3)

Definition 3.8. [16] Let X = {x1, x2, ...., xn} be the universe of the discourse.

Considerκ1, κ2 ∈ KNFS(X), where KNFS(X) is the family of all neutrosophic fuzzy sets (NFSs)

in X.

Let κ1 = {(xi, µκ1(xi), Tκ1(xi, µκ1), Iκ1(xi, µκ1),Fκ1(xi, µκ1))/xi ∈ X}
κ2 = {(xi, µκ2(xi), Tκ2(xi, µκ2), Iκ2(xi, µκ2),Fκ2(xi, µκ2))/xi ∈ X}
The Hausdorff distance between κ1 and κ2 is denoted by dHNFS(κ1, κ2) and is defined as

follows.

dHNFS(κ1, κ2) =
∑n

i=1max{|µκ1(xi) − µκ2(xi)|, |Tκ1(xi, µκ1) − Tκ2(xi, µκ2)|, |Iκ1(xi, µκ1) −
Iκ2(xi, µκ2)|, |Fκ1(xi, µκ1)−Fκ2(xi, µκ2)|}

Definition 3.9. [16] Let X = {x1, x2, ...., xn} be the universe of the discourse.

ConsiderK1,K2 ∈ KNFS(X), where KNFS(X) is the family of all neutrosophic fuzzy sets

(NFS) in X.

Let K1 = {(xi, µK1(xi), TK1(xi, µK1), IK1(xi, µK1),FK1(xi, µK1))/xi ∈ X}
K2 = {(xi, µK2(xi), TK2(xi, µK2), IK2(xi, µK2),FK2(xi, µK2))/xi ∈ X}
The normalized Hausdorff distance between K1 and K2 is denoted by dNHNFS(K1,K2) and

is defined as follows.

dNHNFS(K1,K2) = 1
n

∑n
i=1max{|µK1(xi) − µK2(xi)|, |TK1(xi, µK1) −

TK(xi, µK2)|, |IK1(xi, µK1)− IK2(xi, µK2)|, |FK1(xi, µK1)−FK2(xi, µK2)|}

Definition 3.10. [15] A measure of similarity between two sets of neutrosophic with a single

value is a mapping S : N (X) → [0, 1] that satisfies the following properties:

(1) S(K1,K2) ∈ [0, 1]
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(2) S(K1,K2) = 1 ⇐⇒ K1 = K2

(3) S(K1,K2) = S(K2,K1)

(4) K1 ⊂ K2 ⊂ K3 → S(K1,K3) ≤ S(K1,K2) and S(K1,K3) ≤ S(K2,K3)

(1)− (4) are called Axioms of Similarity.

4. Similarity Measure for Neutrosophic Fuzzy Sets

A similarity measure can be used to examine differences between alternatives, making it an

effective tool for multiple criteria judgment problems. Using the Hausdorff distance measure

and membership grades, this section extends the similarity measure for Fuzzy Sets and Neu-

trosophic Sets to Neutrosophic Fuzzy Sets. In addition, a brand-new similarity metric based

on the combination of Hausdorff distance and cosine similarity is suggested.

4.1. Hausdorff Similarity Measure For Neutrosophic Fuzzy Sets

Definition 4.1. Let X = {x1, x2, ...., xn} be the universe of discourse. Considerκ1, κ2 ∈
KNFS(X), where KNFS(X) is the group that includes all neutrosophic fuzzy sets (NFSs) in

X.

Let κ1 = {(xi, µκ1(xi), Tκ1(xi, µκ1), Iκ1(xi, µκ1),Fκ1(xi, µκ1))/xi ∈ X}
κ2 = {(xi, µκ2(xi), Tκ2(xi, µκ2), Iκ2(xi, µκ2),Fκ2(xi, µκ2))/xi ∈ X}
The Hausdorff Similarity Measure for κ1 and κ2 is denoted by SH(κ1, κ2) and is defined as

follows.

SH(κ1, κ2) = 1 − 1
n

∑n
i=1max{|µκ1(xi) − µκ2(xi)|, |Tκ1(xi, µκ1) − Tκ2(xi, µκ2)|, |Iκ1(xi, µκ1) −

Iκ2(xi, µκ2)|, |Fκ1(xi, µκ1)−Fκ2(xi, µκ2)|}

Theorem 4.2. The Hausdorff Similarity Measure between two Neutrosophic Fuzzy Sets κ1

and κ2 has the following properties.

(1) SH(κ1, κ2) ∈ [0, 1]

(2) SH(κ1, κ2) = 1 ⇐⇒ κ1 = κ2

(3) SH(κ1, κ2) = SH(κ2, κ1)

(4) κ1 ⊂ κ2 ⊂ κ3 → SH(κ1, κ3) ≤ SH(κ1, κ2) and SH(κ1, κ3) ≤ SH(κ2, κ3)

Proof. (1) We have SH(κ1, κ2) = 1 − 1
n

∑n
i=1max{|µκ1(xi) − µκ2(xi)|, |Tκ1(xi, µκ1) −

Tκ2(xi, µκ2)|, |Iκ1(xi, µκ1)− Iκ2(xi, µκ2)|, |Fκ1(xi, µκ1)−Fκ2(xi, µκ2)|}
From the definition itself it is clear that SH(κ1, κ2) ∈ [0, 1]

