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Abstract: China's open pit mining industry faces the dual challenge of increasing production and 

preventing disasters. In order to ensure the safe exploitation of mineral resources, the stability of 

slopes must be assessed. In light of the fact that over 1,950 landslide accidents have occurred over 

the past decade, accounting for 15% of all safety incidents, the evaluation of slope stability has 

become a critical research focus in the fields of geo-resources and geo-engineering. Traditional 

slope stability evaluation methods rely on empirical tools and the expertise of professionals to 

assess slope stability. In contrast, machine learning (ML) methods offer a more comprehensive 

approach, analyzing the intricate features present in diverse sampling data. As a novel extension of 

ML, this paper presents a single-valued neutrosophic number-based ensemble learning (SVNN-EL) 

model. This model employs binary coding groups (1, 0, 0), (0, 1, 0) and (0, 0, 1) to express the 

learning outcomes of the slope stability, quasi-stability and instability statuses. Subsequently, a 

similarity measure is employed to determine the classification results of slopes. Finally, the 

proposed SVNN-EL model is applied to a case study in Yunnan province, China, the proposed 

model's four performance metrics, namely accuracy, precision, recall, and F1-score (the harmonic 

mean of precision and recall), are 0.915, 0.894, 0.948, and 0.921, respectively. A comparison with the 

k-nearest neighbor, support vector machine and random forest methods reveals that the 

performance metrics of the proposed SVNN-EL model are superior to those of existing methods. 

 

Keywords: single-valued neutrosophic number; ensemble learning; slope stability classification; 

similarity measure 

 

 

1. Introduction 

As the predominant method of mineral resource development in China, open-pit mining faces 

two significant challenges: enhancing production and ensuring disaster prevention. It is of the 

utmost importance to assess the stability of slopes in open-pit mines (OPMs) in order to guarantee 

the security of the mining process. During the past decade, there have been more than 1,950 

landslide accidents in OPMs in China, representing 15% of the total number of safety production 

accidents [1]. Furthermore, the total number of fatalities resulting from these accidents is the 

highest among all safety production incidents. The stability of OPM slopes is typically influenced 

by a range of structural surfaces and features, including those developed at different scales within 

the slopes themselves. A substantial proportion of slope destabilization incidents is associated with 

internal slip surfaces and the geometric characteristics of slopes [2]. The evaluation of slope stability 

in OPMs is of great importance for ensuring the safe and efficient mining of these facilities. 

Furthermore, it represents a significant research area and a major frontier topic in the field of 

international geo-resources and geo-engineering. 



Neutrosophic Sets and Systems, Vol. 75, 2025    211  

 

 

Hanzhong Wang, Jun Ye, Rui Yong, Single Valued Neutrosophic Number Ensemble Learning Model for Stability Classification 

of Open Pit Mine Slopes 

 

A slope is a common structure made of solid and rock in the field, and its stability is affected 

by many factors. As we all know, there is a lot of uncertainty and ambiguity in human nature. 

Traditional techniques for calculating slope stability factors are common evaluation methods; these 

methods, including the limit equilibrium method (LEM) [3], the finite element method (FEM) [4] 

and the discrete element method (DEM) [5], require experienced engineers to spend a significant 

amount of time to modelling, calculating and testing. In contrast, engineers have developed a 

number of methods such as rock mass rating (RMR) [6], slope mass rating (SMR) [7], geological 

strength index (GSI) [8] and Q-classification systems [9, 10] to assess slope stability. 

When collecting data on slope features, it is not uncommon to encounter a considerable 

amount of uncertain, vague, and imprecise information. Consequently, some soft computing 

methods based on fuzzy theory have been applied to improve the assessment of slope stability. 

