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Abstract 

This paper is dedicated to defining the concepts of two-fold neutrosophic continuous 

functions, two-fold fuzzy continuous functions, and two-fold neutrosophic/fuzzy 

differentiable functions for the first time. 

The elementary properties of these novel concepts will be studied and handled through 

many theorems, as well as many clear examples that clarify the validity of these analytical 

concepts. 

Keywords: two-fold algebra, two-fold neutrosophic function, two-fold fuzzy function, two-

fold differentiability. 

Introduction 

Two-fold neutrosophic algebras are new algebraic structures presented by Smarandache [1] 

by combining neutrosophic values of truth, falsity, and indeterminacy with classical 

algebraic sets. These ideas were used by many authors to generalize other famous algebraic 

structures such as two-fold fuzzy number theoretical systems [2-3], two-fold modules and 

spaces [4], and two-fold fuzzy rings [5]. Also, they were used in the study of some special 

two-fold complex functions such as Gamma function [7], and in extending n-refined 

neutrosophic rings [6]. 

Neutrosophic real functions and their applications were studied by many authors [8-25] in 

many different ways. 

This has motivated us to introduce the concept of two-fold neutrosophic continuous 

functions, two-fold fuzzy continuous functions, and two-fold neutrosophic/fuzzy 

differentiable functions for the first time. The elementary properties of these novel concepts 

will be studied and handled through many theorems, as well as many clear examples that 

clarify the validity of these analytical concepts. 
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This study will be very important in the near future to generalize classical real analysis into 

an extended version based on two-fold algebra of real numbers. 

Main Discussion 

Definition 1. 

Let 𝑖, 𝑓, 𝑡: ℝ → [0,1] be three real functions denote to the neutrosophic ordinary real values 

of truth, indeterminacy and falsity. Let 𝑔:ℝ → ℝ be a real function in one variable 𝑔 =

𝑔(𝑥); 𝑥 ∈ ℝ. We define the corresponding two-fold neutrosophic real function as follows: 

𝑔𝑁: 𝑅 → 𝑅(𝑡,𝑖,𝑓)  ∶  𝑔𝑁(𝑥) = (𝑔(𝑥))(𝑡(𝑥),𝑖(𝑥),𝑓(𝑥)) 

 

 

Example 1. 

Let 

𝑖, 𝑡, 𝑓: ℝ → [0,1] , 

such that 

 

{
  
 

  
 𝑖(𝑥) = min (|𝑥|,

1

|𝑥|
) ; 𝑥 ≠ 0

𝑡(𝑥) = min (|𝑥3|,
1

|𝑥3|
) ; 𝑥 ≠ 0

𝑓(𝑥) = min (|𝑥2|,
1

|𝑥2|
) ; 𝑥 ≠ 0

   and {

𝑖(0) = 1
𝑡(0) = 0

𝑓(0) =
1

2

 . 

Consider 

𝑔:ℝ → ℝ ; 𝑔(𝑥) = 𝑥2 + 1, 

then 

𝑔𝑁: ℝ → ℝ(𝑡,𝑖,𝑓) , 

such that: 

𝑔𝑁(𝑥) = {
(𝑥2 + 1)(𝑡(𝑥),𝑖(𝑥),𝑓(𝑥))   ; 𝑥 ≠ 0

(1)
(0,1,

1

2
)
       ; 𝑥 = 0  . 

For example if 𝑥 = 2, then 

𝑡(𝑥) =
1

8
 , 𝑖(𝑥) =

1

2
 , 𝑓(𝑥) =

1

4
 , 𝑔(𝑥) = 5 , 

𝑔𝑁(𝑥) = (5)
(
1

8
,
1

2
,
1

4
)
 . 

Definition 2. 

Let 

𝑔𝑁: ℝ → ℝ(𝑡,𝑖,𝑓) , 

be a two-fold neutrosophic real function, we say that: 

1) 𝑔𝑁 is fully differential at 𝑥0 ∈ ℝ if: 
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{

𝑔′(𝑥0) is existed                           

𝑖′(𝑥0), 𝑓
′(𝑥0), 𝑡

′(𝑥0) are existed

𝑖′(𝑥0), 𝑓
′(𝑥0), 𝑡

′(𝑥0) ∈ [0,1]       

 , 

2) 𝑔𝑁 is T-differential (differential with respect to truth component) at 𝑥0 ∈ ℝ if: 

{

𝑔′(𝑥0) is existed

𝑡′(𝑥0)  ∈ [0,1]

𝑡′(𝑥0) is existed

 

3) 𝑔𝑁 is I-differential (differential with respect to the indeterminacy component) at 𝑥0 ∈ ℝ 

if: 

{

𝑔′(𝑥0) is existed

𝑖′(𝑥0) is existed

𝑖′(𝑥0) ∈ [0,1]       

 , 

4) 𝑔𝑁 is F-differential (differential with respect to the falisty component) at 𝑥0 ∈ ℝ if: 

{

𝑔′(𝑥0) is existed

𝑓′(𝑥0) is existed

𝑓′(𝑥0) ∈ [0,1]     

 . 