(2) SH(κ1, κ2) = 1 implies 1
n

∑n
i=1max{|µκ1(xi) − µκ2(xi)|, |Tκ1(xi, µκ1) −

Tκ2(xi, µκ2)|, |Iκ1(xi, µκ1) − Iκ2(xi, µκ2)|, |Fκ1(xi, µκ1) − Fκ2(xi, µκ2)|} = 0 that is,
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dNHNFS(κ1, κ2) = 0. Then by the properties of Hausdorff Distance between NFSs

we can conclude that κ1 = κ2

(3) SH(κ1, κ2) = 1 − 1
n

∑n
i=1max{|µκ1(xi) − µκ2(xi)|, |Tκ1(xi, µκ1) −

Tκ2(xi, µκ2)|, |Iκ1(xi, µκ1)− Iκ2(xi, µκ2)|, |Fκ1(xi, µκ1)−Fκ2(xi, µκ2)|}
= 1 − 1

n

∑n
i=1max{|µκ2(xi) − µκ1(xi)|, |Tκ2(xi, µκ2) − Tκ1(xi, µκ1)|, |Iκ2(xi, µκ2) −

Iκ1(xi, µκ1)|, |Fκ2(xi, µκ2)−Fκ1(xi, µκ1)|}
= SH(κ2, κ1)

(4) Since κ1 ⊆ κ2 ⊆ κ3 we have µκ1(xi) ≤ µκ2(xi) ≤ µκ3(xi),Tκ1(xi, µκ1) ≤ Tκ2(xi, µκ2) ≤
Tκ3(xi, C,Iκ1(xi, µκ1) ≤ Iκ2(xi, µκ2) ≤ Iκ3(xi, µκ3),Fκ1(xi, µκ1) ≥ Fκ2(xi, µκ2) ≥
Fκ3(xi, µκ3).

First, we have to prove that dHNFS(κ1, κ3) ≥ dHNFS(κ1, κ2)

Case-1

|µκ1(xi) − µκ3(xi)| ≥ |Tκ1(xi, µκ1) − Tκ3(xi, µκ3)| ≥ |Iκ1(xi, µκ1) − Iκ3(xi, µκ3)| ≥
|Fκ1(xi, µκ1)−Fκ3(xi, µκ3)|
Then, dHNFS(κ1, κ3) = |µκ1(xi)− µκ3(xi)|
(a) For all xi ∈ X

|Tκ1(xi, µκ1)− Tκ2(xi, µκ2)| ≤ |Tκ1(xi, µκ1)− Tκ3(xi, µκ3)| ≤ |µκ1(xi)− µκ3(xi)|
|Iκ1(xi, µκ1)− Iκ2(xi, µκ2)| ≤ |Iκ1(xi, µκ1)− Iκ3(xi, µκ3)| ≤ |µκ1(xi)− µκ3(xi)|
|Fκ1(xi, µκ1)−Fκ2(xi, µκ2)| ≤ |Fκ1(xi, µκ1)−Fκ3(xi, µκ3)| ≤ |µκ1(xi)− µκ3(xi)|

(b) For all xi ∈ X

|Tκ2(xi, µκ2)− Tκ3(xi, µκ3)| ≤ |Tκ1(xi, µκ1)− Tκ3(xi, µκ3)| ≤ |µκ1(xi)− µκ3(xi)|
|Iκ2(xi, µκ2)− Iκ3(xi, µκ3)| ≤ |Iκ1(xi, µκ1)− Iκ3(xi, µκ3)| ≤ |µκ1(xi)− µκ3(xi)|
|Fκ2(xi, µκ2)−Fκ3(xi, µκ3)| ≤ |Fκ1(xi, µκ1)−Fκ3(xi, µκ3)| ≤ |µκ1(xi)− µκ3(xi)|

(c) For all xi ∈ X

|µκ1(xi)−µκ2(xi)| ≤ |µκ1(xi)−µκ3(xi)| and |µκ2(xi)−µκ3(xi)| ≤ |µκ1(xi)−µκ3(xi)|
We can deduce from (1),(2) and (3) that, for all xi ∈ X

1
n

∑n
i=1max{|µκ1(xi) − µκ2(xi)|, |Tκ1(xi, µκ1) − Tκ2(xi, µκ2)|, |Iκ1(xi, µκ1) −

Iκ2(xi, µκ2)|, |Fκ1(xi, µκ1) − Fκ2(xi, µκ2)|} ≤
1
n

∑n
i=1max{|µκ1(xi) − µκ3(xi)|, |Tκ1(xi, µκ1) − Tκ3(xi, µκ3)|, |Iκ1(xi, µκ1) −

Iκ3(xi, µκ3)|, |Fκ1(xi, µκ1)−Fκ3(xi, µκ3)|}
→ dHNFS(κ1, κ2) ≤ dHNFS(κ1, κ3)

and

1
n

∑n
i=1max{|µκ2(xi) − µκ3(xi)|, |Tκ2(xi, µκ2) − Tκ3(xi, µκ3)|, |Iκ2(xi, µκ2) −

Iκ3(xi, µκ3)|, |Fκ2(xi, µκ2) − Fκ3(xi, µκ3)|} ≤
1
n

∑n
i=1max{|µκ1(xi) − µκ3(xi)|, |Tκ1(xi, µκ1) − Tκ3(xi, µκ3)|, |Iκ1(xi, µκ1) −

Iκ3(xi, µκ3)|, |Fκ1(xi, µκ1)−Fκ3(xi, µκ3)|}
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→ dHNFS(κ2, κ3) ≤ dHNFS(κ1, κ3)

