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Abstract. The computation of formulae for the number of topological spaces is one of the challenging areas of

study. The present work aims to find formulae to compute the number of neutrosophic crisp topological spaces

having 2-NCrOSs, 3-NCrOSs, and 4-NCrOSs.
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1. Introduction

Zadeh [1] introduced the fuzzy set and Atanassov [2] introduced the intuitionistic fuzzy set.

By generalizing the crisp and fuzzy counterparts, neutrosophy has established the groundwork

for an entire family of new mathematical theories. The concept of a ”neutrosophic set” is

introduced by Smarandache [3–5]. Later, some possible definitions for basic concepts of the

neutrosophic crisp set and its operations have been investigated by Hanafy et al. [6] and

Salama [7].

A topology tells how elements of the set are related to each other. From the literature,

it is found that the explicit formula for finding the number of topologies in a set is still not

obtained. This is one of the fascinating research areas of topology. Let τn denotes the number

of topologies on a finite set X with |S| = n. Krishnamurty [8] computed a sharper bound

namely 2n(n−1) for τn. Sharp [9] shows that only discrete topology has cardinal greater than

3
42

n and derived bounds for the cardinality of topologies which are connected, nonconnected,

non-T0, and some more. Several authors [?, 10–19, 21] also worked in this interesting and
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difficult research area. Recently Basuma tary et al. [22, 23] started research work on number

of neutrosophic topological spaces. They computed some results for finding the number of

neutosophic topologies for k ≤ 4 open sets, the number of neutrosophic clopen topological

spaces having small (k = 2, 3, 4, 5) open sets with neutrosophic values in M , and the number

of neutrosophic bitopological spaces and tritopological spaces. Salama et al. [24] introduced

the basic concept of neutosophic crisp topological spaces. In this paper, the formulae for

computation of the number of neutrosophic crisp toplogical spaces for small (k = 2, 3, 4) open

sets are initiated.

2. Materials and Methods

Definition 2.1. [24] Let X be a non-empty fixed set. A neutrosophic crisp set (NCrS) A is

an object having the form A = ⟨A1, A2, A3⟩, where A1, A2, and A3 are subsets of X satisfying

A1 ∩A2 = ϕ, A1 ∩A3 = ϕ, and A2 ∩A3 = ϕ.

Remark 2.2. [24] A NCrS A = ⟨A1, A2, A3⟩ can be identified as an ordered triple ⟨A1, A2, A3⟩,
where A1, A2, and A3 are subsets of X .

Definition 2.3. [24] ϕN may be defined in many ways as an NCrS as follows:

(1) ϕN = ⟨ϕ, ϕ,X⟩.
(2) ϕN = ⟨ϕ,X ,X⟩.
(3) ϕN = ⟨ϕ,X , ϕ⟩.
(4) ϕN = ⟨ϕ, ϕ, ϕ⟩.

XN may also be defined in many ways as an NCrS as follows:

(1) XN = ⟨X , ϕ, ϕ⟩.
(2) XN = ⟨X ,X , ϕ⟩.
(3) XN = ⟨X ,X ,X⟩.

Definition 2.4. [24] Let X be a non-empty set, and the NCrSs A and B be in the form

A = ⟨A1, A2, A3⟩, B = ⟨B1, B2, B3⟩ respectively. Then the following two possible definitions

may be considered for subsets (A ⊆ B):

(1) A ⊆ B ⇐⇒ A1 ⊆ B1, A1 ⊆ B2, and A3 ⊇ B3.

(2) A ⊆ B ⇐⇒ A1 ⊆ B1, A2 ⊇ B2, and A3 ⊇ B3.

Definition 2.5. [24] Let X is a non-empty set, and the NCrSs A and B be in the form

A = ⟨A1, A2, A3⟩ and B = ⟨B1, B2, B3⟩ respectively. Then,

(1) A ∩B may be defined in two ways:

(a) A ∩B = ⟨A1 ∩B1, A2 ∩B2, A3 ∪B3⟩.
(b) A ∩B = ⟨A1 ∩B1, A2 ∪B2, A3 ∪B3⟩.
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(2) A ∪B may also be defined in two ways:

(a) A ∪B = ⟨A1 ∪B1, A2 ∩B2, A3 ∩B3⟩.
(b) A ∪B = ⟨A1 ∪B1, A2 ∪B2, A3 ∩B3⟩.

Definition 2.6. [17] The number of partitions of a finite set with n elements into k blocks, is

the Stirling number of the second kind. It is denoted by S(n, k) or Sn,k. The explicit formula

for Stirling numbers of the second kind is

S(n, k) = Sn,k =
1

k!

k∑
j=0

(−1)j
(
k

j

)
(k − j)n.