Example 2. 

Take: 𝑓(𝑥) = min (
1

𝑥2
, 𝑥2) , 𝑖(𝑥) = min (

1

𝑥4
, 𝑥4) , 𝑡(𝑥) = min (|𝑥|,

1

|𝑥|
) , 𝑡(0) = 𝑖(0) = 𝑓(0) =

1

2
. 

𝑔(𝑥) = 𝑥2 + 𝑥 + 1. 

 Hence, 

𝑔𝑁(𝑥):ℝ → ℝ(𝑡,𝑖,𝑓) , 

𝑔𝑁(𝑥) = {
(𝑥2 + 𝑥 + 1)(𝑡(𝑥),𝑖(𝑥),𝑓(𝑥))   ; 𝑥 ≠ 0 

(1)
(
1

2
,
1

2
,
1

2
)
       ; 𝑥 = 0                           

. 

It is easy to see that : 

𝑔′(𝑥0) is existed for all 𝑥0 ≠ 0, 

𝑡′(𝑥0), 𝑓
′(𝑥0), 𝑖

′(𝑥0) are existed for all 𝑥0 ≠ 0, 

𝑡′(𝑥0), 𝑓
′(𝑥0), 𝑖

′(𝑥0) are not existed for all 𝑥0 = 0. 

Hence, 𝑔𝑁 is not differential for 𝑥0 = 0. 

For 𝑥0 = 2, we have: 

𝑔′(2) = 5, 𝑓(2) =
1

4
, 𝑓′(2) < 0, 𝑖(2) =

1

16
, 𝑖′(2) < 0, 𝑡(2) =

1

2
. 

lim
𝑥→2

𝑡(𝑥)−𝑡(2)

𝑥−2
= lim
𝑥→2

1

|𝑥|
−
1

2

𝑥−2
= lim

𝑥→2

2−|𝑥|

2|𝑥|

𝑥−2
= lim

𝑥→2

−1

2|𝑥|
= −

1

4
< 0. 

Hence 𝑔𝑁 is not fully differentiable for 𝑥0 = 2. 

Example 3. 

Let 𝑔(𝑥) = 𝑥3 − 𝑥 − 1 , 𝑖(𝑥) = 𝑓(𝑥) = 𝑡(𝑥) =
1

4
,  
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then 𝑖′(𝑥) = 𝑓′(𝑥) = 𝑡′(𝑥) = 0 for all 𝑥 ∈ ℝ. 

Hence 𝑔𝑁 is fully differentiable for all 𝑥 ∈ ℝ.  

Remark1. 

The set of all points 𝑥 ∈ ℝ for which 𝑔𝑁(𝑥) is fully differentiable is denoted by 𝐹𝐷(𝑔𝑁). 

 

 

 

Example 4. 

Try to find 𝐹𝐷(𝑔𝑁) for: 

𝑔(𝑥) = 3𝑥2 + 𝑥 − 5 , 𝑖(𝑥) = {
1

2
  ; 𝑥 ≠ 0

0  ; 𝑥 = 0
  , 𝑡(𝑥)

=

{
 
 

 
 

1

𝑥
    𝑥 ≥ 1

−1

𝑥
    𝑥 ≤ −1

|𝑥|   − 1 < 𝑥 < 1

 , 𝑓(𝑥) = {

1

𝑥2
    𝑥 ≥ 1, 𝑥 ≤ −1

𝑥2   ; −1 < 𝑥 < 1

 , 

𝑔𝑁(𝑥) =

{
 
 

 
 

(3𝑥2 + 𝑥 − 5 )
(
1

𝑥
,
1

2
,
1

𝑥2
)
   𝑥 ≥ 1

(3𝑥2 + 𝑥 − 5 )
(|𝑥|,

1

2
,𝑥2)

  − 1 < 𝑥 < 1 , 𝑥 ≠ 0

(3𝑥2 + 𝑥 − 5 )
(
−1

𝑥
,
1

2
,
1

𝑥2
)
   𝑥 ≤ −1

 . 

 

We remark the following: 

The function (g) is differentiable on ℝ, and 𝑔′(𝑥) = 6𝑥 + 1. 

The function 𝑖(𝑥) is differentiable an ℝ∗ with 𝑖′(𝑥) = 0 for all 𝑥 ≠ 0.  