Zhen and Zu [11] first applied the uncertainty of rock mechanical parameters to the Q classification 

system. Liu and Wang [12] introduced fuzzy mathematics into the neural network (NN) and 

obtained a comprehensive evaluation for each series of weighted numbers and engineering 

classification of rocks. A practical and efficient approach using NN and fuzzy clustering systems 

was applied to the Saeen landslide to estimate the date range of the next probable landslide [13]. An 

efficiency coefficient method based on fuzzy analytic hierarchy process (FAHP) has been proposed 

to classify rock slides [14]. Azarafza et al. [15] introduced a fuzzy logical decision making algorithm 

(DMA) based on block theory to assess the reliability of discontinuous rock slopes under different 

slip scenarios. Nanehkaran et al. [16] used a fuzzy logic based DMA method and geographical 

information system (GIS) to evaluate landslide hazard zoning in the Tabriz region. Azarafza et al. 

[17] used a fuzzy logic DMA to rapidly evaluate block failure instability in discontinuous rock 

slopes through kinematic analysis. 

The application of machine learning (ML) methods has become increasingly common in recent 

research on slope stability prediction/evaluation. Lin [18] evaluated the effectiveness of four 

supervised learning methods in slope stability prediction and proposed the gravity search 

algorithm (GSA), the random forest (RF) algorithm, the support vector machine (SVM) algorithm, 

and the Naïve Bayesian (NB) algorithm for use in classifier construction. The GSA and RF models 

demonstrated satisfactory classification results. Ahangari Nanehkaran et al. [19] investigated the 

efficacy of five machine learning models, namely multilayer perceptron (MLP), SVM, k-nearest 

neighbor (k-NN), decision tree (DT), and RF, in predicting slope safety factors. The objective of 

developing these models was to evaluate and optimize them for the calculation of safety factors 

(FSs) and the selection of slope reinforcement methods. In the ML models, the input parameters 

included geotechnical indices such as slope height, total slope angle, dry density, cohesion, and 

internal friction angle, which were used for the estimation of 70 slopes in the South Pars region of 

Iran. Huang [20] employed a deep learning (DL) algorithm based on a long short-term memory 

network (LSTM) to predict slope stability. This addressed the limitations of conventional ML 

models with respect to nonlinear performance, local optimality, and incomplete feature extraction. 

In his study, RF, a traditional ensemble learning (EL) method, was included in the comparison 

experiment with more complex deep learning (DL) algorithms, such as a convolutional neural 

network (CNN). The results demonstrated that RF achieved superior performance on certain 

programs. 

Qin [21] developed the single-valued neutrosophic number (SVNN) based ANFIS to assess 

slope stability. Subsequently, Qin [22] proposed a Gaussian progress regression (GPR) to predict 

slope stability in a SVNN scenario, demonstrating its efficacy through the analysis of 167 slope 

cases. Moreover, a neutrosophic genetic algorithm (NGA) was proposed and used for the clustering 

of rock discontinuities, demonstrating the capacity to perform optimal clustering analysis of slope 

sampling data in actual applications. 

However, existing ML research relies heavily on the provided FSs as the basis for supervised 

learning. As a matter of fact, the FSs already indicate the safety information of slope stability, and 
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there is no need to use ML methods to evaluate slope stability. In order to overcome this problem, 

this paper proposes a training method for obtaining binary coding-based ML results that reflect the 

stability, quasi-stability and instability statuses of slopes. Consequently, this study develops a 

SVNN-based ensemble learning (SVNN-EL) model that utilizes binary coding groups (1, 0, 0), (0, 1, 

0), and (0, 0, 1) to express the learning results of the slope stability, quasi-stability and instability 

statuses. Thereafter, a similarity measure is employed to determine the classification results of 

slopes. The SVNN-EL model has the potential to enhance its generalizability and applicability in 

the evaluation and classification process of practical slope stability. Finally, the practical 

engineering cases of the Lanping OPM are presented to verify the efficiency of the developed model. 

Based on the accuracy, precision, recall, and F-1 score (the harmonic mean of precision and recall) 

metrics, the superiority of the proposed SVNN-EL model is demonstrated by a comparison with the 

existing ML methods. The following section presents a summary of the key findings of this study.  

