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Abstract. The concept of g#α closed set in general topological spaces was first introduced by Muthuku-

maraswamy K et. al.,. Recently, kokilavani V, Tharani K et. al., introduced neutrosophic crisp g#α closed set

in neutrosophic crisp topological space. Now, in this present paper, we introduced and study the neutrosophic

crisp topological properties of neutrosophic crisp g#α interior, neutrosophic crisp g#α closure, neutrosophic

crisp g#α frontier, neutrosophic crisp g#α border, neutrosophic crisp g#α exterior via the concept of neutro-

sophic crisp g#α open set.
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————————————————————————————————————————–

1. Introduction

Zadeh [13] proposed the concept of a fuzzy set that provides a degree of membership function

in 1965. Chang [3] first proposed the idea of fuzzy topological space, in 1968. Atanassov [2]

created the next stage of fuzzy sets in 1983. These sets, known as intuitionistic fuzzy sets pro-

vide a degree of membership and a degree of non-membership functions. Coker [4] introduced

the idea of intuitionistic fuzzy topological space in intuitionistic fuzzy sets in 1997. Salama and

Alblowi [5] defined neutrosophic topological space and many of its applications. The concept

of neutrosophic crisp set and neutrosophic set was investigated by Smaradache [7] [10] [11] in

2005. Since the invention of the neutrosophic set, numerous mathematical topics and applica-

tions have been developed. The neutrosophic closed sets and neutrosophic continuous functions

were introduced by Salama et.al. [6] in 2014. Salama, et, al. [9] proposed an innovative math-

ematical model called ” Neutrosophic crisp sets and Neutrosophic crisp topological spaces ”.
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Salama, et, al., [8] expand the notion of neutrosophic crisp topological spaces to neutrosophic

crisp α-topological spaces in 2016. V. Kokilavani , K.Tharani et. al., [12] presented neutro-

sophic crisp g#α closed set in neutrosophic crisp topological space. Riad K. Al-Hamido [1]

introduced new operators like neutrosophic crisp frontier, neutrosophic crisp border and neu-

trosophic crisp exterior using neutrosophic crisp open set in 2023. In this paper, we use the

neutrosophic crisp sets to introduce neutrosophic crisp g#α interior, neutrosophic crisp g#α

closure, neutrosophic crisp g#α frontier, neutrosophic crisp g#α border, neutrosophic crisp

g#α exterior and discuss their properties in neutrosophic crisp topological space.

2. Preliminaries

Definition 2.1. [9] Let (X,Γ) be a NCTS on X and A be a NCS on X. Then the neutrosophic

crisp closure of A (shortly NCcl(A)) and neutrosophic crisp interior (shortly NCint(A)) of A
are defined by

NCcl(A)=∩ {C:A ⊆ C & C is a NCCS in X}
NCint(A)=∪ {F :F ⊆ A & F is a NCOS in X}

Definition 2.2. Let A be a neutrosophic crisp subset, and let F be a NCgOS

in a NCTS(X,Γ) where A ⊆ F then A is called neutrosophic crisp g#α-closed set

(briefly,NCg#αCS) if NCαcl(A) ⊆ F and the complement of a NCg#αCS is a NCg#αOS

in (X,Γ).

3. Neutrosophic Crisp g#α Interior

In this section, we introduce neutrosophic crisp g#α interior and discuss their properties in

neutrosophic crisp topological spaces.

Definition 3.1. Let (X,Γ) be a NCTS and let x ∈ X. A subset A of X is said to be NCg#α-

neighbourhood of x if there exists a NCg#α open set F such that x ∈ F ⊂ A.

Definition 3.2. Let (X,Γ) be a NCTS and let A ⊂ X. A point x ∈ A is said to be NCg#α

interior point of A if and only if A is a NCg#α-neighbourhood of x.

Remark 3.1. Let A be a neutrosophic crisp subset of the NCTS(X,Γ). Then the set

of all NCg#α interior points of A is called the NCg#α interior of A and is denoted by

NCg#αint(A).

Theorem 3.1. If A be a neutrosophic crisp subset of NCTS(X,Γ). Then NCg#αint(A) =

∪{F : F is a NCg#α open, F ⊂ A}.
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Proof. Let A be a neutrosophic crisp subset of NCTS(X,Γ).

Then x ∈ NCg#αint(A) ⇔ x is a NCg#α interior point of A.

⇔ A is a NCg#α nbhd of point x.

⇔ there exists NCg#α open set F such that x ∈ F ⊂ A.

⇔ x ∈ ∪{F : F is a NCg#α open, F ⊂ A}

Hence NCg#αint(A) = ∪{F : F is a NCg#α open, F ⊂ A}.