Definition 2.7. [25] The set of all neutrosophic crisp subsets of a non-empty finite set X is

called the neutrosophic crisp power set of X .

The notation for the neutrosophic crisp power set of X is PNCr (X ) and its cardinality is

denoted by |PNCr (X ) |.

Proposition 2.8. [25] A set X with |X | = n has

(3.2n − 4) + 3!


n∑

i=2

S(i, 2)
(
n

i

)
+

n∑
j=3

S(i, 3)
(
n

j

)
neutrosophic crisp subsets.

Corollary 2.9. [25] If |X | = n, then the cardinality of the power set of NCrS of X is

|PNCr (X ) | = (3.2n − 4) + 3!


n∑

i=2

S(i, 2)
(
n

i

)
+

n∑
j=3

S(j, 3)
(
n

j

) .

Definition 2.10. [24] A neutrosophic crisp topology (NCrT) on a non-empty set X is a

family τNC of neutrosophic crisp subsets in X satisfying the following axioms

(1) ϕN , XN ∈ τNC .

(2) A1 ∩A2 ∈ τNC ; for any A1, A2 ∈ τNC .

(3) ∪Aj ∈ τNC ; ∀{Aj : j ∈ J} ⊆ τNC .

In this case, the pair (X , τNC) is called a neutrosophic crisp topological space (NCrTS) in X .

The elements in τNC are called neutrosophic crisp open sets (NCrOSs) in X . A NCrS F is

closed if and only if its complement F c is an open NCrS.

3. Neutrosophic Crisp Topological Spaces

Definition 3.1. An NCrT having k-NCrOSs on a non-empty set X is said to be an NCrT of

cardinality k. The number of NCrTs of cardinality k on X with |X | = n will be denoted by

TCr(n, k).
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Example 3.2. Let X = {u, v, w} and A1 = ⟨∅, ∅, {u}⟩, then τNCr = {ϕN ,XN ,A1} form an

NCrT on X . So, τNCr is an NCrT of cardinality 3 as it has 3-NCrOSs.

Proposition 3.3. For a non-empty finite set X with |X | = n,

(1) TCr(n, 2) = 1,

(2) TCr(n, k) = 1, where k = |PNCr(X )|, the cardinality of the neutrosophic crisp power

set on X .

Proof:

(1) The NCrT having 2-NCrOSs is the indiscrete NCrT which is TN = {ϕN ,XN }. There-
fore, (X , TN ) is the only NCrTS having 2-NCrOSs as TN contains only two members

ϕN and XN . Hence, the number of neutrosophic crisp topological spaces (NCrTSs)

having 2-NCrOSs is 1 i.e., TCr(n, 2) = 1.

(2) The NCrT of cardinality k = |PNCr(X )| is the discrete NCrT only. Hence, TCr(n, k) =
1, for k = |PNCr(X )|.

Example 3.4. Let X = {u, v}, then, |X | = n = 2. Here, the neutrosophic crisp subsets on X
are

ϕN , XN , A1 = ⟨∅, ∅, {u}⟩, A2 = ⟨∅, {u}, ∅⟩, A3 = ⟨{u}, ∅, ∅⟩,
A4 = ⟨∅, ∅, {v}⟩, A5 = ⟨∅, {v}, ∅⟩, A6 = ⟨{v}, ∅, ∅⟩,
A7 = ⟨∅, {u}, {v}⟩, A8 = ⟨{u}, ∅, {v}⟩, A9 = ⟨{u}, {v}, ∅⟩,
A10 = ⟨∅, {v}, {u}⟩, A11 = ⟨{v}, ∅, {u}⟩, A12 = ⟨{v}, {u}, ∅⟩.

In this case, the only NCrT having 2-NCrOSs is {ϕN ,XN } and hence TCr(n, 2) = 1. Also, the

NCrT having k = |PNCr(X )| = 14-NCrOSs is

{ϕN ,XN ,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12}

and hence, TCr(n, k) = 1, for k = |PNCr(X )| = 14.

4. Neutrosophic Crisp Topological Spaces with 3-NCrOSs

Proposition 4.1. The number of NCrTs of cardinality 3 on a non-empty finite set X with

|X | = n is given by the formula

TCr(n, 3) = |PNCr(X )| − 2

= 3(2n − 2) + 3!
[∑n

i=2 S(i, 2)
(
n
i

)
+
∑n

j=3 S(j, 3)
(
n
j

)]
.