(1) The truth, indeterminacy and falsity degrees in SVNN are capable of comprehensively 

expressing the hybrid information of uncertainty, inconsistency and incompleteness contained in 

the raw field slope data. Consequently, the raw data obtained from field investigation and 

measurement can be transformed into SVNNs by the truth, indeterminacy and falsity membership 

functions, which are able to capture the comprehensive information in the slope data for ML. 

(2) The binary coding groups (1, 0, 0), (0, 1, 0) and (0, 0, 1) are employed to represent the three 

stability states (stability, quasi-stability, and instability) for slopes and to establish a ML method 

between the input data (SVNNs) and the output coding groups. Then, the similarity measure value 

between the ML result and the binary coding groups is used to determine the final classification 

result for each slope. 

(3) A comprehensive comparison of the classification performance of the proposed SVNN-EL 

model and existing ML methods is performed based on the accuracy, precision, recall, and F-1 score 

metrics. The results demonstrate that the proposed model outperforms the existing methods in all 

four-performance metrics.  

The remainder of this paper is presented in the following sections. Section 2 provides an 

overview of the preliminary concepts related to single-valued neutrosophic set (SVNS), SVNN, and 

EL. Section 3 presents the general framework of a SVNN-EL model to address the slope stability 

classification problem. In Section 4, the proposed model is applied to the Lanping OPM slopes of 

Yunnan Province in China as a case study to demonstrate the reasonableness and efficiency of the 

slope stability classification results in the SVNN scenario. In Section 5, the conclusions derived from 

the study are presented, accompanied by an analysis of the limitations of the study and suggestions 

for future research. 

2. Preliminaries 

2.1 Relative Concepts of Single-Valued Neutrosophic Set (SVNS) and SVNN 

From a philosophical perspective, the neutrosophic set (NS) [23] can represent indeterminate and 

inconsistent information in objects by the use of independent truth, indeterminacy, and falsity 

membership functions (MFs). As these MFs of NS are situated within a real standard interval [0, 1] or 

a non-standard interval ]−0, 1+[, they are difficult to use in the expression and analysis of real-life 

problems. Consequently, the concept of SVNN was proposed as a subclass of NS based on the 

standard interval [0, 1] for easy engineering applications [24, 25]. 

Definition 1 [24, 25]. Let Ψ be a finite set of objects, and let ψ be a common element in Ψ. Then, a 

SVNS P in Ψ can be defined as 

  ( ), ( ) ( |, , )p p pP T U F    =  ,                     (1) 

where Tp(ψ), Ip(ψ), and Fp(ψ) represents the truth, indeterminacy, and falsity MFs, respectively. For 

convenience, we use pψ = <Tψ, Uψ, Fψ> to represent SVNN as an element in SVNS. 
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The similarity measure is a critical mathematical tool in clustering analysis and pattern 

recognition. In this paper, we introduce the cosine similarity measure of SVNNs [26]. 

Definition 2 [26]. Given two SVNNs pψ1 = <Tψ1, Uψ1, Fψ1> and pψ2 = <Tψ2, Uψ2, Fψ2>, the cosine 

similarity measure between pψ1 and pψ2 is represented as 

 
1 2 1 2 1 2

1 2 1 2
2 2 2 2 2 2
1 1 1 2 2 2

( , ) , ( , ) [0,1]c c

T T U U F F
S p p S p p

T U F T U F

     
   

     

+ +
= 

+ +  + +
.       (2) 