Theorem 3.2. If A and D be neutrosophic crisp subsets of NCTS(X,Γ). Then

(i) NCg#αint(XN ) = XN and NCg#αint(ϕN ) = ϕN

(ii) NCg#αint(A) ⊂ A.

(iii) If D is any NCg#αOS contained in A, then D ⊂ NCg#αint(A)

(iv) If A ⊂ D, then NCg#αint(A) ⊂ NCg#αint(D)

(v) NCg#αint(NCg#αint(A))= NCg#αint(A)

Proof.

(i) Since XN and ϕN are NCg#α open sets,

NCg#αint(XN ) = ∪{F : F is a NCg#αopen,F ⊂ X}

= X ∪ F is NCg#αOS

= XN

(ie) NCg#αint(XN )=XN . Since ϕN is the only NCg#αOS contained in ϕN ,

NCg#αint(ϕN )=ϕN

(ii) Let X ∈ NCg#αint(A) ⇒ x is a interior point of A.

⇒ A is a nbhd of x

⇒ x ∈ A

Thus, x ∈ NCg#αint(A) ⇒ x ∈ A. Hence, NCg#αint(A) ⊂ A.

(iii) Let D be any NCg#OS such that D ⊂ A. Let x ∈ D. Since D is a NCg#OS

contained in A. x is a NCg#α interior point of A. (ie) x ∈ NCg#αint(A). Hence D
⊂ NCg#αint(A).

(iv) Let A and D be neutrosophic crisp subsets of NCTS(X,Γ) such that A ⊂ D. Let x ∈
NCg#αint(A). Then x is a NCg#α interior point of A and so A is a NCg#α-nbhd

of x. Since D ⊃ A,D is also NCg#α-nbhd of x. ⇒ x ∈ NCg#αint(D). Thus we have

shown that x ∈ NCg#αint(A) ⇒ x ∈ NCg#αint(D).

(v) Let A be a neutrosophic crisp subset of NCTS(X,Γ). NCg#αint(A) is NCg#αOS

and hence NCg#αint(NCg#αint(A)) = NCg#αint(A)
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Theorem 3.3. If a neutrosophic crisp subset A of NCTS(X,Γ) is NCg#αopen, then

NCg#αint(A)=A.

Proof. Let A be NCg#αopen subset of NCTS(X,Γ). We know that NCg#αint(A) ⊂ A.

Also, A is NCg#αOS contained in A. From Theorem 3.2 (iii) A ⊂ NCg#αint(A). Hence

NCg#αint(A)=A.

Theorem 3.4. If A and D are neutrosophic crisp subset of NCTS(X,Γ), then NCg#αint(A)

∪ NCg#αint(D) ⊂ NCg#αint(A ∪ D).

Proof. We know that A ⊂ A ∪ D and D ⊂ A ∪ D. The result from Theorem 3.2 (iv) that

NCg#αint(A) ⊂ NCg#αint(A ∪ D) and also we have NCg#αint(D) ⊂ NCg#αint(A ∪ D)

This implies that NCg#αint(A) ∪ NCg#αint(D) ⊂ NCg#αint(A ∪D).

Theorem 3.5. If A and D are neutrosophic crisp subset of NCTS(X,Γ), then NCg#αint(A
∩ D) = NCg#αint(A) ∩ NCg#αint(D).

Proof. We know that A ∩ D ⊂ A and A ∩ D ⊂ D. The result from Theorem 3.2 (iv) that

NCg#αint(A ∩D) ⊂ NCg#αint(A) and NCg#αint(A ∩D) ⊂ NCg#αint(D). This implies

that

NCg#αint(A ∩D) ⊂ NCg#αint(A) ∩NCg#αint(D). (1)

Let x ∈ NCg#αint(A) ∩ NCg#αint(D). Then x ∈ NCg#αint(A) and x ∈ NCg#αint(D).

Hence x is a NCg#α-int point of each of sets A and D. It follows that A and D is NCg#α-

nbhds of x, so that their intersection A ∩ D is also a NCg#α-nbhds of x. Hence x ∈
NCg#αint(A ∩ D). Thus x ∈ NCg#αint(A) ∩ NCg#αint(D) implies that x ∈ NCg#αint(A
∩ D). Therefore

NCg#αint(A) ∩NCg#αint(D) ⊂ NCg#αint(A ∩D) (2)

From (1) and (2), We get NCg#αint(A ∩ D) = NCg#αint(A) ∩ NCg#αint(D).

Theorem 3.6. If A neutrosophic crisp subset of a NCTS(X,Γ), then NCint(A) ⊂
NCg#αint(A).
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Proof. Let A neutrosophic crisp subset of a NCTS(X,Γ).

Let x ∈ NCint(A) ⇒ x ∈ ∪ {F : F is NCOS, F ⊂ A}

⇒ there exists an NCOS F such that x ∈ F ⊂ A.