Proof:

The NCrTs having 3-NCrOSs necessarily consists of a chain containing ϕN ,XN and any other

neutrosophic crisp subset AN of X other than ϕN and XN . Clearly, ϕN ⊂ AN ⊂ XN . It is

observed that the number of such AN is equal to |PNCr (X ) |− 2. Since the set {ϕN ,AN ,XN }
form an NCrT and the total number of such NCrTs is |PNCr(X )| − 2.
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Now, |PNCr(X )| = (3.2n − 4) + 3!
{∑n

i=2 S(i, 2)
(
n
i

)
+

∑n
j=3 S(j, 3)

(
n
j

)}
.

Therefore,

|PNCr(X )| − 2 =
[
(3.2n − 4) + 3!

{∑n
i=2 S(i, 2)

(
n
i

)
+
∑n

j=3 S(j, 3)
(
n
j

)}]
− 2

= (3.2n − 6) + 3!
{∑n

i=2 S(i, 2)
(
n
i

)
+
∑n

j=3 S(j, 3)
(
n
j

)}
= 3(2n − 2) + 3!

{∑n
i=2 S(i, 2)

(
n
i

)
+
∑n

j=3 S(j, 3)
(
n
j

)}
.

Hence,

TCr(n, 3) = |PNCr(X )| − 2

= 3(2n − 2) + 3!
[∑n

i=2 S(i, 2)
(
n
i

)
+

∑n
j=3 S(j, 3)

(
n
j

)]
.

Example 4.2. Let X = {u, v}, then
TCr(2, 3) = 3(22 − 2) + 3!

{∑2
i=2 S(i, 2)

(
2
i

)
+
∑2

j=3 S(j, 3)
(
2
j

)}
.

Clearly,
∑2

j=3 S(j, 3)
(
2
j

)
= 0.

So, TCr(2, 3) = 6 + 6
{
S(2, 2)

(
2
2

)
+ 0

}
= 12.

Consequently, TCr(2, 3) = 12 and these NCrTs having 3-NCrOSs are listed below

{ϕN ,A1,XN }, {ϕN ,A2,XN },{ϕN ,A3,XN }, {ϕN ,A4,XN },
{ϕN ,A5,XN },{ϕN ,A6,XN }, {ϕN ,A7,XN }, {ϕN ,A8,XN },
{ϕN ,A9,XN }, {ϕN ,A10,XN }, {ϕN ,A11,XN },{ϕN ,A12,XN }.

5. Neutrosophic Crisp Topological Spaces with 4-NCrOSs

The NCrT having 4-NCrOSs must have the form T = {ϕN ,A,B,XN }, where A ̸= B such

that A∩B,A∪B ∈ T . To compute the number of NCrTs with exactly 4-NCrOSs, we need to

compute formulae for following cases:

Case 1: A ∩ B = ϕN ,A ∪ B = XN

Case 2: A ∩ B = ϕN , A ∪ B = ϕN

Case 3: (A ∩ B = A or B, A ∪ B = ϕN ) or

(A ∩ B = ϕN ,A ∪ B = A or B)
Case 4: (A ∩ B = A,A ∪ B = A) or (A ∩ B = B,A ∪ B = B)
Case 5: (A ∩ B = A,A ∪ B = B) or (A ∩ B = B,A ∪ B = A).

Proposition 5.1. blank

For a non-empty finite set X with |X | = n, the number of NCrTs having 4-NCrOSs satisfying

the condition in case 1 is obtained by the formula

S(n, 2)(2n + 1).

Proof:

In general, the number of partitions of a non-empty set X with |X | = n into two blocks is
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given by S(n, 2). To obtain A ∩ B = ϕN and A ∪ B = XN , clearly A and B must have the

following two forms:

(1) A = ⟨A1,A2, ∅⟩ & B = ⟨B1,B2, ∅⟩,
(2) A = ⟨A1, ∅,A3⟩ & B = ⟨B1, ∅,B3⟩.

Let us count the ways that they can be chosen.

(1) We have, A ∩ B = ⟨A1 ∩ B1,A2 ∩ B2, ∅⟩, and A ∪ B = ⟨A1 ∪ B1,A2 ∩ B2, ∅⟩. Now,

to get A ∩ B = ϕN and A ∪ B = XN , we must have, A1 ∩ B1 = ∅, A1 ∪ B1 = X
and A2 ∩ B2 = ∅. This implies that A1, B1 is a partition of X and so, B1 = X − A1.

Therefore, A1, B1 can be chosen in S(n, 2) ways. Now, if |A1| = i then |B1| = n − i.

Since A2 ∩ B2 = ∅, then the neutrosophic crisp subset A2 can be chosen out of n − i

elements in
(
n−i
k

)
, k = 0, 1, 2, . . . , n − i ways with k = 0 representing the empty set.