2.2 Ensemble Machine Learning Models 

2.2.1 Bagging  

Bagging, or bootstrap aggregating (BA), is an ensemble learning (EL) technique in ML. Its 

objective is to reduce the variance of a model by generating multiple independent samples of the 

training data and training a base model on each sample. The final prediction is then obtained by 

aggregating the predictions of all the base models. Bagging can be applied to a variety of models, 

including decision trees, NNs, and SVMs. One of the most popular bagging algorithms is the random 

forest. RF is a modified version of bagging, in which the classification and regression tree technique is 

often used as the individual learner. RF uses subsamples of the original data to construct decision 

trees and randomly selects a subset of variables to determine each split in the tree. RF excludes 

approximately 30% of training samples from the modeling process due to the use of bootstrapping 

and random subspace techniques and then it is often used to compute the out-of-bag (OOB) 

prediction error. The benefits of bagging include improvements in predictive performance, reductions 

in variance, and increases in model stability. However, bagging can also result in increases in 

computation time and memory requirements due to the necessity of training and storing multiple 

models. Overall, bagging is a powerful technique for improving the accuracy and stability of ML 

models, particularly in situations where the data are noisy or high-dimensional [29, 30]. The diagram 

of the bagging method is shown in Figure 1. 

 

 

Figure 1. Diagram of the bagging method 

2.2.2 Voting  

Voting regressor is a EL technique that combines the predictions of multiple base regression 

models to produce a final prediction. Each base regressor provides its prediction, and the voting 

regressor aggregates these predictions, often by taking the average, to produce the final output. This 

approach can be beneficial when different regression models capture different aspects of the 

underlying data, leading to improved predictive performance compared to using a single model. The 
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weights of the individual regressors can be uniform or customized based on their performance on the 

training data. The voting regressor is a versatile tool that can be used to exploit the strengths of 

various regression algorithms, such as linear regression, decision trees, SVMs and others, to create a 

robust and accurate predictive model [31]. 

3. SVNN-EL Model 

The section proposes a SVNN-EL model, which is composed of the true bagging method, the 

indeterminate bagging method, and the false voting method and the cosine similarity measure. 

Then, its classification process is described as follows. 

Step1: Data preparation. Assume that there is a collection of n slopes D = (d1, d2, …, dn), then 

every slope contains q influence factors di = (ai1, ai2, …, aiq) (i = 1, 2, …, n) sampled from the field 

investigation. These slopes imply the three kinds of stability status, which are denoted as three 

coding groups y1 = (yt1, yu1, yf1) = (1, 0, 0), y2 = (yt2, yu2, yf2) = (0, 1, 0), and y3 = (yt3, yu3, yf3) = (0, 0, 1), 

corresponding to stable slopes, quasi-stable slopes and unstable slopes. 

Step 2: Data neutrosophication. The original data D = (d1,d2, …, dn) are then processed by the 

truth, indeterminacy and falsity MFs to transform the original data into SVNNs, which are 

represented as the data sets of the truth, indeterminacy and falsity degrees Dt = {dt1,dt2, …, dtn, ytj}, Du 

= {du1,du2, …, dun, yui}, and Df = {df1,df2, …, dfn, yfj} containing the coding values. 

Step3: SVNN-EL model training. In this process, three independent ensemble machine learning 

methods are established based on the true, false and indeterminate information. Then we use the 

truth set Dt = {dt1,dt2, …, dtn, ytj} for the true decision tree-based bagging method, the indeterminacy 

set Du = {du1,du2, …, dun, yuj} for the indeterminate decision tree-based bagging method, and the falsity 

set Df = {df1,df2, …, dfn, yfj} for the false voting method, where the base algorithms are linear 

regression (LR), RF and support vector regression (SVR). Their outputs yt,pred, yu,pred and yf,pred are 

constructed as a prediction group ypred = (yt,pred, yu,pred, yf,pred). 

Step4: Similarity measure. Using Eq. (2), we calculate the similarity measures of Sc(ypred, yj) (j = 1, 

2, 3) for each slop sample. 

Step5: Classification result. According to *

1 3
arg max{ ( , )}C pred j

j
j S y y

 
= , the slope sample with the 

largest measure value belongs to the corresponding classification yj*. 