⇒ there exist a NCg#αOS F such that x ∈ F ⊂ A,

as every NCOS is a NCg#αOS in x.

⇒ x ∈ ∪{F : F is NCg#αOS, F ⊂ A}

⇒ x ∈ NCg#αint(A)

Thus x ∈ NCint(A) ⇒ x ∈ NCg#αint(A). Hence NCint(A) ⊂ NCg#αint(A).

Remark 3.2. If A is a neutrosophic crisp subset of NCTS(X,Γ), then

(i) NCαint(A) ⊂ NCg#αint(A)

(ii) NCgαgint(A) ⊂ NCg#αint(A)

(iii) NCg#αint(A) ⊂ NCαgint(A)

(iv) NCg#αint(A) ⊂ NCgsint(A)

4. Neutrosophic Crisp g#α Closure

Definition 4.1. Let A be a neutrosophic crisp subset of NCTS(X,Γ). We define the NCg#α

closure of A to be the intersection of all NCg#αCS′s containing A. It denotes, NCg#αcl(A)

= ∩ {C : C is a NCg#αCS and A ⊂ C}.

Theorem 4.1. If A and D are neutrosophic crisp subset of NCTS(X,Γ). Then,

(i) NCg#αcl(XN )= XN and NCg#αcl(ϕN ) =ϕN

(ii) A ⊂ NCg#αcl(A)

(iii) If D is any NCg#α closed set containing A, then NCg#αcl(A) ⊂ D
(iv) If A ⊂ D then NCg#αcl(A) ⊂ NCg#αcl(D)

(v) NCg#αcl(A ∩D) ⊂ NCg#αcl(A) ∩ NCg#αcl(D)

(vi) NCg#αcl(A ∪D) = NCg#αcl(A) ∪ NCg#αcl(D)

(vii) NCg#αcl(NCg#αcl(A)) = NCg#αcl(A)

Proof.

(i) By the definition of NCg#αcl(A), X is the only NCg#α closed set containing X.

∴ NCg#αcl(XN ) = Intersection of all the NCg#α closed sets containing X.

= ∩{X} = XN
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That is NCg#αcl(XN )=XN .

Consequently,

NCg#αcl(ϕN ) = Intersection of all the NCg#α closed sets containing ϕ

= ∩{ϕ} = ϕN .

That is NCg#αcl(ϕN ) = ϕN .

(ii) By the definition of NCg# closure of A, it is obvious that A ⊂ NCg#αcl(A).

(iii) Let D be any NCg#αCS containing A. Since NCg#αcl(A) is the intersection of all

NCg#αCS′s containing A, NCg#αcl(A) is contained in every NCg#αCS containing

A. Hence in particular, NCg#αcl(A) ⊂ D .

(iv) Let A and D be neutrosophic crisp subsets of (X,Γ) such that A ⊂ D. By the definition

NCg#αcl(D) =∩ {C: D ⊂ C ∈ NCg#αC(X) }. If D ⊂ C ∈ NCg#αC(X), then

NCg#αcl(D) ⊂ C. Since A ⊂ D, and by the definition, if D ⊂ C, then A ⊂ C for any

C ∈ NCg#αC(X), we have NCg#αcl(A) ⊂ C. Therefore NCg#αcl(A) ⊂ ∩ {C: D ⊂
C ∈ NCg#αC(X)}= NCg#αcl(D).

(i.e) NCg#αcl(A) ⊂ NCg#αcl(D).

(v) Let A and D be neutrosophic crisp subsets of (X,Γ). Clearly A ∩ D ⊂ A and A
∩ D ⊂ D. By theorem NCg#αcl(A ∩ D) ⊂ NCg#αcl(A) and NCg#αcl(A ∩ D) ⊂
NCg#αcl(D). Hence NCg#αcl(A ∩D) ⊂ NCg#αcl(A) ∩ NCg#αcl(D).

(vi) Let A and D be neutrosophic crisp subsets of (X,Γ). Clearly A ⊂ A ∪ D and D ⊂ A ∪
D. We have NCg#αcl(A) ⊂ NCg#αcl(A∪D) and NCg#αcl(D) ⊂ NCg#αcl(A∪D).

Hence,

NCg#αcl(A) ∪NCg#αcl(D) ⊂ NCg#αcl(A ∪D) (1)

Since NCg#αcl(A), NCg#αcl(D) are NCCS’s. NCg#αcl(A) ∪ NCg#αcl(D) are

NCCS. Also, A ⊂ NCg#αcl(A) and D ⊂ NCg#αcl(D), which implies A ∪ D ⊂
NCg#αcl(A) ∪ NCg#αcl(D). Thus, NCg#αcl(A) ∪ NCg#αcl(D) is a NCCS con-

taining A ∪ D. Since, NCg#αcl(A ∪ D) is the smallest NCCS containing A ∪ D, we

have

NCg#αcl(A ∪D) ⊂ NCg#αcl(A) ∪NCg#αcl(D) (2)

from (1) and (2) we have, NCg#αcl(A ∪D) = NCg#αcl(A) ∪ NCg#αcl(D).