Therefore, A2 can be chosen in
∑n−i

k=0

(
n−i
k

)
= 2n−i ways. Similarly, B2 can be chosen

out of n − (n − i) = i elements in
∑i

k=0

(
i
k

)
= 2i ways. Hence, the total number of

ways is S(n, 2).2n−i.2i = S(n, 2).2n.
(2) We have, A ∩ B = ⟨A1 ∩ B1, ∅,A3 ∪ B3⟩, and A ∪ B = ⟨A1 ∪ B1, ∅,A3 ∩ B3⟩. Now, to

get A ∩ B = ϕN and A ∪ B = XN , we must have, A1 ∩ B1 = ∅, A3 ∪ B3 = X and

A1 ∪B1 = X , A3 ∩B3 = ∅ simultaneously. This shows that A1 and B1 is a partition of

X and A3 = AC
1 = B1, B3 = BC

1 = A1. Therefore, we can take A1 and B1 or A3 and

B3 in S(n, 2) ways.

From (i) and (ii), the total number of ways is S(n, 2)(2n + 1).

Hence, the number of NCrTs having 4-NCrOSs satisfying the condition in case 1 is obtained

by the formula

S(n, 2)(2n + 1).

Proposition 5.2. blank

The number of NCrTs having 4-NCrOSs on a non-empty set X satisfying the condition in case

2 is obtained by the formula

n(n− 1)

2
+ {S(n, 2)× 2n}+

n∑
i=3

{(
n

i

)
S(i, 2)

}
where |X | = n.

Proof:

To obtain A ∩ B = ϕN and A ∪ B = ϕN , clearly, A and B must have the following two forms

(1) A = ⟨∅,A2,A3⟩ & B = ⟨∅,B2,B3⟩ such that A3 ∪ B3 = X and A3 ∩ B3 = ∅ and

A2 ∩ B2 = ∅.
(2) A = ⟨∅,A2, ∅⟩ & B = ⟨∅,B2, ∅⟩ such that A2 ∩ B2 = ∅.
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From (i), A∩B = ⟨∅,A2∩B2,A3∪B3⟩, and A∪B = ⟨∅,A2∩B2,A3∩B3⟩. Since, A3∪B3 = X
and A3 ∩ B3 = ∅, which implies that A3 and B3 is a partition of X and say B3 = X − A3.

Therefore, A3 and B3 can be chosen in S(n, 2) ways. Now, if |A3| = i, |B3| = n−i, 1 ≤ i ≤ n−1,

and A2 ∩ B2 = ∅, then A2 can be chosen in
∑n−i

k=0

(
n−i
k

)
= 2n−i ways, and similarly, B2 can be

chosen out of n− (n− i) = i elements in
∑i

k=0

(
i
k

)
= 2i ways.

Therefore, the total number of ways is S(n, 2)× 2n−i × 2i i.e., S(n, 2)× 2n.

From (ii), A∩B = ⟨∅,A2∩B2, ∅⟩, A∪B = ⟨∅,A2∩B2, ∅⟩, and A2∩B2 = ∅. If |A2∪B2| = i,

2 ≤ i ≤ n, then A2 ∪ B2 is chosen in
(
n
i

)
different ways and then it is partitioned into two

disjoint blocks: this is done in S(i, 2) different ways. Therefore, the number of ways for form

(ii) is
∑n

i=2

(
n
i

)
S(i, 2).

Hence, the number of NCrTs having 4-NCrOSs satisfying condition in case 2 is obtained by

the formula

{S(n, 2)× 2n}+
n∑

i=2

{(
n

i

)
S(i, 2)

}
i.e.,

n(n− 1)

2
+ {S(n, 2)× 2n}+

n∑
i=3

{(
n

i

)
S(i, 2)

}
.

Proposition 5.3. blank

For a non-empty finite set X with |X | = n, the number of NCrTs having 4-NCrOSs satsifying

conditions in case 3 is obtained by the formula 2(2n − 2)2.

Proof:

There are two forms

(i) A = ⟨∅, ∅,A3⟩ & B = ⟨∅,B2, ∅⟩,
(ii) A = ⟨A1, ∅, ∅⟩ & B = ⟨∅,B2, ∅⟩.

Let us count the ways that they can be chosen.