In general, the proposed SVNN-EL model is constructed as the flowchart in Figure 2. 

 

 

Figure 2. Flowchart of the proposed SVNN-EL model 
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4. Case Study  

4.1 Raw Data Processing of the Lanping OPM Slopes 

To validate the effectiveness and suitability of the proposed slope stability classification model, 

this section applies the proposed SVNN-EL model to classify the stability status of 215 slope 

samples in Yunnan Province, China. The Lanping OPM is situated in Yunnan Province, China, with 

geographic coordinates at 99°25’39.47’’E and 26°24’13.30” N. The highest elevation within the 

mining area is 2885m, while the lowest elevation is 2475m, resulting in a relative height difference 

of 410m and characterizing it as a low mountainous terrain. Over years of mining activities, the 

OPM has taken on an inverted “C” shape; numerous small landslides and failures have occurred 

within its boundaries. The general conditions and location of this OPM are shown in Figure 3. 

Hence, it is necessary to provide a classification analysis of slope stability in the Lanping OPM. 

According to the actual engineering statuses and experts’ experience, we consider slope height (a1), 

slope angle (a2), cohesion (a3), internal friction angle (a4), and rock density (a5) as the main factors 

affecting slope stability. Then, 215 slope samples di (i = 1, 2, …, 215) were collected in situ from 

different areas as a classification case. Figure 3 shows the actual study area of the Lanping OPM. 

 

Figure 3. The top view of the actual study area in the Lanping OPM. 

Regarding the Lanping OPM, the 215 slopes D = (d1, d2, …, d215) were collected from the field 

study area, including the five influence factors: slope angle (a1), slope height (a2), cohesion (a3), 

friction angle of the rock (a4) and rock density (a5). Subsequently, the original data can be divided 

into the true, indeterminate and false data sets.  

First, the original data are neutrosophicated into SVNNs by utilizing truth, indeterminacy and 

falsity Gaussian membership functions based on the following Gaussian membership function: 

 

2

2

( )

2( , , )

x c

f ecx 

− −

= ,                                 (3) 

where σ stands for standard deviation and c stands for mean. The three Gaussian membership 

functions used in this study are listed in Table 1. 

After data neutrosophication, the true, indeterminate and false values in SVNNs and the 

coding values in yj (j = 1, 2, 3) are constructed as the true, indeterminate and false data sets Dt = 

{dt1,dt2, …, dtn, ytj}, Du = {du1,du2, …, dun, yuj}, and Df = {df1,df2, …, dfn, yfj}. 
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Table 1. Specified truth, indeterminacy, and falsity MFs dtk, duk, and dfk, (k = 1, 2, 3, 4, 5) for the 

five affecting factors.  

Influence 

factor 

Parameter of Gaussian MFs 
Gaussian membership curve 

Truth  Indeterminacy  Falsity 

a1(m) 
σt1=15.00 

ct1=-2.67 

σu1=15.00 

cu1=10.50 

σf1=10.00 

cf1=31.84 

 

 

a2(°) 
σt2=18.00 

ct2=38.90 

σu2=12.00 

cu2=45.00 

σf2=14.00 

cf2=65.02 

 

a3(MPa) 
σt3=35.00 

ct3=150.00 

σu3=110.00 

cu3=60.00 

σf3=30.00 

cf3=23.84 

 

a4(°) 
σt4=20.00 

ct4=52.00 

σu4=10.00 

cu4=30.00 

σf4=15.00 

cf4=16.00 

 

a5(N/m3) 
σt5=5.00 

ct5=24.00 

σu5=5.00 

cu5=29.00 

σf5=5.00 

cf5=34.00 
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Table 2. Specified parameters of the proposed EL methods  

EL method Parameter Setting 

Bagging method 

Base model Decision tree 

Number of estimators 15 

Max samples 1.0 

Max features 1.0 

Warm start True 

Voting method 

Estimator 1 Linear regressor 

Estimator 2 SVM regressor 

Estimator 3 RF regressor 

Weights None 

 

Since the true, indeterminate, and false EL methods are contained in the proposed SVNN-EL 

model, their specific parameters are given in Table 2. In order to eliminate the potential influence of 

randomness in the experimental setup, a fixed random statement (random state = 12) is specified. 

the true and indeterminate data sets are used for the bagging tree models, comprising multiple 

decision trees. Then, the false data set is used for the voting tree models, which are also based on a 

multitude of weak decision trees. 