The function 𝑡(𝑥) is differentiable on 𝑅∗ with: 

𝑡′(𝑥) =

{
 
 

 
 
−1

𝑥2
     𝑥 ≥ 1         

1

𝑥2
     𝑥 ≤ −1      

1     0 < 𝑥 < 1   
−1    − 1 < 𝑥 < 0

 . 

The function 𝑓(𝑥) is differentiable an ℝ with: 

𝑓′(𝑥) = {
−2

𝑥3
     𝑥 ≥ 1, 𝑥 ≤ −1

2𝑥        − 1 < 𝑥 < 1

 . 

We can see that: 

𝑡′(𝑥) ∈ [0,1] ⟺ 𝑥 ∈ ]0,1[ ∪ ]−∞,−1] , 

𝑓′(𝑥) ∈ [0,1] ⟺ 𝑥 ∈ ]0,
1

2
[ ∪ ]−∞,−√2

3
[. 

𝑖′(𝑥) ∈ [0,1] ⟺ 𝑥 ∈ ℝ∗. 

 Thus 
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𝐹𝐷(𝑔𝑁) = ]0,
1

2
[ ∪ ]−∞,−√2

3
[. 

Definition 3. 

Let 𝑔𝑁 be a differential two-fold neutrosophic function on 𝐼 ⊆ 𝑅, we define 

𝑔𝑁
′ (𝑥) = (𝑔′(𝑥))

(𝑡′(𝑥),𝑖′(𝑥),𝑓′(𝑥))
 ; 𝑥 ∈ 𝐼. 

In the previous example, we can see: 

𝑔𝑁
′ (𝑥) = {

(6𝑥 + 1)(1,0,2𝑥)   𝑥 ∈ ]0,
1

2
[           

(6𝑥 + 1)
(
1

𝑥2
,0,
−2

𝑥3
)
   𝑥 ∈ ]−∞,−√2

3
[
   . 

Definition 4. 

Let 𝑔𝑁 , ℎ𝑁: ℝ → ℝ(𝑡,𝑖,𝑓) be two-fold neutrosophic real functions, we define: 

1) (𝑔𝑁 + ℎ𝑁)(𝑥) = (𝑔(𝑥) + ℎ(𝑥))(𝑡(𝑥),𝑖(𝑥),𝑓(𝑥)),  

where 

{

𝑡(𝑥) = min(𝑡1(𝑥), 𝑡2(𝑥))

𝑓(𝑥) = max(𝑓1(𝑥), 𝑓2(𝑥))

𝑖(𝑥) = max(𝑖1(𝑥), 𝑖2(𝑥))

  , 

2) (– 𝑔𝑁)(𝑥) = (−𝑔(𝑥))(𝑡1(𝑥),𝑖1(𝑥),𝑓1(𝑥))
 , 

3) (𝑔𝑁 . ℎ𝑁)(𝑥) = (𝑔(𝑥). ℎ(𝑥))(𝑡(𝑥),𝑖(𝑥),𝑓(𝑥)), 

where, 

{

𝑡(𝑥) = max(𝑡1(𝑥), 𝑡2(𝑥))

𝑓(𝑥) = min(𝑓1(𝑥), 𝑓2(𝑥))

𝑖(𝑥) = min(𝑖1(𝑥), 𝑖2(𝑥))

 , 

4) For ℎ𝑁(𝑥) ≠ 0, (
1

ℎ𝑁
) (𝑥) = (

1

ℎ(𝑥)
)
(𝑡(𝑥),𝑖(𝑥),𝑓(𝑥))

,  

where, 

{

𝑡(𝑥) = 1 − 𝑡2(𝑥)

𝑓(𝑥) = 1 − 𝑓2(𝑥)

𝑖(𝑥) = 1 − 𝑖2(𝑥)

  . 

Result 1. 

From the definition, we get directly: 

1) (𝑔𝑁 − ℎ𝑁)(𝑥) = (𝑔(𝑥) − ℎ(𝑥))(𝑡(𝑥),𝑖(𝑥),𝑓(𝑥)), 

 where, 

{

𝑡(𝑥) = min(𝑡1(𝑥), 𝑡2(𝑥))

𝑓(𝑥) = max(𝑓1(𝑥), 𝑓2(𝑥))

𝑖(𝑥) = max(𝑖1(𝑥), 𝑖2(𝑥))

 , 
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2) (
𝑔𝑁

ℎ𝑁
) (𝑥) = (

𝑔(𝑥)

ℎ(𝑥)
)
(𝑡(𝑥),𝑖(𝑥),𝑓(𝑥))

, 

 where, 

{

𝑡(𝑥) = max(𝑡1(𝑥), 1 − 𝑡2(𝑥))

𝑓(𝑥) = min(𝑓1(𝑥), 1 − 𝑓2(𝑥))

𝑖(𝑥) = min(𝑖1(𝑥), 1 − 𝑖2(𝑥))

 , 

3) [𝑔𝑁(𝑥)]
𝑛 = ([𝑔(𝑥)]𝑛)(𝑡1(𝑥),𝑖1(𝑥),𝑓1(𝑥)) . 