Theorem 4.2. If A ⊂ X is NCg#α closed, then NCg#αcl(A) =A.

Proof. Let A be NCg#α closed neutrosophic crisp subset of (X,Γ). We know that A ⊂
NCg#αcl(A). Also A is NCg#α closed set containing A . By theorem (iii) NCg#αcl(A) ⊂
A . Hence, NCg#αcl(A) = A.
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Theorem 4.3. If A is a neutrosophic crisp subset of a space (X,Γ), then NCg#αcl(A) ⊂
NCcl(A).

Proof. Let A is a neutrosophic crisp subset of a space (X,Γ). By the definition of Neutrosophic

crisp closure,NCcl(A)=∩ {C: C is NC closed, A ⊂ C}. If A ⊂ C and C is a neutrosophic crisp

closed subset of X, Then A ⊂ C ∈ NCg#αcl(X), because every neutrosophic crisp closed set

is NCg#α closed set. That is NCg#αcl(A) ⊂ C. Therefore NCg#αcl(A) ⊂ ∩ {C : A ⊂ C
and C is a neutrosophic crisp closed in X}= NCcl(A). Hence NCg#αcl(A) ⊂ NCcl(A).

Remark 4.1. Let A be any neutrosophic crisp subset of X. Then

(i) (NCg#αint(A))c = NCg#αcl(Ac)

(ii) NCg#αint(A) = (NCg#αcl(Ac))c

(iii) NCg#αcl(A) = (NCg#αint(Ac))c

5. Neutrosophic Crisp g#α Frontier

Definition 5.1. Let A be a neutrosophic crisp subset of NCTS(X,Γ). Then NCg#α frontier

of A is defined as NCg#αFr(A) = NCg#αcl(A) ∩ NCg#αcl(Ac).

Theorem 5.1. If A and D be neutrosophic crisp subsets of NCTS(X,Γ). Then

(i) NCg#αFr(XN ) = ϕN and NCg#αFr(ϕN ) = ϕN

(ii) NCg#αFr(A) = NCg#αFr(Ac)

(iii) NCg#αFr(A) = NCg#αcl(A) - NCg#αint(A)

(iv) If A is NCg#αCS in X if and only if NCg#αFr(A) ⊆ A
(v) If A is NCg#αOS in X, then NCg#αFr(A) ⊆ Ac

(vi) (NCg#αFr(A))c = NCg#αint(A) ∪ NCg#αint(Ac)

(vii) A ∪ NCg#αFr(A) ⊆ NCg#αcl(A)

(viii) NCg#αFr(NCg#αint(A)) ⊆ NCg#αFr(A)

(ix) NCg#αFr(NCg#αcl(A)) ⊆ NCg#αFr(A)

(x) NCg#αint(A) ⊆ A - NCg#αFr(A)

(xi) NCg#αFr(NCg#αFr(A)) ⊆ NCg#αFr(A)

(xii) NCg#αFr(NCg#αFr(NCg#αFr(A))) ⊆ NCg#αFr(NCg#αFr(A))

Proof.

(i) Let A be a neutrosophic crisp subset in NCTS(X,Γ).
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NCg#αFr(XN ) =NCg#αcl(XN ) ∩NCg#αcl(XN
c)

= NCg#αcl(XN ) ∩NCg#αcl(ϕN )

= XN ∩ ϕN

= ϕN

NCg#αFr(ϕN ) = NCg#αcl(ϕN ) ∩NCg#αcl(ϕN
c)

= NCg#αcl(ϕN ) ∩NCg#αcl(XN )

= ϕN ∩XN

= ϕN

(ii) Let A be a neutrosophic crisp subset in NCTS(X,Γ). Then by definition of NCg#α

frontier,

NCg#αFr(A) = NCg#αcl(A) ∩NCg#αcl(Ac)

= NCg#αcl(Ac) ∩NCg#αcl(A)

= NCg#αcl(Ac) ∩ (NCg#αcl(Ac))c

= NCg#αFr(Ac) [But, by Definition 5.1]

(iii) Let A be a neutrosophic crisp subset in NCTS(X,Γ). Since, (NCg#αcl(A))c =

NCg#αint(Ac), then (NCg#αcl(Ac))c = NCg#αint(A)

By Definition 5.1, NCg#αFr(A) = NCg#αcl(A) ∩ NCg#αcl(Ac)

= NCg#αcl(A) ∩ (NCg#αint(A))c

By using, A−D = A ∩ Dc

= NCg#αcl(A) - NCg#αint(A)

Hence, NCg#αFr(A) = NCg#αcl(A) - NCg#αint(A)

(iv) Let A be a neutrosophic crisp subset in NCTS(X,Γ).

