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Abstract. This study investigates fermatean neutrosophic digraphs, generalized fermatean neutrosophic di- 

graphs, and the out-neighborhood of vertices inside generalized fermatean neutrosophic digraphs. It looks at 

the qualities and characteristics of generalized fermatean neutrosophic competition graphs and their matrix 

representations. It also establishes the minimal graph, competition number for generalized fermatean neutro- 

sophic competition graphs, and relevant features. Finally, the paper addresses a practical implementation of 

these ideas. 

Keywords: Neutrosophicgraph, fermatean neutrosophic graph, fermatean neutrosophic digraphs, generalized 

fermatean neutrosophic digraphs. 

 

1. Introduction 

An important area of applied mathematics is graph theory, which is utilized to address a 

wide range of issues in computer science, geometry, algebra, social networks, optimization, 

and other fields [1]. Cohen [2] introduced the competition graph and its use in ecosystems, 

focusing on species competition within food webs. When two species have at least one common 

prey, they are considered to be in competition in this context. Roberts et al. [3, 4] investigated 

the possibility of representing all networks with isolated vertices as competition graphs. The 

competition number represents the least number of such vertices. Opsut [5] studied how to 

calculate a graph’s competition number. Kim and colleagues [6, 7] provided the p-competition 

number and graph. Brigham et al. [8] expanded the p-competition graph to incorporate the 

∅-tolerance graph, enhancing its generality. 
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Cho and Kim [9] investigated the competition number of a graph with one hole. Li and 

Chang [10] investigated competition graphs with h holes. Factor and Merz initially proposed 

the (1,2)-step competition graph for tournaments [11], and then expanded the concept to the 

(1,2)-step competition graph. Kaufman [12] created the fuzzy graph, where each vertex and 

edge has various degrees of membership, to account for erroneous data in real life. Numerous 

scientific investigations have been conducted on fuzzy graphs [13]. Parvathi and Karunambigal 

introduced intuitionistic fuzzy graphs in [14]. It is a graph composed of vertices and edges 

with variable degrees of membership and non-membership. Akram and Dubek [15] introduced 

interval-valued fuzzy graphs, where vertices and edges’ membership values are represented 

as intervals. However, even when competition is portrayed using competition graphs, these 

features are not fully realized. 

Samanta and Pal [16] represented competition in a fuzzy environment more realistically, 

taking into account the ambiguity of prey and species in a food chain. Samanta and Sarkar 

[17, 18] proposed the generalized fuzzy competition graph and generalized fuzzy graph, where 

the vertices’ membership values dictate edge membership values. Pramanik et al. [19] merged 

fuzzy tolerance graphs with fuzzy φ tolerance competition graphs. 

Smarandache [20] developed neutrosophic logic, a cohesive framework for dealing with in- 

determinate and inconsistent information that extends classical and fuzzy logics. This funda- 

mental discovery laid the groundwork for later discoveries in a wide range of fields, including 

decision-making and graph theory. Ye [21] expanded neutrosophic logic by developing a multi- 

criteria decision-making technique that leverages the correlation coefficient in a single-valued 

neutrosophic environment, proving its practical applicability in challenging decision circum- 

stances.Akram, Siddique, and Davvaz [22] presented new concepts in neutrosophic graphs and 

studied their applications, proving the flexibility of neutrosophic logic in mathematical model- 

ing. Quek et al. [23] made additional contributions to the topic by investigating graph theory 

in the context of complicated neutrosophic sets, revealing neutrosophic sets’ ability to handle 

increasingly complex relational data. ahin [24] presented a practical approach to neutrosophic 

graph theory, highlighting its usefulness in tackling real-world situations. Huang et al. [25] 

investigated regular and irregular neutrosophic graphs, applying these principles to real-world 

circumstances and emphasizing their practical relevance. Mohanta et al. [26] investigated 

m-polar neutrosophic graphs, expanding the use of neutrosophic graph theory in intelligent 

and fuzzy systems and enlarging the scope and usefulness of neutrosophic logic in contempo- 

rary computing issues. Recent advances in neutrosophic logic and graph theory have greatly 

broadened the scope of decision-making and problem-solving in complicated and ambiguous 

situations. Mohanta, Dey, and Pal [27] investigated several neutrosophic graph products, 