 

Theorem 1. 

Let 𝑔𝑁 , ℎ𝑁: ℝ → ℝ(𝑡,𝑖,𝑓) be two-fold neutrosophic real functions, then 

1) (𝑔𝑁 + ℎ𝑁)
′ = 𝑔𝑁

′ + ℎ𝑁
′  , 

2) (𝑔𝑁 − ℎ𝑁)
′ = 𝑔𝑁

′ − ℎ𝑁 ,
′  

3) (𝑔𝑁
𝑛)′ = 𝑛. 𝑔𝑁

𝑛−1
(0,1,1)

𝑔𝑁
′  . 

Proof. 

1) [(𝑔 + ℎ)(𝑥)]′ = 𝑔′(𝑥) + ℎ′(𝑥), 𝑡′(𝑥) = min(𝑡1
′(𝑥), 𝑡2

′ (𝑥)), 𝑓′(𝑥) =

max(𝑓1
′(𝑥), 𝑓2

′(𝑥)),  𝑖′(𝑥) = max(𝑖1
′ (𝑥), 𝑖2

′ (𝑥)),  

so that: 

(𝑔𝑁 + ℎ𝑁)
′(𝑥) = (𝑔′(𝑥) + ℎ′(𝑥))

(𝑡′(𝑥),𝑖′(𝑥),𝑓′(𝑥))
= 𝑔𝑁

′ (𝑥) + ℎ𝑁
′ (𝑥). 

2) it can be proved by a similar argument. 

3) [𝑔𝑛(𝑥)]′ = 𝑛. 𝑔′(𝑥). 𝑔𝑛−1(𝑥),and 

(𝑔𝑁
𝑛(𝑥))

′
= (𝑛. 𝑔′(𝑥)𝑔𝑁

𝑛−1(𝑥))
(𝑡1
′(𝑥),𝑖1

′(𝑥),𝑓1
′(𝑥))

= 𝑛. (𝑔′(𝑥))
(𝑡1
′(𝑥),𝑖1

′(𝑥),𝑓1
′(𝑥))

. (𝑔𝑁
𝑛−1(𝑥))

(0,1,1)

= 𝑛. 𝑔𝑁
′ (𝑥). (𝑔𝑁

𝑛−1(𝑥))
(0,1,1)

 

Remark 2. 

If 𝑔𝑁 , ℎ𝑁are fully differentiable on 𝐼 ⊆ 𝑅, then 

(𝑔𝑁 , ℎ𝑁(𝑥))
′
= (𝑔′ℎ(𝑥), ℎ′𝑔(𝑥))(𝑡′(𝑥),𝑖′(𝑥),𝑓′(𝑥)), 

 where, 

{

𝑡′(𝑥) = max(𝑡1
′(𝑥), 𝑡2

′ (𝑥))

𝑖′(𝑥) = min(𝑖1
′ (𝑥), 𝑖2

′ (𝑥))

𝑓′(𝑥) = min(𝑓1
′(𝑥), 𝑓2

′(𝑥))

  . 

Definition 5.  

We define 

(
1

ℎ𝑁
)
′

(𝑥) = (
−ℎ′(𝑥)

ℎ2(𝑥)
)
(1−𝑡2

′(𝑥),1−𝑖2
′(𝑥),1−𝑓2

′(𝑥))

. 
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Result 2. 

The derivative (
𝑔𝑁

ℎ𝑁
)
′
(𝑥) = (

(𝑔′.ℎ−ℎ′𝑔)(𝑥)

ℎ2(𝑥)
)
(𝑡(𝑥),𝑖(𝑥),𝑓(𝑥))

, 

 where, 

{

𝑡(𝑥) = max(𝑡1
′(𝑥), 1 − 𝑡2

′ (𝑥))

𝑖(𝑥) = min(𝑖1
′ (𝑥), 1 − 𝑖2

′ (𝑥)) 

𝑓(𝑥) = min(𝑓1
′(𝑥), 1 − 𝑓2

′(𝑥))

 . 

 

 

Example 5. 

Take: 𝑔(𝑥) = 3𝑥2 + 1, ℎ(𝑥) = 𝑥3as two real functions. 