Case-2

|µκ1(xi) − µκ3(xi)| ≤ |Tκ1(xi, µκ1) − Tκ3(xi, µκ3)| ≤ |Iκ1(xi, µκ1) − Iκ3(xi, µκ3)| ≤
|Fκ1(xi, µκ1)−Fκ3(xi, µκ3)|
Then, dHNFS(κ1, κ3) = |Fκ1(xi, µκ1)−Fκ3(xi, µκ3)|
(a) For all xi ∈ X

|µκ1(xi) − µκ2(xi)| ≤ |µκ1(xi) − µκ3(xi)| ≤ |Fκ1(xi, µκ1) − Fκ3(xi, µκ3)|
|Tκ1(xi, µκ1) − Tκ2(xi, µκ2)| ≤ |Tκ1(xi, µκ1) − Tκ3(xi, µκ3)| ≤ |Fκ1(xi, µκ1) −
Fκ3(xi, µκ3)|
|Iκ1(xi, µκ1) − Iκ2(xi, µκ2)| ≤ |Iκ1(xi, µκ1) − Iκ3(xi, µκ3)| ≤ |Fκ1(xi, µκ1) −
Fκ3(xi, µκ3)|

(b) For all xi ∈ X

|µκ2(xi)− µκ3(xi)| ≤ |µκ1(xi)− µκ3(xi)| ≤ |Fκ1(xi, µκ1)−Fκ3(xi, µκ3)|
|Tκ2(xi, µκ2) − Tκ3(xi, µκ3)| ≤ |Tκ1(xi, µκ1) − Tκ3(xi, µκ3)| ≤ |Fκ1(xi, µκ1) −
Fκ3(xi, µκ3)|
|Iκ2(xi, µκ2) − Iκ3(xi, µκ3)| ≤ |Iκ1(xi, µκ1) − Iκ3(xi, µκ3)| ≤ |Fκ1(xi, µκ1) −
Fκ3(xi, µκ3)|

(c) For all xi ∈ X

|Fκ1(xi, µκ1)−Fκ2(xi, µκ2)| ≤ |Fκ1(xi, µκ1)−Fκ3(xi, µκ3)|
and |Fκ2(xi, µκ2)−Fκ3(xi, µκ3)| ≤ |Fκ1(xi, µκ1)−Fκ3(xi, µκ3)|

We can deduce from (1),(2) and (3) that, for all xi ∈ X

1
n

∑n
i=1max{|µκ1(xi) − µκ2(xi)|, |Tκ1(xi, µκ1) − Tκ2(xi, µκ2)|, |Iκ1(xi, µκ1) −

Iκ2(xi, µκ2)|, |Fκ1(xi, µκ1) − Fκ2(xi, µκ2)|} ≤
1
n

∑n
i=1max{|µκ1(xi) − µκ3(xi)|, |Tκ1(xi, µκ1) − Tκ3(xi, µκ3)|, |Iκ1(xi, µκ1) −

Iκ3(xi, µκ3)|, |Fκ1(xi, µκ1)−Fκ3(xi, µκ3)|}
→ dHNFS(κ1, κ2) ≤ dHNFS(κ1, κ3) and

1
n

∑n
i=1max{|µκ2(xi) − µκ3(xi)|, |Tκ2(xi, µκ2) − Tκ3(xi, µκ3)|, |Iκ2(xi, µκ2) −

Iκ3(xi, µκ3)|, |Fκ2(xi, µκ2) − Fκ3(xi, µκ3)|} ≤
1
n

∑n
i=1max{|µκ1(xi) − µκ3(xi)|, |Tκ1(xi, µκ1) − Tκ3(xi, µκ3)|, |Iκ1(xi, µκ1) −

Iκ3(xi, µκ3)|, |Fκ1(xi, µκ1)−Fκ3(xi, µκ3)|}
→ dHNFS(κ2, κ3) ≤ dHNFS(κ1, κ3)

Case-3

|µκ1(xi) − µκ3(xi)| ≤ |Tκ1(xi, µκ1) − Tκ3(xi, µκ3)| ≤ |Fκ1(xi, µκ1) − Fκ3(xi, µκ3)| ≤
|Iκ1(xi, µκ1)− Iκ3(xi, µκ3)|
Then, dHNFS(κ1, κ3) = |Iκ1(xi, µκ1)− Iκ3(xi, µκ3)|
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(a) For all xi ∈ X|µκ1(xi)−µκ2(xi)| ≤ |µκ1(xi)−µκ3(xi)| ≤ |Iκ1(xi, µκ1)−Iκ3(xi, µκ3)|
|Tκ1(xi, µκ1) − Tκ2(xi, µκ2)| ≤ |Tκ1(xi, µκ1) − Tκ3(xi, µκ3)| ≤ |Iκ1(xi, µκ1) −
Iκ3(xi, µκ3)|
|Fκ1(xi, µκ1) − Fκ2(xi, µκ2)| ≤ |Fκ1(xi, µκ1) − Fκ3(xi, µκ3)| ≤ |Iκ1(xi, µκ1) −
Iκ3(xi, µκ3)|

(b) For all xi ∈ X

|µκ2(xi)− µκ3(xi)| ≤ |µκ1(xi)− µκ3(xi)| ≤ |Iκ1(xi, µκ1)− Iκ3(xi, µκ3)|
|Tκ2(xi, µκ2) − Tκ3(xi, µκ3)| ≤ |Tκ1(xi, µκ1) − Tκ3(xi, µκ3)| ≤ |Iκ1(xi, µκ1) −
Iκ3(xi, µκ3)|
|Fκ2(xi, µκ2) − Fκ3(xi, µκ3)| ≤ |Fκ1(xi, µκ1) − Fκ3(xi, µκ3)| ≤ |Iκ1(xi, µκ1) −
Iκ3(xi, µκ3)|