stressing their potential for managing complex interactions in intelligent systems. Broumi et 
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al. [28, 29] proposed interval-valued Fermatean neutrosophic graphs as a complete framework 

for dealing with data with a wider range of uncertainty and indeterminacy. Their contribu- 

tions to ”Collected Papers” and ”Neutrosophic Sets and Systems” highlighted the theoretical 

underpinnings and practical uses of these graphs, particularly in scenarios needing improved 

decision-making capacities. Broumi et al. [30] extended the use of neutrosophic graph theory 

by developing complicated Fermatean neutrosophic graphs that were used in decision-making 

processes in management and engineering. This novel technique revealed the usefulness of 

neutrosophic graphs in solving diverse choice issues. Dhouib et al. [31] solved the Minimum 

Spanning Tree Problem with interval-valued Fermatean neutrosophic domains, demonstrat- 

ing the usefulness of these graphs in optimizing network-related tasks. Additionally, Saeed 

and Shafique [32] examined the relationship of Fermatean neutrosophic soft sets with applica- 

tions to sustainable agriculture, their findings showed that neutrosophic sets can help improve 

decision-making processes in agricultural sustainability. AL-Omeri et al. [ [33]- [38]] discussed 

identify internet streaming services using max product of complement in neutrosophic graphs 

and give some real time applications. 

 

1.1. Motivation 

(1) To broaden graph theory by including fermatean neutrosophic graph, which covers 

membership, indeterminacy, and non membership. 

(2) To develop powerful tools for modeling complicated real-world issues that go beyond 

the capability of classical binary logic. 

(3) The inspiration for this study derives from the desire to better capture and evaluate 

dynamic interactions in such systems, where classical graph theory falls short. 

 

1.2. Novelty 

(1) The paper extends the notion of fermatean neutrosophic graphs to extended fermatean 

neutrosophic competition graphs, increasing the scope of fermatean neutrosophic graph 

theory. 

(2) It defines and examines the minimal graph and competition number for generalized 

fermatean neutrosophic competition graphs, yielding novel theoretical insights and 

characteristics. 

(3) The research presents a matrix form of generalized fermatean neutrosophic competition 

graphs that makes them easier to compute and see. 

(4) The paper describes a practical application of generalized fermatean neutrosophic com- 

petition graphs in the context of technology firms, illustrating the relevance of the 

suggested ideas in capturing real-world contests and interactions. 
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1.3. Structure of the article 

The research begins with an overview of fermatean neutrosophic digraphs(FNDG) and the 

reason behind expanding graph theory to include fermatean neutrosophic graph(FNG). 

Section 2 covers the fundamental terminology and preliminary information required. Sec- 

tion 3 present generalized fermatean neutrosophic graph(GFNG), fermatean neutrosophic di- 

graphs, generalized fermatean neutrosophic digraphs, fermatean neutrosophic competition 

graph(FNCG), generalized fermatean neutrosophic competition graph(GFNCG), minimal 

graph and competition number for generalized fermatean neutrosophic competition graphs, 

along with their features. 

Section 4 presents the matrix form of GNCGs, followed by an appropriate example to demon- 

strate its use. section 5 discusses a practical application of the explored theoretical prin- 

ciples, demonstrating the importance and value of generalized fermatean neutrosophic di- 

graphs(GFNDG) in solving real-world problems. 

Summarizes the findings and makes recommendations for future study in fermatean neutro- 

sophic graph(FNG) theory. 

 
2. Basic Definitions 

This part provides the essential components required for understanding the article. 

Definition 2.1. Let X represent a universal set. A Fermatean Neutrosophic relation on X is 

a mapping g = (χυ, χξ, χς ) : X × X → [0, 1] where χυ (κr, κs) , χξ (κr, κs) , χς (κr, κs) ∈ [0, 1]. 