𝑡1(𝑥) = {
0 ;  𝑥 > 0, 𝑥 < 0

1  ; 𝑥 = 0
     𝑡2(𝑥) = {

1  𝑥 ≥ 0  
1

2
  ; 𝑥 < 0

 , 

𝑖1(𝑥) = {
−1

𝑥
    ; 𝑥 ≤ −1

0  ; 𝑥 > −1
     𝑖2(𝑥) = {

1

3
   ; 𝑥 ≥ 0

1

4
  ; 𝑥 < 0

 , 

 

𝑓1(𝑥) = {0    ; 𝑥 ∈ ℝ     𝑓2(𝑥) =

{
 
 

 
 
1

4
   ; 𝑥 > 1            

1

3
  ; −1 ≤ 𝑥 ≤ 1 ,

1

2
  ; 𝑥 < −1

 

𝑔𝑁 , ℎ𝑁: ℝ → ℝ(𝑡,𝑖,𝑓) ,  

such that: 

𝑔𝑁(𝑥) = (𝑔(𝑥))(𝑡1,𝑖1,𝑓1) = (3𝑥
2 + 1)(𝑡1(𝑥),𝑖1(𝑥),𝑓1(𝑥)) , 

ℎ𝑁(𝑥) = (ℎ(𝑥))(𝑡2,𝑖2,𝑓2) = (𝑥
3)(𝑡2(𝑥),𝑖2(𝑥),𝑓2(𝑥)) , 

𝑔(𝑥) is differentiable on ℝ, and 𝑔′(𝑥) = 6𝑥, 

𝑡1(𝑥) is differentiable on ℝ∗, and 𝑡1
′(𝑥) = 0 ; 𝑥 ∈ ℝ∗, 

𝑖1(𝑥) is differentiable on ℝ|{−1}, and 𝑖1
′ (𝑥) = {

1

𝑥2
    𝑥 < −1

0   𝑥 > −1
, 

𝑓1(𝑥) is differentiable on ℝ, and 𝑓1
′(𝑥) = 0. 

So that 𝑔𝑁(𝑥) is differentiable on ℝ|{0, −1}, and 

𝑔𝑁
′ (𝑥) = {

(6𝑥)
(0,

1

𝑥2
,0)
   𝑥 ∈ ]−∞,−1[        

(6𝑥)(0,0,0)   𝑥 ∈ ]−1,0[ ∪ ]0,∞[
  . 

On the other hand, we have: 

ℎ(𝑥) is differentiable on ℝ, and ℎ′(𝑥) = 3𝑥2, 

𝑡2(𝑥) is differentiable on ℝ∗with 𝑡2
′ (𝑥) = 0 ; 𝑥 ≠ 0, 
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𝑖2(𝑥) is differentiable on ℝ∗ with 𝑖2
′ (𝑥) = 0 ; 𝑥 ≠ 0, 

𝑓2(𝑥) is differentiable on ℝ|{−1,1}, and 𝑓2
′(𝑥) = 0 ; 𝑥 ∈ ℝ|{−1,1}. 

Thus ℎ𝑁(𝑥) is fully differentiable on ℝ|{0,1, −1}, and 

ℎ𝑁
′ = (3𝑥2)(0,0,0)  ;  𝑥 ∈ ℝ|{0,1, −1}, 

(𝑔𝑁 + ℎ𝑁)
′(𝑥) = (6𝑥 + 3𝑥2)

(0,
1

𝑥2
,0)
  ; 𝑥 ∈ ℝ|{0,1, −1}, 

(𝑔𝑁 − ℎ𝑁)
′(𝑥) = (6𝑥 − 3𝑥2)

(0,
1

𝑥2
,0)
  ; 𝑥 ∈ ℝ|{0,1, −1}, 

(𝑔𝑁 . ℎ𝑁)
′(𝑥) = (6𝑥. 𝑥3 + (3𝑥2 + 1). 3𝑥2)(0,0,0) = (15𝑥

4 + 3𝑥2)(0,0,0) , 

(
𝑔𝑁

ℎ𝑁
)
′
(𝑥) = (

6𝑥(𝑥3)−(3𝑥2)(3𝑥2+1)

𝑥6
)
(1,0,0)

= (
−3𝑥4−3𝑥2

𝑥6
)
(1,0,0)

  ; 𝑥 ∈ ℝ|{0,1, −1}. 

Definition 6. 

Let 𝜇:ℝ → [0,1] be a real fuzzy function, and 𝑔:ℝ → ℝ be a real function in one variable 

𝑔 = 𝑔(𝑥). 

We define the corresponding two-fold fuzzy real function 𝑔𝜇(𝑥) = (𝑔(𝑥))𝜇(𝑥)  𝑥 ∈ ℝ. 