According to the actual slope stability status, the slopes are categorized into the binary coding 

groups: y1 = (1, 0, 0), y2 = (0, 1, 0) and y3 = (0, 0, 1), which mean stability, quasi-stability, and 

instability for the slopes. The training and testing data sets are generated using the Python package 

Scikit-learn, incorporating a constant random statement. The actual stability states and 

training/testing data sets are presented in Table 3. 

4.2 SVNN-EL Classification Results and Discussion 

The confusion matrix [32] is a valuable tool to evaluate the performance of a classification 

model. It provides an overview of the predictions of the model by comparing them with the actual 

values. The predicted results are listed in the confusion matrix. As shown in Figure 4, the elements 

cij in the confusion matrix represent the number of instances, where an observation belonging to the 

actual class i is predicted to be the class j. The diagonal elements (cii) represent true positives for 

each class. Non-diagonal elements (cij) denote false positives or false negatives. 

Predicted n…Predicted 2Predicted 1
Actual \

Predicted

c1n…c12c11Actual 1

c2n…c22c21Actual 2

……………

cnn…cn2cn1Actual n
 

Note: Since each class has an individual performance metric, we take their average values for 

comparative convenience. 

Figure 4. Confusion matrix for multi-class classification. 
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Table 3. Similarity measure values and classification results of the testing data sets. 

yt,pred yu,pred yf,pred SC(ypred, y1) SC(ypred, y2) SC(ypred, y3) Result Real 

0.8651 0.0000 0.0927 0.9943 0.0000 0.1066 (1,0,0) (1,0,0) 

0.8379 0.0000 0.0354 0.9991 0.0000 0.0422 (1,0,0) (1,0,0) 

0.3481 0.0914 0.6213 0.4847 0.1273 0.8653 (0,0,1) (0,0,1) 

0.3536 0.0017 0.7857 0.4104 0.0019 0.9119 (0,0,1) (0,0,1) 

0.7556 0.0671 0.0232 0.9956 0.0885 0.0305 (1,0,0) (1,0,0) 

0.3495 0.0081 0.3335 0.7233 0.0167 0.6903 (1,0,0) (1,0,0) 

0.2701 0.5086 0.0000 0.4690 0.8832 0.0000 (0,1,0) (0,1,0) 

0.3645 0.0036 0.7966 0.4161 0.0041 0.9093 (0,0,1) (0,0,1) 

0.3844 0.0236 0.7503 0.4558 0.0280 0.8896 (0,0,1) (0,0,1) 

0.4894 0.4629 0.0817 0.7212 0.6822 0.1204 (1,0,0) (1,0,0) 

0.3401 0.0300 0.7504 0.4125 0.0364 0.9102 (0,0,1) (0,0,1) 

0.4590 0.4610 0.0000 0.7056 0.7087 0.0000 (0,1,0) (0,1,0) 

0.9046 0.0000 0.0419 0.9989 0.0000 0.0462 (1,0,0) (1,0,0) 

0.4987 0.4829 0.0588 0.7158 0.6932 0.0844 (1,0,0) (1,0,0) 

0.3978 0.0671 0.6506 0.5196 0.0877 0.8499 (0,0,1) (0,0,1) 

0.3227 0.4837 0.0746 0.5504 0.8251 0.1272 (0,1,0) (0,1,0) 

0.3757 0.0359 0.2882 0.7912 0.0755 0.6069 (1,0,0) (1,0,0) 