Clearly, these two forms agree with the conditions in case 3 i.e., for the first kind, we have,

A ∩ B = ⟨∅, ∅,A3⟩ = A and A ∪ B = ⟨∅, ∅, ∅⟩ = ϕN , and for the second kind A ∩ B =

⟨∅, ∅, ∅⟩ = ϕN and A ∪ B = ⟨A1, ∅, ∅⟩ = A. Now, since ∅ ⊂ A3 ⊂ X , ∅ ⊂ B2 ⊂ X such that

|A3| = |B2| = i, 1 ≤ i ≤ n − 1 so, A3 and B2 are chosen in
(
n
i

)
different ways. This implies

that A and B are chosen in
(
n
i

)
different ways. Therefore, the number of ways in this kind is{∑n−1

i=1

(
n
i

)}
×
{∑n−1

i=1

(
n
i

)}
=

(∑n−1
i=1

(
n
i

))2
= (2n − 2)2.

Similarly, the second kind is computed and is equal to (2n − 2)2.

Finally, the desired number of ways is 2 (2n − 2)2 .

Proposition 5.4. blank

For a non-empty set X with |X | = n, the number of NCrTs having 4-NCrOSs satisfying
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condition in case 4 is obtained by the formula

n−2∑
i=1

{(
n

i

)(
2n−i − 2

)}
+ 2T1 + 6 (T2 + T3) ,

where Tk =
∑n−1

i=k

{(
n
i

)
S(i, k)

(
2n−i − 1

)}
, k = 1, 2, 3.

Proof:

Let A = ⟨A1,A2,A3⟩ and B = ⟨B1,B2,B3⟩. Then to satisfy the condition (A∩B = A,A∪B =

A) or (A ∩ B = B,A ∪ B = B), we must have, A1 = B1,A2 ⊂ B2,A3 = B3 or A1 = B1,B2 ⊂
A2,A3 = B3 respectively . Then, we obtain four forms

(1) A = ⟨∅,A2, ∅⟩ & B = ⟨∅,B2, ∅, ⟩ such that A2 ⊂ B2 or B2 ⊂ A2,

(2) A = ⟨∅, ∅,A3⟩ & B = ⟨∅,B2,A3⟩ and A = ⟨A1, ∅, ∅⟩ & B = ⟨A1,B2, ∅⟩,
(3) A = ⟨A1,A2,A3⟩ & B = ⟨A1,B2,A3⟩; exactly one of Ai, i = 1, 2, 3 is ∅ and A2 ⊂ B2.

(4) A = ⟨A1,A2,A3⟩ & B = ⟨A1,B2,A3⟩ such that all Ai, i = 1, 2, 3 are non-empty and

A2 ⊂ B2.

Let us count the ways that they can be chosen.

(1) Let A2 ⊂ B2 and if |A2| = i, 1 ≤ i ≤ n− 2 then i < |B2| = k ≤ n− 1. Therefore, A2 is

chosen in
(
n
i

)
ways and B2 is chosen in

∑(n−i)−1
j=1

(
n−i
j

)
= 2n−i−2 different ways. Since,

i varies from 1 to n−2, A2 and B2 are chosen in
∑n−2

i=1

{(
n
i

) (
2n−i − 2

)}
different ways.

Hence, the neutrosophic crisp subsets A and B are chosen in
∑n−2

i=1

{(
n
i

) (
2n−i − 2

)}
different ways.

(2) Let |A3| = i, 1 ≤ i ≤ n−1 then A3 is chosen in
(
n
i

)
different ways then it is partitioned

into one block: this is done in S(i, 1) different ways and hence A. Next, in B, A3∩B2 =

∅ and so, B2 is chosen from n− i elements in
∑n−i

j=1

(
n−i
j

)
= 2n−i− 1 different ways and

hence B. Since i varies from 1 to n− 1, we obtain
∑n−1

i=1

(
n
i

)
S(i, 1)(2n−i − 1) different

ways for A and B.
Similarly, for A = ⟨A1, ∅, ∅⟩ & B = ⟨A1,B2, ∅⟩, we have∑n−1
i=1

(
n
i

)
S(i, 1)(2n−i − 1) different ways.

(3) We have, A1∩A3 = ∅. If |A1∪A3| = i, 2 ≤ i ≤ n−1 then A1,A3 is chosen in
(
n
i

)
S(i, 2)

different ways. Since A1 ∩ B2 = A3 ∩ B2 = ∅, so, B2 is chosen in
(
n−i
j

)
, 1 ≤ j ≤ n − i

different ways. Therefore, B2 is chosen in
∑n−i

j=1

(
n−i
j

)
= 2n−i − 1 different ways.

Together A and B is chosen in
∑n−1

i=2

(
n
i

)
S(i, 2)(2n−i − 1) different ways. It is known

that we can arrange three element into three places in six different ways, so, A has six

forms, as three components of A are the neutrosophic crisp subsets A1,A3 and ∅.
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Hence, the total number of ways to choose A and B is

6

n−1∑
i=2

(
n

i

)
S(i, 2)(2n−i − 1).