(c) For all xi ∈ X

|Iκ1(xi, µκ1)− Iκ2(xi, µκ2)| ≤ |Iκ1(xi, µκ1)− Iκ3(xi, µκ3)|
and |Iκ2(xi, µκ2)− Iκ3(xi, µκ3)| ≤ |Iκ1(xi, µκ1)− Iκ3(xi, µκ3)|

We can deduce from (1),(2) and (3) that, for all xi ∈ X

1
n

∑n
i=1max{|µκ1(xi) − µκ2(xi)|, |Tκ1(xi, µκ1) − Tκ2(xi, µκ2)|, |Iκ1(xi, µκ1) −

Iκ2(xi, µκ2)|, |Fκ1(xi, µκ1) − Fκ2(xi, µκ2)|} ≤
1
n

∑n
i=1max{|µκ1(xi) − µκ3(xi)|, |Tκ1(xi, µκ1) − Tκ3(xi, µκ3)|, |Iκ1(xi, µκ1) −

Iκ3(xi, µκ3)|, |Fκ1(xi, µκ1)−Fκ3(xi, µκ3)|}
→ dHNFS(κ1, κ2) ≤ dHNFS(κ1, κ3)

and

1
n

∑n
i=1max{|µκ2(xi) − µκ3(xi)|, |Tκ2(xi, µκ2) − Tκ3(xi, µκ3)|, |Iκ2(xi, µκ2) −

Iκ3(xi, µκ3)|, |Fκ2(xi, µκ2) − Fκ3(xi, µκ3)|} ≤
1
n

∑n
i=1max{|µκ1(xi) − µκ3(xi)|, |Tκ1(xi, µκ1) − Tκ3(xi, µκ3)|, |Iκ1(xi, µκ1) −

Iκ3(xi, µκ3)|, |Fκ1(xi, µκ1)−Fκ3(xi, µκ3)|}
→ dHNFS(κ2, κ3) ≤ dHNFS(κ1, κ3)

Case-4

|µκ1(xi) − µκ3(xi)| ≤ |Fκ1(xi, µκ1) − Fκ3(xi, µκ3)| ≤ |Iκ1(xi, µκ1) − Iκ3(xi, µκ3)| ≤
|Tκ1(xi, µκ1)− Tκ3(xi, µκ3)|
Then, dHNFS(κ1, κ3) = |Tκ1(xi, µκ1)− Tκ3(xi, µκ3)|
(a) For all xi ∈ X|µκ1(xi)−µκ2(xi)| ≤ |µκ1(xi)−µκ3(xi)| ≤ |Tκ1(xi, µκ1)−Tκ3(xi, µκ3)|

|Fκ1(xi, µκ1) − Fκ2(xi, µκ2)| ≤ |Fκ1(xi, µκ1) − Fκ3(xi, µκ3)| ≤ |Tκ1(xi, µκ1) −
Tκ3(xi, µκ3)|
|Iκ1(xi, µκ1) − Iκ2(xi, µκ2)| ≤ |Iκ1(xi, µκ1) − Iκ3(xi, µκ3)| ≤ |Tκ1(xi, µκ1) −
Tκ3(xi, µκ3)|
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(b) For all xi ∈ X |µκ2(xi) − µκ3(xi)| ≤ |µκ1(xi) − µκ3(xi)| ≤ |Tκ1(xi, µκ1) −
Tκ3(xi, µκ3)|
|Fκ2(xi, µκ2) − Fκ3(xi, µκ3)| ≤ |Fκ1(xi, µκ1) − Fκ3(xi, µκ3)| ≤ |Tκ1(xi, µκ1) −
Tκ3(xi, µκ3)|
|Iκ2(xi, µκ2) − Iκ3(xi, µκ3)| ≤ |Iκ1(xi, µκ1) − Iκ3(xi, µκ3)| ≤ |Tκ1(xi, µκ1) −
Tκ3(xi, µκ3)|

(c) For all xi ∈ X

|Tκ1(xi, µκ1)− Tκ2(xi, µκ2)| ≤ |Tκ1(xi, µκ1)− Tκ3(xi, µκ3)|
and |Tκ2(xi, µκ2)− Tκ3(xi, µκ3)| ≤ |Tκ1(xi, µκ1)− Tκ3(xi, µκ3)|

We can deduce from (1),(2) and (3) that, for all xi ∈ X

1
n

∑n
i=1max{|µκ1(xi) − µκ2(xi)|, |Tκ1(xi, µκ1) − Tκ2(xi, µκ2)|, |Iκ1(xi, µκ1) −

Iκ2(xi, µκ2)|, |Fκ1(xi, µκ1) − Fκ2(xi, µκ2)|} ≤
1
n

∑n
i=1max{|µκ1(xi) − µκ3(xi)|, |Tκ1(xi, µκ1) − Tκ3(xi, µκ3)|, |Iκ1(xi, µκ1) −

Iκ3(xi, µκ3)|, |Fκ1(xi, µκ1)−Fκ3(xi, µκ3)|}
→ dHNFS(κ1, κ2) ≤ dHNFS(κ1, κ3)

and

1
n

∑n
i=1max{|µκ2(xi) − µκ3(xi)|, |Tκ2(xi, µκ2) − Tκ3(xi, µκ3)|, |Iκ2(xi, µκ2) −

Iκ3(xi, µκ3)|, |Fκ2(xi, µκ2) − Fκ3(xi, µκ3)|} ≤
1
n

∑n
i=1max{|µκ1(xi) − µκ3(xi)|, |Tκ1(xi, µκ1) − Tκ3(xi, µκ3)|, |Iκ1(xi, µκ1) −

Iκ3(xi, µκ3)|, |Fκ1(xi, µκ1)−Fκ3(xi, µκ3)|}
→ dHNFS(κ2, κ3) ≤ dHNFS(κ1, κ3)