Definition 2.2. Let X be a universal set. Let G = (g, ϑ) be FNG, where g is a fermatean 

neutrosophic set on X and ϑ is a fermatean neutrosophic relation on X. The pair fulfills the 

following requirements 

δυ (κr, κs) ≤ min {χυ (κr) , χυ (κs)} 

δξ (κr, κs) ≥ max {χξ (κr) , χξ (κs)} 

δς (κr, κs) ≥ max {χς (κr) , χς (κs)} 
0 ≤ δ3 (κr, κs) + δ3 (κr, κs) + δ3 (κr, κs) ≤ 2 for all κr, κs ∈ X where δυ : X × X → [0, 1] , δξ : 

υ ξ ς 

X × X → [0, 1] andδς : X × X → [0, 1] represents the degree of membership, indeterminacy- 

membership, and non-membership of ϑ, respectively. Here, the Fermatean Neutrosophic edge 

set of G is represented by ϑ, while the Fermatean Neutrosophic vertex set of G is represented 

by g. 

Example 2.3. Consider the FNG G = (g, ϑ) where edge set of G is represented by 

ϑ, and vertex set of G is represented by g defined by g = {κ1, κ2, κ3} and edges ϑ = 

{(κ1, κ2) , (κ1, κ3) , (κ2, κ3)} as in figure 1. 
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FNG.PNG 

Figure 1. FNG . 
 

 
Definition 2.4. The cardinality of FNS χ is denoted as |χ| = (|χ|υ, |χ|ξ, |χ|ς ). The total 

membership values are represented by |χ|υ, indeterminacy values are represented by |χ|ξ and 

non membership values are represented by |χ|ς . 

 
Definition 2.5. The height of an FNS χ = (X, χυ, χξ, χς ) is defined as h (χ) = 

(supx∈Xχυ (x) , infx∈Xχξ (x) , infx∈Xχς (x)) = (h1 (χ) , h2 (χ)) 
 

→− 
Definition 2.6. If Ģ = 

→− 
g, ϑ is defined as FNDG if 

(i) χυ : g → [0, 1] , χξ : g → [0, 1] and χς : g → [0, 1] it denotes the degree of membership, 

indeterminacy and non membership respectively, such that 0 ≤ χ3 + χ3 + χ3 ≤ 2 ∀κr ∈ g. υ ξ ς 
(ii) δυ : ϑ → [0, 1] , δξ : ϑ → [0, 1] and δς : ϑ → [0, 1] it denotes the degree of membership, 

indeterminacy and non membership of edge respectively. 

δυ (κ−−,−→κ ) ≤ min {χ (κ ) , χ (κ )} 
δ (κ−−,−→κ ) ≥ max {χ (κ ) , χ (κ )} 
ξ r s ξ r ξ s 

δς (κ−−,−→κ ) ≥ max {χ (κ ) , χ (κ )} 
0 ≤ δ3 (κ−−,−→κ ) + δ3 (κ−−,−→κ ) + δ3 (κ−−,−→κ ) ≤ 2 

υ r s ξ r s ς r s  

→− ( 

 

→− _ 

vertices g = {κ1, κ2, κ3, κ4} and edges ϑ = {(κ−−,−κ→) , (κ−−,−κ→) , (κ−−,−κ→) , (κ−−,−κ→)} 

υ υ 

ς ς 

Example 2.7. The graph in Figure 2 is represented by the notation , with 
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Fermatean Neutrosophic graph Ģ = (g, χ, δ) is a FNS F (κr) = Xκr 
, χυκr 

, χξκr 
, χςκr

 

Fermatean Neutrosophic graph Ģ = (g, χ, δ) is a FNS F (κr) = Xκr 
, χυκr 

, χξκr 
, χςκr

 

 

FIG1.PNG  

Figure 2. FNDG . 

 
Definition 2.8. The Fermatean Neutrosophic out-neighborhood of a vertex κr in a directed 

→− + 
(  

+ + + + 
_

 

X+ = {κs|δυ (κ−−,−→κ ) > 0, δξ (κ−−,−→κ ) > 0, δς (κ−−,−→κ ) > 0} and χ+ : X+ → [0, 1] defined by 
κr r s r s r s υκr κr 

χ+  (κs) = δυ (κ−−,−→κ ), 
υκr r s 

χ+ : X+ → [0, 1] defined by χ+ (κs) = δ (κ−−,−→κ ) and χ+ : X+ → [0, 1] defined by 
ξκr κr ξκr ξ r s ςκr κr 

χ+ (κs) = δς (κ−−,−→κ ). 
ςκr r s 

Definition 2.9. The Fermatean Neutrosophic in-neighborhood of a vertex κr in a directed 
→− − 