0.4334 0.4749 0.0000 0.6741 0.7386 0.0000 (0,1,0) (0,1,0) 

0.4425 0.0295 0.8035 0.4822 0.0321 0.8755 (0,0,1) (0,0,1) 

0.6833 0.0833 0.0000 0.9926 0.1211 0.0000 (1,0,0) (1,0,0) 

0.5423 0.4888 0.0000 0.7428 0.6695 0.0000 (1,0,0) (0,1,0) 

0.3294 0.0711 0.0000 0.9775 0.2111 0.0000 (0,0,1) (0,0,1) 

0.6667 0.0833 0.0000 0.9923 0.1240 0.0000 (1,0,0) (1,0,0) 

0.3378 0.0000 0.6204 0.4782 0.0000 0.8783 (0,0,1) (0,0,1) 

0.4657 0.0295 0.8642 0.4742 0.0300 0.8799 (0,0,1) (0,0,1) 

0.7119 0.0594 0.0626 0.9927 0.0829 0.0873 (1,0,0) (1,0,0) 

0.3201 0.5027 0.0000 0.5371 0.8435 0.0000 (0,1,0) (0,1,0) 

0.3308 0.0100 0.7187 0.4181 0.0126 0.9083 (0,0,1) (0,0,1) 

0.4219 0.1081 0.4364 0.6844 0.1753 0.7077 (0,0,1) (1,0,0) 

0.4068 0.0300 0.2971 0.8061 0.0595 0.5888 (1,0,0) (1,0,0) 

0.7530 0.0278 0.0505 0.9971 0.0368 0.0669 (1,0,0) (1,0,0) 

0.7814 0.0019 0.1013 0.9917 0.0024 0.1285 (1,0,0) (1,0,0) 

0.4511 0.1278 0.7096 0.5303 0.1502 0.8344 (0,0,1) (1,0,0) 

0.5401 0.0300 0.5007 0.7328 0.0407 0.6792 (1,0,0) (0,0,1) 

0.7556 0.0278 0.0000 0.9993 0.0367 0.0000 (1,0,0) (1,0,0) 

0.3747 0.0914 0.4748 0.6125 0.1494 0.7762 (0,0,1) (0,0,1) 

0.7333 0.1042 0.0000 0.9901 0.1406 0.0000 (1,0,0) (1,0,0) 

0.4536 0.0017 0.8119 0.4877 0.0018 0.8730 (0,0,1) (0,0,1) 

0.8493 0.0019 0.0714 0.9965 0.0022 0.0838 (1,0,0) (1,0,0) 
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0.3324 0.0771 0.7875 0.3873 0.0898 0.9176 (0,0,1) (0,0,1) 

0.3349 0.1748 0.6848 0.4282 0.2234 0.8756 (0,0,1) (0,0,1) 

0.3452 0.0850 0.5786 0.5084 0.1252 0.8520 (0,0,1) (0,0,1) 

0.3012 0.4996 0.1254 0.5047 0.8373 0.2102 (0,1,0) (0,1,0) 

0.3844 0.0236 0.7095 0.4761 0.0292 0.8789 (0,0,1) (0,0,1) 

0.3082 0.0833 0.6719 0.4143 0.1120 0.9032 (0,0,1) (0,0,1) 

0.5415 0.0220 0.2306 0.9194 0.0373 0.3915 (1,0,0) (1,0,0) 

0.3479 0.5281 0.0232 0.5497 0.8346 0.0367 (0,1,0) (0,1,0) 

 

Table 4. Classification results for the proposed SVNN-EL model. 