Thus, in all possible cases, we have proved dHNFS(κ1, κ2) ≤ dHNFS(κ1, κ3) and

dHNFS(κ2, κ3) ≤ dHNFS(κ1, κ3). Therefore, 1 − dHNFS(κ1, κ2) ≥ 1 − dHNFS(κ1, κ3) and

1 − dHNFS(κ2, κ3) ≥ 1 − dHNFS(κ1, κ3). → S(κ1, κ3) ≤ S(κ1, κ2) and S(κ1, κ3) ≤ S(κ2, κ3)
Therefore, the Hausdorff similarity measure, as defined above, is a measure of similarity be-

tween two neutrosophic fuzzy sets.

4.2. Membership Grade-based Similarity Measure for Neutrosophic Fuzzy Sets

We are trying to define the similarity measure between two neptrosophic fuzzy sets based

on the membership grades in this section.

Definition 4.3. Let X = {x1, x2, ...., xn} be the universe of discourse. Considerκ1, κ2 ∈
KNFS(X), where KNFS(X) is the group that includes all neutrosophic fuzzy sets (NFSs) in
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X.

Let κ1 = {(xi, µκ1(xi), Tκ1(xi, µκ1), Iκ1(xi, µκ1),Fκ1(xi, µκ1))/xi ∈ X}
κ2 = {(xi, µκ2(xi), Tκ2(xi, µκ2), Iκ2(xi, µκ2),Fκ2(xi, µκ2))/xi ∈ X}
The Similarity Measure based on the membership grades for κ1 and κ2 is denoted by SM (κ1, κ2)

and is defined as follows.

SM (κ1, κ2) =
∑n

i=1 min(µκ1 (xi),µκ2 (xi))+min(Tκ1 (xi),Tκ2 (xi))+min(Iκ1 (xi),Iκ2 (xi))+min(Fκ1 (xi),Fκ2 (xi))∑n
i=1 max(µκ1 (xi),µκ2 (xi))+max(Tκ1 (xi),Tκ2 (xi))+max(Iκ1 (xi),Iκ2 (xi))+max(Fκ1 (xi),Fκ2 (xi))

Theorem 4.4. The similarity measure based on membership grades between two neutrosophic

fuzzy sets κ1 and κ2 has the following properties.

(1) SM (κ1, κ2) ∈ [0, 1]

(2) SM (κ1, κ2) = 1 ⇐⇒ κ1 = κ2

(3) SM (κ1, κ2) = SM (κ2, κ1)

(4) κ1 ⊂ κ2 ⊂ κ3 → SM (κ1, κ3) ≤ SM (κ1, κ2) and SM (κ1, κ3) ≤ SM (κ2, κ3)

Proof. Properties (1) and (3) hold directly from the definition itself. We have to prove prop-

erties (2) and (4)

2. If κ1 = κ2 then by definition itself it is clear that SM (κ1, κ2) = 1

Conversely, let SM (κ1, κ2) = 1

→
∑n

i=1 min(µκ1 (xi),µκ2 (xi))+min(Tκ1 (xi),Tκ2 (xi))+min(Iκ1 (xi),Iκ2 (xi))+min(Fκ1 (xi),Fκ2 (xi))∑n
i=1 max(µκ1 (xi),µκ2 (xi))+max(Tκ1 (xi),Tκ2 (xi))+max(Iκ1 (xi),Iκ2 (xi))+max(Fκ1 (xi),Fκ2 (xi))

= 1

→
∑n

i=1min(µκ1(xi), µκ2(xi)) + min(Tκ1(xi), Tκ2(xi)) + min(Iκ1(xi), Iκ2(xi)) +

min(Fκ1(xi),Fκ2(xi)) =∑n
i=1max(µκ1(xi), µκ2(xi)) + max(Tκ1(xi), Tκ2(xi)) + max(Iκ1(xi), Iκ2(xi)) +

max(Fκ1(xi),Fκ2(xi))

→
∑n

i=1[min(µκ1(xi), µκ2(xi)) − max(µκ1(xi), µκ2(xi))] + [min(Tκ1(xi), Tκ2(xi)) −
max(Tκ1(xi), Tκ2(xi))] + [min(Iκ1(xi), Iκ2(xi)) − max(Iκ1(xi), Iκ2(xi))] +

[min(Fκ1(xi),Fκ2(xi))−max(Fκ1(xi),Fκ2(xi))] = 0

→ [min(µκ1(xi), µκ2(xi))−max(µκ1(xi), µκ2(xi))] = 0

[min(Tκ1(xi), Tκ2(xi))−max(Tκ1(xi), Tκ2(xi))] = 0

[min(Iκ1(xi), Iκ2(xi))−max(Iκ1(xi), Iκ2(xi))] = 0

[min(Fκ1(xi),Fκ2(xi)) − max(Fκ1(xi),Fκ2(xi))] = 0, for each x.Therefore, µκ1(x) =

µκ2(x),Tκ1(x) = Tκ2(x),Iκ1(x) = Iκ2(x), Fκ1(x) = Fκ2(x) for each x.
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→ κ1 = κ2

4. Let κ1 ⊂ κ2 ⊂ κ3, Then

µκ1(xi) ≤ µκ2(xi) ≤ µκ3(xi),Tκ1(xi, µκ1) ≤ Tκ2(xi, µκ2) ≤ Tκ3(xi, µκ3),Iκ1(xi, µκ1) ≤
Iκ2(xi, µκ2) ≤ Iκ3(xi, µκ3),

Fκ1(xi, µκ1) ≥ Fκ2(xi, µκ2) ≥ Fκ3(xi, µκ3).