 

Example 6. 

Consider 𝜇:ℝ → [0,1], 𝑔:ℝ → ℝ such that: 

𝜇(𝑥) =

{
 
 

 
 
−1

𝑥
     𝑥 ≤ −1         

𝑥2      − 1 < 𝑥 < 0
𝑥    0 ≤ 𝑥 ≤ 1      
1

𝑥
     𝑥 > 1            

    , 

and 𝑔(𝑥) = 7𝑥2 + cos 𝑥, then: 𝑔𝜇: ℝ → ℝ𝐹 such that: 

𝑔𝜇(𝑥) =

{
 
 

 
 
(7𝑥2 + cos 𝑥)−1

𝑥

     𝑥 ≤ −1          

(7𝑥2 + cos 𝑥)𝑥2      − 1 < 𝑥 < 0

(7𝑥2 + cos 𝑥)𝑥     0 ≤ 𝑥 ≤ 1         

(7𝑥2 + cos 𝑥)1
𝑥

     𝑥 > 1                 

  . 

For 𝑥 = 𝜋, we have 

𝑔𝜇(𝜋) = (7𝜋2 − 1)1
𝜋

, 

For 𝑥 = 0, we have 

𝑔𝜇(0) = (1)0. 

Definition 7. 

Let 𝑔𝑁: ℝ → ℝ𝐹  be a two-fold fuzzy real function in one variable, we say that 𝑔𝑁 is 

differentiable at 𝑥0 ∈ ℝ if and only if: 

𝑔′(𝑥0), 𝜇′(𝑥0) are existed, and 𝜇′(𝑥0) ∈ [0,1]. 

Example 7. 
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Take 𝜇(𝑥): ℝ → [0,1], 𝑔(𝑥): ℝ → ℝ such that: 

𝜇(𝑥) = {

1

2
     𝑥 ≤ 0    

1

𝑥2
        𝑥 > 0

  , 𝑔(𝑥) = 1 + 𝑥2 , 

𝑔𝜇(𝑥): ℝ → ℝ𝐹: 𝑔𝜇(𝑥) = {

(1 + 𝑥2)1
2

      ; 𝑥 ≤ 0 

(1 + 𝑥2) 1
𝑥2
      ; 𝑥 > 0

 , 

𝑔𝜇 is not differentiable on [0,∞[, that is because 𝑔′(0) is not existed, 𝜇′(𝑥) ∉ [0,1]   ; 𝑥 > 0, 

𝑔𝜇 is differentiable on ]−∞, 0[, that is because 𝑔′(𝑥), 𝜇′(𝑥) are existed for all 𝑥 ∈ ]−∞, 0[ 

and 𝜇′(𝑥) = 0. 

Thus 𝑔′(𝑥) = {(2𝑥)0   ; 𝑥 < 0 . 

Definition 8. 

Let (𝜇, 𝛼):ℝ → [0,1], (𝑔, ℎ): ℝ → ℝ, (𝑔𝜇 , ℎ𝛼):ℝ → ℝ𝐹  such that: 𝑔𝜇(𝑥) = (𝑔(𝑥))𝜇(𝑥) , ℎ𝛼(𝑥) =

(ℎ(𝑥))𝛼(𝑥), then: 

1) (𝑔𝜇 + ℎ𝛼)(𝑥) = (𝑔(𝑥) + ℎ(𝑥))min(𝜇(𝑥),𝛼(𝑥)) , 

2) (𝑔𝜇 − ℎ𝛼)(𝑥) = (𝑔(𝑥) − ℎ(𝑥))min(𝜇(𝑥),𝛼(𝑥)) , 

3) (𝑔𝜇)
𝑛
(𝑥) = (𝑔𝑛(𝑥))𝜇(𝑥) , 

4) (𝑔𝜇 . ℎ𝛼)(𝑥) = (𝑔(𝑥). ℎ(𝑥))max(𝜇(𝑥),𝛼(𝑥)) , 

5) (
1

𝑔𝜇
) (𝑥) = (

1

𝑔𝜇
)
(1−𝜇(𝑥))

 , 

6) (
ℎ𝛼

𝑔𝜇
) (𝑥) = (

ℎ(𝑥)

𝑔𝜇
)
max(𝛼(𝑥),1−𝜇(𝑥))

 . 