(4) We have, A1 ∩A2 = A1 ∩A3 = A2 ∩A3 = ∅. If |A1 ∪A2 ∪A3| = i, 3 ≤ i ≤ n− 1 then

A1,A2,A3 are chosen in
(
n
i

)
S(i, 3) different ways. Since A1 ∩B2 = A3 ∩B2 = ∅, so, B2

is chosen in
(
n−i
j

)
, 1 ≤ j ≤ n−i different ways. Therefore, B2 is chosen in

∑n−i
j=1

(
n−i
j

)
=

2n−i−1 different ways. TogetherA and B are chosen in
∑n−1

i=3

(
n
i

)
S(i, 3)2n−i−1 different

ways. It is known that we can arrange three elements into the three places in six

different ways, so, A has 6 forms, as three components of A are different neutrosophic

crisp subsets A1,A2 and A3.

Hence, the total number of ways to choose A and B is

6

n−1∑
i=3

(
n

i

)
S(i, 3)(2n−i − 1).

Hence, we have the total

n−2∑
i=1

{(
n

i

)(
2n−i − 2

)}
+

n−1∑
i=1

(
n

i

)
S(i, 1)(2n−i − 1)+

6
n−1∑
i=2

(
n

i

)
S(i, 2)(2n−i − 1) + 6

n−1∑
i=3

(
n

i

)
S(i, 3)(2n−i − 1).

i.e.,
n−2∑
i=1

{(
n

i

)(
2n−i − 2

)}
+ 2T1 + 6 (T2 + T3) ,

where Tk =
∑n−1

i=k

{(
n
i

)
S(i, k)

(
2n−i − 1

)}
, k = 1, 2, 3. This formula gives the number of NCrTs

having 4-NCrOSs satisfying condition in case 4.

Proposition 5.5. blank

For a non-empty set X with |X | = n, the number of NCrTs having 4-NCrOSs satisfying

condition in case 5 is obtained by the formula

n−1∑
i=1

(
n

i

)(2n − 2) + 2


 i−1∑

j=1

(
i

j

)
2n−j

+ (2n−i − 1)


+

2

n−1∑
i=1

(
n

i

)
(2n−i − 1) +

n−1∑
i=1

(
n

i

)
(2n−i − 1)2 + 2Tn +

n−2∑
i=0

(
n

i

)
Tn−i,

where Tn =
∑n−2

i=1

(
n
i

){∑n−(i+1)
k=1

(
n−i
k

)
(2n−(i+k) − 1)

}
+∑n−2

i=1

(
n
i

) [∑n−i
j=1

(
n−i
j

){∑j
k=1

(
j
k

)
(2n−(i+j) − 1)

}]
or

J. Basumatary and B. Basumatary, A Study on the Number of Neutrosophic Crisp
Topological Spaces in a Finite Set

Neutrosophic Sets and Systems, Vol. 73, 2024          546



Tn =
∑n−2

i=1

(
n
i

){∑n−(i+1)
k=1

(
n−i
k

)
(2n−(i+k) − 1)

}
+∑n−2

i=1

(
n
i

) [∑n−i
j=1

{∑n−i
k=j

(
n−i
j

)(
j
k

)}
(2n−(i+j) − 1)

]
.

Proof:

Here, the second component must always match to satisfy the conditions in case 5.

For A = ⟨∅, ∅,A3⟩ we can choose B in two forms which are B = ⟨B1, ∅, ∅⟩ and B = ⟨B1, ∅,B3⟩
such that B3 ⊆ A3. For this kind of A we have

(
n
i

)
different ways. For each A, we can choose

B = ⟨B1, ∅, ∅⟩ in 2n−2 different ways. Next if B3 ⊂ A3, say |B3| = j < i = |A3|, we can choose

B in
∑i−1

j=1

(
i
j

)
2n−j different ways and if B3 = A3, say |B3| = |A3| = i, then B can be chosen in

2n−i − 1 different ways. Similarly, for A = ⟨A1, ∅, ∅⟩, we have same number of choices for B
satisfying conditions in case 5.

Therefore, in this part we have

n−1∑
i=1

(
n

i

)(2n − 2) + 2


 i−1∑

j=1

(
i

j

)
2n−j

+ (2n−i − 1)




different ways.