Therefore, we have

µκ1(xi) + Tκ1(xi, µκ1) + Iκ1(xi), µκ1) + Fκ2(xi, µκ2) ≥ µκ1(xi) + Tκ1(xi, µκ1) + Iκ1(xi, µκ1) +

Fκ3(xi, µκ3)

µκ2(xi) + Tκ2(xi, µκ2) + Iκ2(xi, µκ2) + Fκ1(xi, µκ1) ≤ µκ3(xi) + Tκ3(xi, µκ3) + Iκ3(xi, µκ3) +

Fκ1(xi, µκ1)

SM (κ1, κ2) =
∑n

i=1 µκ1(xi)
+Tκ1 (xi,µκ1 )+Iκ1 (xi,µκ1 )+Fκ2 (xi,µκ2 )∑n

i=1 µκ2(xi)
+Tκ2 (xi,µκ2 )+Iκ2 (xi,µκ2 )+Fκ1 (xi,µκ1 )

≥
∑n

i=1 µκ1(xi)
+Tκ1 (xi,µκ1 )+Iκ1 (xi,µκ1 )+Fκ3 (xi,µκ3 )∑n

i=1 µκ3(xi)
+Tκ3 (xi,µκ3 )+Iκ3 (xi,µκ3 )+Fκ1 (xi,µκ1 )

=SM (κ1, κ3)

Similarly, we have

µκ2(xi) + Tκ2(xi, µκ2) + Iκ2(xi), µκ2) + Fκ3(xi, µκ3) ≥ µκ1(xi) + Tκ1(xi, µκ1) + Iκ1(xi, µκ1) +

Fκ3(xi, µκ3)

µκ3(xi) + Tκ3(xi, µκ3) + Iκ3(xi), µκ3) + Fκ1(xi, µκ1) ≥ µκ3(xi) + Tκ3(xi, µκ3) + Iκ3(xi, µκ3) +

Fκ2(xi, µκ2)

SM (κ2, κ3) =
∑n

i=1 µκ2(xi)
+Tκ2 (xi,µκ2 )+Iκ2 (xi,µκ2 )+Fκ3 (xi,µκ3 )∑n

i=1 µκ3(xi)
+Tκ3 (xi,µκ3 )+Iκ3 (xi,µκ3 )+Fκ2 (xi,µκ2 )

≥
∑n

i=1 µκ1(xi)
+Tκ1 (xi,µκ1 )+Iκ1 (xi,µκ1 )+Fκ3 (xi,µκ3 )∑n

i=1 µκ3(xi)
+Tκ3 (xi,µκ3 )+Iκ3 (xi,µκ3 )+Fκ1 (xi,µκ1 )

=SM (κ1, κ3)

Therefore, the membership grade-based similarity measure, as defined above, is a measure

of similarity between two neutrosophic fuzzy sets.

5. Enhanced Cosine Similarity Measure for Single Valued Neutrosophic Fuzzy Sets

5.1. Cosine Similarity

Definition 5.1. Cosine similarity is a basic angle-based measure of similarity. Here, we

are comparing two n-dimensional vectors for the similarity between them, expressed as a co-

sine. Assesses how similar things are. The comparison between two vectors is based only on

their direction and omits the effect of their distance from each other. Consider the vectors

P = (p1, p2, ...., pn) and Q = (q1, q2, ..., qn) , the cosine similarity [12] is defined as

cos θ =
∑n

i=1 xiyi√∑n
i=1 x

2
i

√∑n
i=1 y

2
i

The measure of cosine similarity between two fuzzy sets κ1 and κ2 [13] is defined as fol-

lows.
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CF (κ1.κ2) =
∑n

i=1 µκ1 (xi)µκ2 (xi)√∑n
i=1(µκ1 (xi))2

√∑n
i=1(µκ2 (xi))2

The cosine similarity measure among two single valued neutrosophic sets κ1 and κ2 [14] is

defined as follows

CSV NS(κ1, κ2) =
∑n

i=1 Tκ1 (xi)Tκ2 (xi)+Iκ1 (xi)Iκ2 (xi)+Fκ1 (xi)Fκ2 (xi)√∑n
i=1 Tκ1 (xi)2+Iκ1 (xi)2+Fκ1 (xi)2

√∑n
i=1 Tκ2 (xi)2+Iκ2 (xi)2+Fκ2 (xi)2

Based on the above definitions, we can define the measure of cosine similarity between two

single-valued neutrosophic fuzzy sets κ1 and κ2 as follows.