On the other hand, we define: 

1) (𝑔′(𝑥) + ℎ′(𝑥))min(𝜇′(𝑥),𝛼′(𝑥)) = (𝑔𝜇 + ℎ𝛼)
′
, 

2) (𝑔′(𝑥) − ℎ′(𝑥))min(𝜇′(𝑥),𝛼′(𝑥)) = (𝑔𝜇 − ℎ𝛼)
′
, 

3) . (𝑔′(𝑥). 𝑔𝑛−1(𝑥))𝜇′(𝑥) = (𝑔𝜇
𝑛)′ , 

4) (𝑔′(𝑥). ℎ(𝑥) + ℎ′(𝑥). 𝑔(𝑥))max(𝜇′(𝑥),𝛼′(𝑥)) , 

5) (
−𝑔′(𝑥)

𝑔2(𝑥)
)
(1−𝜇′(𝑥))

= (
1

𝑔𝜇
)
′

 , 

6) (
ℎ𝛼

𝑔𝜇
)
′

= (
ℎ′(𝑥)𝑔(𝑥)−𝑔′(𝑥)ℎ(𝑥)

𝑔2(𝑥)
)
max(𝛼′(𝑥),1−𝜇′(𝑥))

 . 

Example 8. 

Take (𝜇, 𝛼): ℝ → [0,1], (𝑔, ℎ): ℝ → ℝ, (𝑔𝜇 , ℎ𝛼): ℝ → ℝ𝐹, 

 such that: 
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𝑔(𝑥) = 𝑥 + 1, ℎ(𝑥) = 𝑥2 , 𝜇(𝑥) = {
−1

𝑥
       𝑥 ≤ −1

1       𝑥 > −1

   , 𝛼(𝑥) =

{
 
 

 
 
1

3
     𝑥 ≤ −2        

0     − 2 < 𝑥 ≤ 0
1

2
        𝑥 > 0         

  ,   

 𝑔𝜇(𝑥) = {
(𝑥 + 1)−1

𝑥

    ;  𝑥 ≤ −1

(𝑥 + 1)1    ;  𝑥 > −1
  , ℎ𝛼(𝑥) =

{
 

 
(𝑥2)1

3

      ; 𝑥 ≤ −2         

(𝑥2)0      ; −2 < 𝑥 ≤ 0

(𝑥2)1
2

      ; 𝑥 > 0             

 , 

ℎ(𝑥), 𝑔(𝑥) are differentiable on 𝑅, with 𝑔′(𝑥) = 1, ℎ′(𝑥) = 2𝑥. 

𝛼(𝑥) is differentiable on ℝ|{−2,0}with 𝛼′(𝑥) = 0 for all 𝑥 ∈ ℝ|{−2,0}. 

For 𝜇(𝑥) at 𝑥 = −1, we have: 

 𝜇(𝑥) −  𝜇(−1)

𝑥 + 1
=
 𝜇(𝑥) − 1

𝑥 + 1
 , 

lim
𝑥→−1+

 𝜇(𝑥) −  𝜇(−1)

𝑥 + 1
= lim

𝑥→−1+

 1 −  1

𝑥 + 1
= 0 , 

lim
𝑥→−1−

 𝜇(𝑥) −  𝜇(−1)

𝑥 + 1
= lim

𝑥→−1−

 
−1

𝑥
−  1

𝑥 + 1
= lim

𝑥→−1−

 
−1−𝑥

𝑥

𝑥 + 1
= lim

𝑥→−1−

−1

𝑥
= 1 , 

hence 𝜇(𝑥) is differentiable at 𝑥 = −1, 

𝜇(𝑥) is differentiable on ℝ|{−1}, and 

𝜇′(𝑥) = {
1

𝑥2
      𝑥 ≤ −1

0        ; 𝑥 > −1
 , 

(𝑔𝜇 + ℎ𝛼)
′
(𝑥) = (𝑥 + 1 + 𝑥2)′min (𝜇′(𝑥),0) = (2𝑥 + 1)0    ; 𝑥 ∈ ℝ|{−2,0, −1}, 

(𝑔𝜇 − ℎ𝛼)(𝑥) = (1 − 2𝑥)min (𝜇′(𝑥),0) = (1 − 2𝑥)0    ; 𝑥 ∈ ℝ|{−2,0, −1} , 

(𝑔𝜇
𝑛)
′
(𝑥) = 𝑛. (𝑥 + 1)𝜇′(𝑥)

𝑛−1 = {
𝑛. (𝑥 + 1) 1

𝑥2

𝑛−1     ; 𝑥 ≤ −1 

𝑛. (𝑥 + 1)0
𝑛−1     ; 𝑥 > −1

  , 

(𝑔𝜇 . ℎ𝛼)
′
(𝑥) = (3𝑥2 + 2𝑥)max (𝜇′(𝑥),𝛼′(𝑥)) = {

(3𝑥2 + 2𝑥) 1
𝑥2
     ; 𝑥 ≤ −1  , 𝑥 ≠ −2

(3𝑥2 + 2𝑥)0     ; 𝑥 > −1  , 𝑥 ≠ 0
  , 

and so on. 