For A = ⟨∅,A2, ∅⟩, we can choose B = ⟨∅,A2,B3⟩ and B = ⟨B1,A2, ∅⟩. Since A2 can be

chosen in
(
n
i

)
, i = 1, 2, . . . , n−1 different ways then B3 can be chosen in 2n−i−1 different ways

for each i and therefore, B. As we have two forms of B and are symmetric, and i varies from

1 to n− 1, we have the total 2
∑n−1

i=1

(
n
i

)
(2n−i − 1).

For A = ⟨∅,A2,A3⟩, we can choose B = ⟨B1,A2,B3⟩,A3 ⊆ B3 and B1 is

any subset of X different from A2 and B3. Then A and B can be chosen in∑n−2
i=1

(
n
i

){∑n−(i+1)
k=1

(
n−i
k

)
(2n−(i+k) − 1)

}
+∑n−2

i=1

(
n
i

) [∑n−i
j=1

(
n−i
j

){∑j
k=1

(
j
k

)
(2n−(i+j) − 1)

}]
different ways. Let us take∑n−2

i=1

(
n
i

){∑n−(i+1)
k=1

(
n−i
k

)
(2n−(i+k) − 1)

}
+∑n−2

i=1

(
n
i

) [∑n−i
j=1

(
n−i
j

){∑j
k=1

(
j
k

)
(2n−(i+j) − 1)

}]
= Tn for further use. Also, for A =

⟨A1,A2, ∅⟩, we have equal number of choices as it is symmetric to A = ⟨∅,A2,A3⟩. Hence, a

total of 2Tn different ways.

For A = ⟨∅,A2,A3⟩, we can also choose B = ⟨B1,A2, ∅⟩ which can be done in∑n−1
i=1

(
n
i

)
(2n−i − 1)2 different ways.

For A = ⟨A1,A2,A3⟩, we can choose B = ⟨B1,A2,B3⟩ such that A1 ⊆ B1, B3 ⊆ A3 and

|A2| = i, 0 ≤ i ≤ n − 2. If |A2| = 0 i.e., A2 = ∅ then B can be chosen in
(
n
0

)
Tn different

ways. Further, if |A2| = 1 then B can be chosen in
(
n
1

)
Tn−1 different ways. Continuing in the

similar way for |A2| = n − 2, we have
(

n
n−2

)
Tn−(n−2) i.e.,

(
n

n−2

)
T2 different ways. Thus, for

A = ⟨A1,A2,A3⟩, we can choose B in
∑n−2

i=0

(
n
i

)
Tn−i different ways.
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Hence, the number of NCrTs having 4-NCrOSs satisfying conditions in case 5 is obtained

by the formula

n−1∑
i=1

(
n

i

)(2n − 2) + 2


 i−1∑

j=1

(
i

j

)
2n−j

+ (2n−i − 1)


+

2
n−1∑
i=1

(
n

i

)
(2n−i − 1) +

n−1∑
i=1

(
n

i

)
(2n−i − 1)2 + 2Tn +

n−2∑
i=0

(
n

i

)
Tn−i.

Example 5.6. blank

The follwing table gives the number of NCrTs having 4-NCrOSs for X ≤ 5. Suppose, X =

Table 1. Number of NCrTSs having 4-NCrOSs on X

A ∩ B,A ∪ B Number of NCrTSs having 4-NCrOSs on X
|X | = 1 |X | = 2 |X | = 3 |X | = 4 |X | = 5

Case 1: A∩B = ϕN , A∪B = XN 0 5 27 119 495

Case 2: A∩B = ϕN , A∪B = ϕN 0 5 30 137 570

Case 3: A ∩ B = A, A ∪ B = ϕN 0 8 72 392 1800

Case 4: A ∩ B = A, A ∪ B = A 0 4 48 340 2040

Case 5: A ∩ B = A, A ∪ B = B 0 14 216 1958 15240

The total number of NCrTSs

having 4-NCrOSs on X
0 36 393 2946 20145

{a, b} i.e., |X | = 2, then from Table 1, we have, TCr(2, 4) = 36. These are

For Case 1:

{ϕN ,XN , A3 = ⟨{a}, ∅, ∅⟩, A6 = ⟨{b}, ∅, ∅},
{ϕN ,XN , A3 = ⟨{a}, ∅, ∅, A12 = ⟨{b}, {a}, ∅⟩},
{ϕN ,XN , A6 = ⟨{b}, ∅, ∅⟩, A9 = ⟨{a}, {b}, ∅⟩},
{ϕN ,XN , A8 = ⟨{a}, ∅, {b}⟩, A11 = ⟨{b}, ∅, {a}⟩},
{ϕN ,XN , A9 = ⟨{a}, {b}, ∅⟩, A12 = ⟨{b}, {a}, ∅⟩}.