By Definition 5.1, NCg#αFr(A) = NCg#αcl(A) ∩ NCg#αcl(Ac)

⊆ NCg#αcl(A)

=A
Therefore, NCg#αFr(A) ⊆ A

Conversely,

Assume that, NCg#αFr(A) ⊆ A. Then NCg#αcl(A) - NCg#αint(A) ⊆ A.

Since, NCg#αint(A) ⊆ A. We conclude that, NCg#αcl(A) = A and hence A is

NCg#αCS.

(v) Let A be a NCg#αOS in NCTS(X,Γ). Then Ac is NCg#αCS in NCTS(X,Γ).

By the Theorem 5.1 (iv), NCg#αFr(Ac) ⊆ Ac.

and by Theorem 5.1 (ii), NCg#αFr(A) ⊆ Ac.

#K. Tharani, V. Kokilavani. On Neutrosophic Crisp g α Closed Set Operators

Neutrosophic Sets and Systems, Vol. 73, 2024        422



(vi) Let A be a neutrosophic crisp subset in NCTS(X,Γ).

By Defintion 5.1, (NCg#αFr(A))c = (NCg#αcl(A) ∩ NCg#αcl(Ac))c

= (NCg#αcl(A))c ∪ (NCg#αcl(Ac))c

= (NCg#αint(Ac)) ∪ (NCg#αint(A))

Hence, (NCg#αFr(A))c= (NCg#αint(Ac)) ∪ (NCg#αint(A))

(vii) Let A be a neutrosophic crisp subset in NCTS(X,Γ).

By Defintion 5.1, A ∪ NCg#αFr(A) = A ∪ (NCg#αcl(A) ∩ NCg#αcl(Ac))

= (A ∪ NCg#αcl(A)) ∩ (A ∪ (NCg#αcl(Ac))

⊆ NCg#αcl(A) ∩ NCg#αcl(Ac)

⊆ NCg#αcl(Ac)

Hence, A ∪ NCg#αFr(A) ⊆ NCg#αcl(Ac)

(viii) Let A be a neutrosophic crisp subset in NCTS(X,Γ). Then by Definition 5.1,

NCg#αFr(NCg#αint(A)) = NCg#αcl(NCg#αint(A)) ∩NCg#αcl(NCg#αint(A))c

= NCg#αcl(NCg#αint(A)) ∩NCg#αcl(NCg#αcl(Ac))

[(NCg#αint(A))c = NCg#αcl(Ac)]

= NCg#αcl(NCg#αint(A)) ∩NCg#αcl(Ac)

[NCg#αcl(Ac) is NCg#αCS]

⊆ NCg#αcl(A) ∩NCg#αcl(Ac) [by Theorem 3.2 (ii)]

= NCg#αFr(A) [again by Definition 5.1]

NCg#αFr(NCg#αint(A)) ⊆ NCg#αFr(A)

(ix) Let A be a neutrosophic crisp subset in NCTS(X,Γ). Then by Definition 5.1,

NCg#αFr(NCg#αcl(A)) = NCg#αcl(NCg#αcl(A)) ∩NCg#αcl(NCg#αcl(A))c

= NCg#αcl(A) ∩NCg#αcl(NCg#αint(Ac))

[(NCg#αint(A))c = NCg#αcl(Ac)]

⊆ NCg#αcl(A) ∩NCg#αcl(Ac)

= NCg#αFr(A) [again by Definition 5.1]

NCg#αFr(NCg#αcl(A)) ⊆ NCg#αFr(A)
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(x) Let A be a neutrosophic crisp subset in NCTS(X,Γ).

A−NCg#αFr(A) = A ∩ (NCg#αFr(A))c

= A ∩ (NCg#αcl(A) ∩NCg#αcl(Ac))c [by Definition 5.1]

= A ∩ (NCg#αint(Ac) ∪NCg#αint(A))

= (A ∩NCg#αint(Ac)) ∪ (A ∩NCg#αint(A))

= (A ∩NCg#αint(Ac)) ∪NCg#αint(A) ⊇ NCg#αint(A)

Hence, NCg#αint(A) ⊆ A−NCg#αFr(A)

(xi) Let A be neutrosophic crisp subsets of NCTS(X,Γ). Then by Definition 5.1,

NCg#αFr(NCg#αFr(A)) = NCg#αcl(NCg#αFr(A)) ∩NCg#αcl(NCg#αFr(A))c

= NCg#αcl(NCg#αcl(A) ∩NCg#αcl(Ac))