CSV NFS(κ1, κ2) =

1
n

∑n
i=1

µκ1 (xi)µκ2 (xi)+Tκ1 (xi,µ)Tκ2 (xi,µ)+Iκ1 (xi,µ)Iκ2 (xi,µ)+Fκ1 (xi,µ)Fκ2 (xi,µ)√
µκ1 (xi)2+Tκ1 (xi,µ)2+Iκ1 (xi,µ)2+Fκ1 (xi,µ)2

√
µκ2 (xi)2+Tκ2 (xi,µ)2+Iκ2 (xi,µ)2+Fκ2 (xi,µ)2

But the above-defined similarity measure sometimes fails to satisfy the basic properties of

a similarity measure, that is,

If 1. Tκ1(xi, µ) = 2Tκ2(xi, µ), Iκ1(xi, µ) = 2Iκ2(xi, µ),Fκ1(xi, µ) = 2Fκ2(xi, µ)

or

2.Tκ1(xi, µ) = Tκ2(xi, µ), 2Iκ1(xi, µ) = Iκ2(xi, µ), 2Fκ1(xi, µ) = Fκ2(xi, µ)

That is, when κ1 ̸= κ2, CSV NFS(κ1, κ2) = 1, which means that the cosine similarity measure

defined above does not satisfy the necessary condition for a similarity measure. Therefore,

based on the improved cosine similarity measure proposed by [15] we are going to define the

Enhanced Cosine Similarity Measure for Neutrosophic Fuzzy Sets(ECSV NFS) as follows.

5.2. Enhanced Cosine Similarity Measure between Neutrosophic Fuzzy Sets

Definition 5.2. Let X = {x1, x2, ...., xn} be the universe of discourse. Considerκ1, κ2 ∈
KNFS(X), where KNFS(X) is the group that includes all neutrosophic fuzzy sets (NFSs) in

X.

Let κ1 = {(xi, µκ1(xi), Tκ1(xi, µκ1), Iκ1(xi, µκ1),Fκ1(xi, µκ1))/xi ∈ X}
κ2 = {(xi, µκ2(xi), Tκ2(xi, µκ2), Iκ2(xi, µκ2),Fκ2(xi, µκ2))/xi ∈ X}
Then, ECSV NFS(κ1, κ2) =

1
2 [CSV NFS(κ1, κ2) + 1− dNHNFS(κ1, κ2)]

Theorem 5.3. The Enhanced Cosine Similarity Measure between two Neutrosophic Fuzzy Sets

κ1 and κ2 has the following properties.
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(1) ECSV NFS(κ1, κ2) ∈ [0, 1]

(2) ECSV NFS(κ1, κ2) = 1 ⇐⇒ κ1 = κ2

(3) ECSV NFS(κ1, κ2) = ECSV NFS(κ2, κ1)

Proof. (1) Since dNHNFS(A,B) is the normalized Hausdorff distance between (A,B), we

have 0 ≤ dNHNFS(A,B) ≤ 1 Also by [15] we have 0 ≤ CSNFS(A,B) ≤ 1, Therefore

0 ≤ 1
2 [CSNFS(A,B) + 1− dNHNFS(A,B)] ≤ 1, That is 0 ≤ ECSNFS ≤ 1.

(2) Let ECSNFS(A,B) = 1

→ CSNFS(A,B) + 1− dNHNFS(A,B) = 2

→ CSNFS(A,B) = 2− 1 + dNHNFS(A,B) = 1 + dNHNFS(A,B)

According to [15] 0 ≤ CSNFS(A,B) ≤ 1 . Since dNHNFS(A,B) is the normalized Hausdorff

distance between A,B we have 0 ≤ dNHNFS(A,B) ≤ 1 Therefore, CSNFS(A,B) = 0 + 1 = 1

and dNHNFS(A,B) = 0

When CSNFS(A,B) = 1

→ µA(xi) = KµB(xi)

→ TA(xi, µ) = KTB(xi, µ)

→ IA(xi, µ) = KIB(xi, µ)

→ FA(xi, µ) = KFB(xi, µ), where K is any constant.

Also dNHNFS(A,B) = 0 → A = B

In contrast, let A = B then dNHNFS(A,B) = 0 and CSNFS(A,B) = 1

→ ECSNFS(A,B) = 1

(3) ECSNFS(A,B) = 1
2 [CSNFS(A,B) + 1 − dNHNFS(A,B)] = 1

2 [CSNFS(B,A) + 1 −
dNHNFS(B,A)] = ECSNFS(B,A)

6. Clinical Diagnosis using Similarity-Based Pattern Recognition

An individual afflicted by an illness will exhibit a range of symptoms, including fever,

cough, weariness, sore throat, headache, and sneezing. Furthermore, each viral infection will

exhibit various symptoms. Dengue, typhoid, and chikungunya might induce illness, chronic

weariness, pharyngitis, coughing, and more symptoms. The symptoms of coronavirus infection

encompass fever, cough, nasal congestion, and chronic weariness, among others. The primary

symptoms of each disease can be identified by similarity-based pattern recognition involving

neutrosophic fuzzy sets, and from the maximum similarity measure or core symptoms, we can

ascertain the patient’s disease kind. A medical diagnosis is generally established primarily on

enduring symptoms, while fleeting symptoms do not yield conclusive insights. The ambiguity
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Temperature Headache Sore Throat Diarrhoea Shortness of Breath

Dengue Fever (0.4,0.6,0.2,0.1) (0.8,0.9,0.1,0.1) (0.2,0.6.0.3,0.1) (0.7,0.8,0.0,0.1) (0.2,0.8,0.3,0.2)