For Case 2:

{ϕN ,XN , A2 = ⟨∅, {a}, ∅⟩, A5 = ⟨∅, {b}, ∅⟩},
{ϕN ,XN , A1 = ⟨∅, ∅, {a}⟩, A4 = ⟨∅, ∅, {b}⟩},
{ϕN ,XN , A1 = ⟨∅, ∅, {a}⟩, A7 = ⟨∅, {a}, {b}⟩},
{ϕN ,XN , A4 = ⟨∅, ∅, {b}⟩, A10 = ⟨∅, {b}, {a}⟩},
{ϕN ,XN , A7 = ⟨∅, {a}, {b}⟩, A10 = ⟨∅, {b}, {a}⟩}.

For Case 3:

{ϕN ,XN , A1 = ⟨∅, ∅, {a}⟩, A2 = ⟨∅, {a}, ∅⟩},
{ϕN ,XN , A1 = ⟨∅, ∅, {a}⟩, A5 = ⟨∅, {b}, ∅⟩},
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{ϕN ,XN , A4 = ⟨∅, ∅, {b}⟩, A2 = ⟨∅, {a}, ∅⟩},
{ϕN ,XN , A4 = ⟨∅, ∅, {b}⟩, A5 = ⟨∅, {b}, ∅⟩},
{ϕN ,XN , A3 = ⟨{a}, ∅, ∅⟩, A2 = ⟨∅, {a}, ∅⟩},
{ϕN ,XN , A3 = ⟨{a}, ∅, ∅⟩, A5 = ⟨∅, {b}, ∅⟩},
{ϕN ,XN , A6 = ⟨{b}, ∅, ∅⟩, A2 = ⟨∅, {a}, ∅⟩},
{ϕN ,XN , A6 = ⟨{b}, ∅, ∅⟩, A5 = ⟨∅, {b}, ∅⟩}.

For Case 4:

{ϕN ,XN , A1 = ⟨∅, ∅, {a}⟩, A10 = ⟨∅, {b}, {a}⟩},
{ϕN ,XN , A3 = ⟨{a}, ∅, ∅⟩, A9 = ⟨{a}, {b}, ∅⟩},
{ϕN ,XN , A4 = ⟨∅, ∅, {b}⟩, A7 = ⟨∅, {a}, {b}⟩},
{ϕN ,XN , A6 = ⟨{b}, ∅, ∅⟩, A12 = ⟨{b}, {a}, ∅⟩}.

For Case 5:

{ϕN ,XN , A1 = ⟨∅, ∅, {a}⟩, A3 = ⟨{a}, ∅, ∅⟩},
{ϕN ,XN , A1 = ⟨∅, ∅, {a}⟩, A6 = ⟨{b}, ∅, ∅⟩},
{ϕN ,XN , A4 = ⟨∅, ∅, {b}⟩, A3 = {a}, ∅, ∅⟩},
{ϕN ,XN , A4 = ⟨∅, ∅, {b}⟩, A6 = ⟨{b}, ∅, ∅⟩},
{ϕN ,XN , A7 = ⟨∅, {a}, {b}⟩, A2 = ⟨∅, {a}, ∅⟩},
{ϕN ,XN , A7 = ⟨∅, {a}, {b}⟩, A12 = ⟨{b}, {a}, ∅⟩},
{ϕN ,XN , A12 = ⟨{b}, {a}, ∅⟩, A2 = ⟨∅, {a}, ∅⟩},
{ϕN ,XN , A9 = ⟨{a}, {b}, ∅⟩, A5 = ⟨∅, {b}, ∅⟩},
{ϕN ,XN , A9 = ⟨{a}, {b}, ∅⟩, A10 = ⟨∅, {b}, {a}⟩},
{ϕN ,XN , A10 = ⟨∅, {b}, {a}⟩, A5 = ⟨∅, {b}, ∅⟩},
{ϕN ,XN , A8 = ⟨{a}, ∅, {b}⟩, A3 = ⟨{a}, ∅, ∅⟩},
{ϕN ,XN , A8 = ⟨{a}, ∅, {b}⟩, A4 = ⟨∅, ∅, {b}⟩},
{ϕN ,XN , A11 = ⟨{b}, ∅, {a}⟩, A1 = ⟨∅, ∅, {a}⟩},
{ϕN ,XN , A11 = ⟨{b}, ∅, {a}⟩, A6 = ⟨{b}, ∅, ∅⟩}.

As a result, we have the total TCr(2, 4) = 36.

This paper computes the formulae for the number of neutrosophic crisp topological spaces

having 2, 3, and 4 open sets. This work is the foundation for computation of the formulae to

find the number of neutrosophic crisp topological spaces.
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