∩NCg#αcl(NCg#αcl(A) ∩NCg#αcl(Ac))c

⊆ (NCg#αcl(NCg#αcl(A)) ∩NCg#αcl(NCg#αcl(Ac)))

∩ (NCg#αcl(NCg#αint(Ac) ∪NCg#αint(A)))

⊆ (NCg#αcl(A) ∩NCg#αcl(Ac))

∩ (NCg#αcl(NCg#αint(Ac) ∪ (NCg#αcl(NCg#αint(A))))

⊆ (NCg#αcl(A) ∩NCg#αcl(Ac)) ∩ (NCg#αcl(Ac)

∪NCg#αcl(A))

⊆ NCg#αcl(A) ∩NCg#αcl(Ac)

= NCg#αFr(A)

Therefore, NCg#αFr(NCg#αFr(A)) ⊆ NCg#αFr(A)

(xii) Let A be neutrosophic crisp subsets of NCTS(X,Γ). Then by Definition 5.1,

NCg#αFr(NCg#αFr(NCg#αFr(A))) = NCg#αcl(NCg#αFr(NCg#αFr(A)))

∩NCg#αcl(NCg#αFr((NCg#αFr(A)))c)

⊆ NCg#αcl(NCg#αFr(A))

∩NCg#αcl(NCg#αFr(A)c)

⊆ NCg#αcl(NCg#αFr(A))

Hence, NCg#αFr(NCg#αFr(NCg#αFr(A))) ⊆ NCg#αcl(NCg#αFr(A))

Theorem 5.2. If A and D be neutrosophic crisp subsets of NCTS(X,Γ). Then

NCg#αFr(A ∪D) ⊆ NCg#αFr(A) ∪ NCg#αFr(D)

Proof. Let A and D be neutrosophic crisp subsets of NCTS(X,Γ). Then by Definition 5.1
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NCg#αFr(A ∪D) = NCg#αcl(A ∪D) ∩NCg#αcl(A ∪D)c

= NCg#αcl(A ∪D) ∩NCg#αcl(Ac ∩ Dc)

⊆ (NCg#αcl(A) ∪NCg#αcl(D)) ∩ (NCg#αcl(Ac) ∩NCg#αcl(Dc))

by Theorem 4.1 (v) and (vi)

= ((NCg#αcl(A) ∪NCg#αcl(D)) ∩ (NCg#αcl(Ac)))

∩ ((NCg#αcl(A) ∪NCg#αcl(D)) ∩ (NCg#αcl(Dc)))

= ((NCg#αcl(A) ∩NCg#αcl(Ac)) ∪ (NCg#αcl(D) ∩NCg#αcl(Ac)))

∩ ((NCg#αcl(A) ∩NCg#αcl(Dc)) ∪ (NCg#αcl(A)) ∩NCg#αcl(Dc)))

= (NCg#αFr(A) ∪ (NCg#αcl(D) ∩NCg#αcl(Ac)))

∩ (NCg#αFr(D) ∪ (NCg#αcl(A)) ∩NCg#αcl(Dc)))

= (NCg#αFr(A) ∪NCg#αFr(D)) ∩ ((NCg#αcl(D) ∩NCg#αcl(Ac))

∪ (NCg#αcl(A)) ∩NCg#αcl(Dc)))

⊆ NCg#αcl(A) ∪NCg#αcl(D)

Theorem 5.3. If A and D be neutrosophic crisp subsets of NCTS(X,Γ). Then

NCg#αFr(A∩D) ⊆ (NCg#αFr(A) ∩ NCg#αFr(D)) ∪ (NCg#αFr(D) ∩ NCg#αFr(A))

Proof. Let A and D be neutrosophic crisp subsets of NCTS(X,Γ). Then by Definition 5.1

NCg#αFr(A ∩D) = NCg#αcl(A ∩D) ∩NCg#αcl(A ∩D)c

= NCg#αcl(A ∩D) ∩NCg#αcl(Ac ∪ Dc)

⊆ (NCg#αcl(A) ∩NCg#αcl(D)) ∩ (NCg#αcl(Ac) ∪NCg#αcl(Dc))

by Theorem 4.1 (v) and (vi)

= ((NCg#αcl(A) ∩NCg#αcl(D)) ∩ (NCg#αcl(Ac)))

∪ ((NCg#αcl(A) ∩NCg#αcl(D)) ∩ (NCg#αcl(Dc)))

= (NCg#αFr(A) ∩NCg#αcl(D)) ∪ (NCg#αFr(D) ∩NCg#αcl(A))

Corollary 5.4. Let A and D be neutrosophic crisp subsets of NCTS(X,Γ), NCg#αFr(A ∩
D) ⊆ NCg#αcl(A) ∪NCg#αcl(D)
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Proof.
NCg#αFr(A ∩D) = NCg#αcl(A ∩D) ∩NCg#αcl(A ∩D)c