Covid-19 (0.7,0.6,0.2,0.2) (0.5,0.6,0.2,0.2) (0.8,0.7.0.1,0.1) (0.5,0.3,0.4,0.2) (0.8,0.6,0.3,0.2)

Viral Fever (0.8,0.7,0.2,0.2) (0.6,0.6,0.1,0.1) (0.7,0.5.0.3,0.3) (0.4,0.2,0.3,0.4) (0.2,0.3,0.4,0.3)

Rat Fever (0.8,0.6,0.2,0.2) (0.7,0.8,0.2,0.1) (0.2,0.7.0.1,0.2) (0.3,0.2,0.4,0.5) (0.2,0.3,0.4,0.4)

Chikungunya (0.9,0.6,0.5,0.1) (0.6,0.9,0.1,0.0) (0.2,0.6.0.1,0.3) (0.3,0.3,0.5,0.4) (0.3,0.6,0.2,0.2)

Table 1. Ideal values for symptoms of each disease

and uncertainties in the available medical data must be considered when addressing persistent

symptoms; however, employing Neutrosophic Fuzzy Sets (NFS) to characterize this data might

significantly mitigate these distractions. The similarity metric among neutrosophic fuzzy sets

enables the identification of the principal symptoms of each ailment and the deduction of the

patient’s condition.

For our case study, let us select five patients P = {P1,P2,P3,P4,P5}, each patient having

multiple symptoms such as

S={S1(ProlongedTemperature),S2(ProlongedHeadache),S3(Prolonged
SoreThroat),S4(ProlongedDiarrhoea),S5(Prolonged Shortness of Breath)}.
Now employing the medical data represented by neutrsophic fuzzy sets, we have to deduce the

type of disease that affects the person such as

D={D1(Dengue), D2(Covid-19), D3(Viral Fever),D4(Rat Fever), D5(Chikungunya)}

Consider the following NFS to be the patient’s representation of all symptoms:

P1={(S1, 0.8, 0.7, 0.2, 0.1),
(S2, 0.7, 0.6, 0.2, 0.2),(S3, 0.5, 0.6.0.1, 0.1),(S4, 0.2, 0.2, 0.0, 0.1),(S5, 0.7, 0.3, 0.6, 0.4)}

We can establish an ideal value for each symptom associated with a given disease when we

analyze the medical records of numerous patients who have that disease.Table 1 provides an

ideal value for each symptom associated with each disease.

It is our intention to place patternP1 in one of the classes D1,D2,D3,D4, orD5.Accurate di-

agnosis Dk for patient P1 is derived according to k = argMax1≤i≤5S.M(P1,Di) where S.M

stands for similarity measure. The similarity measures between patient P1 and disease Di are

given in Table 2.

The maximum similarity measure obtained by employing three different similarity measures

according to the given neutrophic fuzzy data is shown in bold in Table2. From Table 2 and

FIGURE-1 we can conclude that patient P1 is affected by viral fever.
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Figure 1. Heat map showing patient-disease mapping

(P1,D1) (P1,D2) (P1,D3) (P1,D4) (P1,D5)

SH(P1,Di) 0.58 0.74 0.76 0.70 0.64

SM (P1,Di) 0.56 0.69 0.70 0.68 0.58

ECSV NFS(P1,Di) 0.54 0.70 0.72 0.68 0.56

SE(P1,Di) 0.8648 0.9168 0.9250 0.9121 0.8833

Table 2. Similarity measures between patient P1 and disease Di

7. Comparative Evaluations with Existing Similarity Measures

The initial similarity measure established for the Neutrosophic Fuzzy Set was the Euclidean

similarity measure (SE), devised by S.Das et al. [4].In this section, we compare and evaluate

recent definitions of similarity measures with the traditional Euclidean similarity measure. In

TABLE-2, we have compiled a summary of various similarity measures between the patient

P1 and each disease Di. The heat map displayed in FIGURE-3 will enable us to assess the

efficacy of each similarity measure in the given modeling problem.

The recently introduced Hausdorff similarity measure for Neutrosophic Fuzzy Sets (NFS)

presents notable benefits in managing the intricacy and multidimensional characteristics of

Neutrosophic Fuzzy Sets (NFS), offering a more resilient and all-encompassing evaluation of

similarity. However, the Euclidean similarity measure is favored because of its simplicity,

computing efficiency, and ability to directly assess similarity between individual points. The

selection among the four commonalities is based on the particular demands and limitations of

the application. The comparative diagram presented in FIGURE-2 will provide a compre-

hensive understanding of the benefits and constraints associated with each similarity.
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Figure 2. Comparison diagram for various similarity measures

Figure 3. Comparison Map

8. Conclusion

In Neutrosophic Fuzzy Set theory, the measurement of distance and similarity is a key

research area since these concepts are useful tools for handling incomplete and ambiguous

information. In the present study, we derive Hausdorff Similarity Measures, Membership-

Grade-Based Similarity Measure, and Trigonometric Similarity Measure in a single-valued

neutrosophic environment. the use of these similarity measures in pattern recognition repre-

sents a significant advancement in the field of medical data analysis.Future work will focus on

extending the application of Neutrosophic Fuzzy Sets to more complex medical datasets and

exploring their integration with advanced machine learning techniques, such as deep learning,

to further enhance the precision and efficiency of symptom extraction and disease characteriza-

tion. Additionally, incorporating these models into real-time clinical decision support systems

can provide substantial benefits to healthcare practitioners by improving diagnostic accuracy

and patient outcomes.
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