 Stable Quasi-stable Unstable 

Actual 19 1 1 

Actual 0 7 0 

Actual 2 0 17 

 

All the results of the testing data are presented in Table 3. Here, the similarity measure values 

between the EL results yt,pred, yu,pred, yf,pred and the three coding groups (1, 0, 0), (0, 1, 0) and (0, 0, 1) 

are obtained by Eq. (2). Subsequently, each slope is classified in terms of the classification method 

of Step 5. The total classification results of the 47 testing slopes are presented in Table 4. The 

classification results can be visualized in a three-dimensional scatter plot (Figure 5), which is 

enabled to show a more detailed representation of the distance between the classified points and 

the target coding groups. 

 

 

 

Figure 5. Classification result of the 47 testing slopes. 

 

To show the effectiveness of the proposed SVNN-EL model, the four-performance metrics of 

the Acc, precision, recall and F1-score are considered below. 

Accuracy (Acc) measures how well the model predicts both positive and negative classes by 
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Precision quantifies how many of the positively classified instances are actually correct by 
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Recall or sensitivity estimates how well the model identifies all real positives by 
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F1-score combines precision and recall into one metric using their harmonic mean value by 

 
2

1 i

Precision Recall
F score

Precision Recall


− =

+
.         (7) 

By Eqs. (4)–(7), the performance metrics of the Acc, precision, recall and F1-score are 0.915, 

0.894, 0.948, 0.921, respectively. To show the effectiveness of the proposed SVNN-EL model, we 

chose the classical ML methods of KNN, SVM, RF for comparison, the specific experiment settings 

are shown in the Table 2. The training and testing data sets also keep the same with the proposed 

SVNN-EL model. The comparison results are shown in Figure 6.  

 

 
Figure 6. Performance comparison of KNN, SVM, RF and the proposed method. 

 

As illustrated in Figure 6, the proposed SVNN-EL model exhibits the optimal accuracy, recall, 

and F1-score. Our findings indicate that the proposed SVNN-EL model outperforms the traditional 
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methods in scenarios where the features are not readily discernible. Additionally, the proposed 

model offers the flexibility to be adapted to specific engineering conditions, a distinctive superiority 

over the traditional ML methods. 

5. Conclusions  

Based on the hybrid form of SVNN and the EL method, the SVNN-EL model was proposed as 

a method of classifying the stability of OPM slopes. Subsequently, the efficacy of the proposed 

model was validated by using a dataset comprising 215 slope samples sourced from Yunnan 

province, China. Then, the proposed model can reach better classification precision of the slopes. 

The comparative outcomes demonstrated that the proposed SVNN-EL model was superior to the 

existing ML methods of KNN, SVM, RF in the performance metrics of the Acc, precision, recall and 

F1-score. This approach offered a valuable way for mining engineers. In general, the proposed 

SVNN-EL model includes the following main highlights. 

(1) The truth, indeterminacy and falsity degrees in SVNN can comprehensively express the 

hybrid information of uncertainty, imprecision and incompleteness in the raw field slope data, 

which provide the necessary information for the proposed SVNN-EL model. 

(2) The coding groups were used to represent the stability status of each slope. Then a 

relationship between the coding groups and the slope stability status can be established in the ML 

process. Furthermore, a classification method based on the similarity measure was developed to 

determine the final classification result. 

(3) The proposed SVNN-EL model demonstrated better performance in terms of the Acc, 

precision, recall and F-1 score metrics, along with the metric values of 0.915, 0.894, 0.948 and 0.921, 

respectively. The comparative results demonstrated that the proposed model exhibits superiority 

over the existing ML methods of KNN, SVM, RF in all four-performance metrics. 

It should be noted that the proposed model has a limitation in that it exclusively considers the 

fundamental engineering conditions and plane failure modes of OPM slopes. In the future, the 

proposed model will be extended to encompass more complex engineering conditions, such as 

those associated with earthquakes and blasting loads. Furthermore, it will be applied to slopes 

where circular and wedge-shaped failure modes may occur. The novel technique presented in this 

study has the potential to be extended to other applications, including rock burst risk assessment, 

galaxy identification, and medical diagnosis in the presence of uncertain or inconsistent data. 
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