= NCg#αcl(A ∩D) ∩NCg#αcl(Ac ∪ Dc)

⊆ (NCg#αcl(A) ∩NCg#αcl(D)) ∩ (NCg#αcl(Ac) ∪NCg#αcl(Dc))

by Theorem 4.1 (v) and (vi)

= ((NCg#αcl(A) ∩NCg#αcl(D)) ∩ (NCg#αcl(Ac)))

∪ ((NCg#αcl(A) ∩NCg#αcl(D)) ∩ (NCg#αcl(Dc)))

= (NCg#αFr(A) ∩NCg#αcl(D)) ∪ (NCg#αFr(D) ∩NCg#αcl(A))

⊆ NCg#αcl(A) ∪NCg#αcl(D)

6. Neutrosophic Crisp g#α Border

Definition 6.1. Let A be a neutrosophic crisp subset of NCTS(X,Γ). Then NCg#α border

of A is defined as NCg#αBr(A) = A - NCg#αint(A).

Theorem 6.1. If A be neutrosophic crisp subsets of NCTS(X,Γ). Then

(i) A is a NCg#αOS iff NCg#αBr(A) = ϕN

(ii) NCg#αBr(XN ) = NCg#αBr(ϕN ) = ϕN

(iii) A = NCg#αint(A) ∪ NCg#αBr(A)

(iv) NCg#αint(A) ∩ NCg#αBr(A) = ϕN

(v) NCg#αint(NCg#αBr(A)) = ϕN

(vi) NCg#αBr(NCg#αint(A)) = ϕN

(vii) NCg#αBr(NCg#αBr(A)) = NCg#αBr(A)

(viii) NCg#αBr(A) = A ∩ NCg#αcl(Ac)

(ix) NCg#αBr(A) ⊆ NCg#αFr(A)

Proof. Let A be a neutrosophic crisp subset of NCTS(X,Γ).

(i) Necessity: Suppose A is NCg#αOS. Then NCg#αint(A) = A.

Now, NCg#αBr(A) = A - NCg#αint(A) = A - A = ϕN .

Sufficiency: Suppose NCg#αBr(A)=ϕN . This implies, A - NCg#αint(A)=ϕN .

Therefore A = NCg#αint(A) and hence A is NCg#αOS.

(ii) Since ϕN and XN are NCg#αOS, by Theorem 6.1 (i), NCg#αBr(ϕN ) =ϕN and

NCg#αBr(XN )=ϕN .

(iii) Let x ∈ A. If x ∈ NCg#αint(A), then the result is obvious.

If x ̸∈ NCg#αint(A), then by the definition of NCg#αBr(A), x ∈ NCg#αBr(A).

Hence x ∈ NCg#αint(A) ∪ NCg#αBr(A) and so A ⊆ NCg#αint(A) ∪
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NCg#αBr(A).

On the other hand, Since NCg#αint(A) ⊆ A and NCg#αBr(A) ⊆ A, we have

NCg#αint(A) ∪ NCg#αBr(A) ⊆ A
(iv) Suppose NCg#αint(A) ∩ NCg#αBr(A) ̸= ϕN .

Let x ∈ NCg#αint(A) ∩ NCg#αBr(A). Then x ∈ NCg#αint(A) and x ∈
NCg#αBr(A). Since NCg#αBr(A) = A ∩ NCg#αint(A), then x ∈ A. But x ∈
NCg#αint(A) and x ∈ A, there is a contradiction.

Hence, NCg#αint(A) ∩ NCg#αBr(A) = ϕN .

(v) Let x ∈ X and assume that x ∈ NCg#αint(NCg#αBr(A)).

Then x ∈ NCg#αBr(A), Since NCg#αBr(A) ⊆ A, x ∈ NCg#αint(NCg#αBr(A))

⊆ NCg#αint(A). Therefore x ∈ NCg#αint(A) ∩ NCg#αBr(A), this leads to a

contradiction to Theorem 6.1 (iv).

Hence NCg#αint(NCg#αBr(A)) = ϕN .

(vi) By the Definition 6.1,

NCg#αBr(NCg#αint(A)) = NCg#αint(A) - NCg#αint(NCg#αint(A)).

But Theorem 3.2 (v) we have, NCg#αint(NCg#αint(A))= NCg#αint(A).

Hence, NCg#αBr(NCg#αint(A)) = ϕN .

(vii) By the Definition 6.1,

NCg#αBr(NCg#αBr(A)) = NCg#αBr(A) - NCg#αint(NCg#αBr(A)).

By Theorem 6.1 (v), NCg#αint(NCg#αBr(A)) = ϕN .