Definition 9. 

Let 𝑔𝑁: ℝ → ℝ(𝑡,𝑖,𝑓) be a two-fold neutrosophic real function, we say that: 

1) 𝑔𝑁 is fully continuous at 𝑥0 ∈ ℝ if: 

{

𝑔 is continuous a𝑡 𝑥0    
𝑖, 𝑓 are continuous at 𝑥0
𝑡 is continuous at 𝑥0      

 , 

2) 𝑔𝑁 is T- continuous at 𝑥0 (continuous at 𝑥0 with respect to truth component) at 𝑥0 ∈ ℝ if: 

{ 
𝑔 is continuous at 𝑥0
𝑡 is continuous at 𝑥0 

 , 
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3) 𝑔𝑁 is I- 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 (𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 with respect to the indeterminacy component) at 𝑥0 ∈

ℝ if: 

{
𝑔 is continuous at 𝑥0
𝑖  is continuous at 𝑥0 

 , 

4) 𝑔𝑁 is F- continuous (continuous with respect to the falisty component) at 𝑥0 ∈ ℝ if: 

{
𝑔 is continuous at 𝑥0
𝑓 is continuous at 𝑥0 

 . 

Definition 10. 

Let 𝑔𝑁: ℝ → ℝ𝐹  be a two-fold fuzzy real function in one variable, we say that 𝑔𝑁 is 

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 at 𝑥0 ∈ ℝ if and only if: 

𝑔, 𝜇 are continuous at, (𝑥0) ∈ 𝑅. 

Theorem 2. 

Let 𝑔𝑁: ℝ → ℝ(𝑡,𝑖,𝑓) be a two-fold neutrosophic real function.If 𝑔𝑁  is fully differentiable, 

then it is fully continuous. 

Proof. 

Assume that 𝑔𝑁 is fully differentiable, then we have: 

𝑔′(𝑥0) is existed                             

𝑖′(𝑥0), 𝑓
′(𝑥0), 𝑡

′(𝑥0) are existed

𝑖′(𝑥0), 𝑓
′(𝑥0), 𝑡

′(𝑥0) ∈ [0,1]  ,     

 

Thus 

  {

𝑔 is continuous at 𝑥0        
𝑖, 𝑓 are continuous at 𝑥0 
𝑡 is continuous at 𝑥0     

 ,  , 

so that it is fully continuous. 

Theorem 3. 

Let 𝑔𝑁: ℝ → ℝ(𝑡,𝑖,𝑓) be a two-fold neutrosophic real function.If 𝑔𝑁 is T- differentiable, then 

it is T- continuous. 

Proof: 

Assume that 𝑔𝑁 is T- differentiable, then we have: 

𝑔′(𝑥0) is existed,

𝑡′(𝑥0) 𝑖𝑠 existed,

𝑡′(𝑥0) ∈ [0,1]     .

 

Thus, g is continuous at 𝑥0, and the function t is continuous at 𝑥0 , so that it is T- continuous 

Theorem 4. 

Let 𝑔𝑁: ℝ → ℝ(𝑡,𝑖,𝑓) be a two-fold neutrosophic real function.If 𝑔𝑁 is F-differentiable, then 

it is F-continuous. 

Proof. 

 Assume that 𝑔𝑁 is F- differentiable, then we have: 
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𝑔′(𝑥0) is existed,

𝑓′(𝑥0) 𝑖𝑠 existed

𝑓′(𝑥0) ∈ [0,1]   .

, 

Thus, g is continuous at 𝑥0, and the function f is continuous at 𝑥0 , so that it is F- continuous. 

Theorem 5. 

Let 𝑔𝑁: ℝ → ℝ(𝑡,𝑖,𝑓) be a two-fold neutrosophic real function.If 𝑔𝑁 is I- differentiable, then 

it is I- continuous. 

Proof. 

Assume that 𝑔𝑁 is I- differentiable, then we have: 

𝑔′(𝑥0) is existed,

𝑖′(𝑥0) 𝑖𝑠 existed,

𝑖′(𝑥0) ∈ [0,1].     

 

Thus, g is continuous at 𝑥0 , and the function  i  is continuous at 𝑥0  , so that it is I-

continuous 

Conclusion 

In this paper, we defined the concepts of two-fold neutrosophic continuous functions, two-

fold fuzzy continuous functions, and two-fold neutrosophic/fuzzy differentiable functions 

for the first time. 

The elementary properties of these novel concepts are studied and handled through many 

theorems, as well as many clear examples that clarify the validity of these analytical 

concepts. 
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