And hence NCg#αBr(NCg#αBr(A)) =NCg#αBr(A)

(viii) Since, NCg#αBr(A) = A - NCg#αint(A)

= A ∩ (NCg#αint(A))c

= A ∩NCg#αcl(A)c

(ix) Since, A ⊆ NCg#αcl(A), A - NCg#αint(A) ⊆ NCg#αcl(A) - NCg#αint(A), that

implies, NCg#αBr(A) ⊆ NCg#αFr(A)

7. Neutrosophic Crisp g#α Exterior

Definition 7.1. Let A be a neutrosophic crisp subset of NCTS(X,Γ). Then NCg#α exterior

of A is defined as NCg#αExt(A) = NCg#αint(Ac).

Theorem 7.1. If A and D be neutrosophic crisp subsets of NCTS(X,Γ). Then

(i) NCg#αExt(XN ) =ϕN and NCg#αExt(ϕN ) = XN

(ii) NCg#αExt(A) = NCg#αcl(A)c

(iii) NCg#αExt(NCg#αExt(A)) = NCg#αint(NCg#αcl(A)) ⊇ NCg#αint(A)
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(iv) If A ⊆ D, then NCg#αExt(D) ⊆ NCg#αExt(A)

(v) If A is a NCg#αCS iff NCg#αExt(A) = ϕN

(vi) NCg#αExt(A) = NCg#αExt(NCg#αExt(A))c

(vii) NCg#αExt(A ∪D) ⊆ NCg#αExt(A) ∩ NCg#αExt(D)

(viii) NCg#αExt(A ∩D) ⊇ NCg#αExt(A) ∪ NCg#αExt(D)

Proof.

(i) Let A be a neutrosophic crisp subset in NCTS(X,Γ). By Definition 7.1,

NCg#αExt(XN ) = NCg#αint(XN
c) = NCg#αint(ϕN )

NCg#αExt(ϕN ) = NCg#αint(ϕN
c) = NCg#αcl(XN )

Since, ϕN and XN are NCg#αOS, then NCg#αint(ϕN ) = ϕN , NCg#αint(XN ) =

XN . Hence NCg#αExt(XN ) =ϕN and NCg#αExt(ϕN ) = XN

(ii) Let A be a neutrosophic crisp subset in NCTS(X,Γ). Then by definition of NCg#α

Extontier, (NCg#αcl(A))c = NCg#αint(Ac), then NCg#αExt(A) = NCg#αint(Ac)

= (NCg#αcl(A))c

(iii) Let A be a neutrosophic crisp subset in NCTS(X,Γ). Then by definition of NCg#α

Extontier, NCg#αExt(NCg#αExt(A)) = NCg#αExt(NCg#αint(Ac))

= NCg#αint(NCg#αint(Ac))c

= NCg#αint(NCg#αcl(A))

⊇ NCg#αint(A)

(iv) Let A ⊆ D. Then by Definition 7.1, NCg#αExt(D) = NCg#αint(Dc) ⊆
NCg#αint(Ac) = NCg#αExt(A)

(v) Necessity: Let A be a neutrosophic crisp subset in NCTS(X,Γ). Then its complement

Ac is NCg#αOS. By Definition 7.1, NCg#αExt(A) = NCg#αint(Ac)

Since Ac is NCg#αOS, NCg#αint(Ac) = Ac. Thus, NCg#αExt(A) = Ac.

If NCg#αExt(A) = ϕN , then Ac = ϕN , which implies A = X.

Hence, A is NCg#αCS.

Sufficient: If NCg#αExt(A) = ϕN , then NCg#αint(A). So, Ac = ϕN . This implies

A = X, and X is NCg#αCS. Hence, A is NCg#αCS.

(vi) NCg#αExt(NCg#αExt(A))c = NCg#αExt(NCg#αint(Ac))c

= NCg#αint((NCg#αint(Ac))c)c

= NCg#αint(NCg#αint(Ac))

= NCg#αint(Ac)

= NCg#αExt(A)
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(vii) Let A and D be neutrosophic crisp subsets of NCTS(X,Γ). Then by Definition 7.1,

NCg#αExt(A ∪D) = NCg#αint((A ∪D)c)

= NCg#αint((A)c ∩ (D)c)

⊆ NCg#αint(A)c ∩NCg#αint(D)c

= NCg#αExt(A) ∩NCg#αExt(D)

(viii) Let A and D be neutrosophic crisp subsets of NCTS(X,Γ). Then by Definition 7.1,

NCg#αExt(A ∩D) = NCg#αint((A ∩D)c)

= NCg#αint((A)c ∪ (D)c)

⊇ NCg#αint(A)c ∪NCg#αint(D)c

= NCg#αExt(A) ∪NCg#αExt(D)
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