(  
− − − − 

_
 

X− = {κs|δυ (κ−−,−→κ ) > 0, δξ (κ−−,−→κ ) > 0, δς (κ−−,−→κ ) > 0} and χ− : X+ → [0, 1] defined by 
κr s r s r s r υκr κr 

χ−  (κs) = δυ (κ−−,−→κ ), χ−  : X+ → [0, 1] defined by χ− (κs) = δξ (κ−−,−→κ ) and χ−  : X+ → 
υκr s r ξκr κr ξκr 

s r ςκr κr 

[0, 1] defined by χ− (κs) = δς (κ−−,−→κ ). 
ςκr s r 

3. Generalized fermatean neutrosophic competition graph 

Definition 3.1. A GFNG Ģ = (g, ϑ) where ϑ ⊆ g × g is examined if certain functions exist 

χυ : g → [0, 1] , χξ : g → [0, 1] and χς : g → [0, 1]. 

δυ : ϑ → [0, 1] , δξ : ϑ → [0, 1] and δς : ϑ → [0, 1]. 

Eυ : ϑυ → [0, 1] , Eξ : ϑξ → [0, 1] and Eς : ϑς → [0, 1], 
such that 0 ≤ χ3 (κr) + χ3 (κr) + χ3 (κr) ≤ 2 ∀κr ∈ g (r = 1, 2, ..., n) and 

υ ξ ς 

δυ (κr, κs) = Eυ (χυ (κr) , χυ (κs)) 

δξ (κr, κs) = Eξ (χξ (κr) , χξ (κs)) 

δς (κr, κs) = Eς (χς (κr) , χς (κs)) 

where 

ϑυ = {(χυ (κr) , χυ (κs)) : δυ (κr, κs) ≥ 0} 

, where 

, where 
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_ (
 
_ 

_ 

r s υ υ r υ s 

Ģ = g, 
 

Definition 3.4. A GFNG Ģ̌ = g, 
 

Example 3.5. The graph in Figure 4 is represented by the notation Ģ = g, 
 

1 2 1 3 1 4 3 4 2 3 

1 κ1 1 2 κ1 1 3 κ1 1 1 1 1 

( ( 

ϑξ = {(χξ (κr) , χξ (κs)) : δξ (κr, κs) ≥ 0} 

ϑς = {(χς (κr) , χς (κs)) : δς (κr, κs) ≥ 0} 

andχυ (κr) , χξ (κr) and χς (κr) denotes the degree of membership, indeterminacy and non 

membership of vertex respectively and δυ (κr, κs) , δξ (κr, κs) and δς (κr, κs) denotes the degree 

of membership, indeterminacy and non membership of edges respectively. 

Definition 3.2. A GFNG 

exist 

→− 
Ģ = 

→− 
g, ϑ where 

→− 
ϑ ⊆ g × g is examined if certain functions 

χυ : g → [0, 1] , χξ : g → [0, 1] and χς : g → [0, 1]. 

δυ : 
→− 
ϑ → [0, 1] , δξ : 

→− 
ϑ → [0, 1] and δς : 

→− 
ϑ → [0, 1]. 

Eυ : ϑυ → [0, 1] , Eξ : ϑξ → [0, 1] and Eς : ϑς → [0, 1], 
such that 0 ≤ χ3 (κr) + χ3 (κr) + χ3 (κr) ≤ 2 ∀κr ∈ g (r = 1, 2, ..., n) and 

υ ξ ς 

δυ (κ−−,−→κ ) = E (χ (κ ) , χ (κ )) 
δ (κ−−,−→κ ) = E (χ (κ ) , χ (κ )) 

ξ r s ξ ξ r ξ s 

δς (κ−−,−→κ ) = E (χ (κ ) , χ (κ )) 
r s 

where 

ς ς r ς s 

ϑυ = {(χυ (κr) , χυ (κs)) : δυ (κr, κs) ≥ 0} 

ϑξ = {(χξ (κr) , χξ (κs)) : δξ (κr, κs) ≥ 0} 

ϑς = {(χς (κr) , χς (κs)) : δς (κr, κs) ≥ 0} 

andχυ (κr) , χξ (κr) and χς (κr) denotes the degree of membership, indeterminacy and non 
membership of vertex respectively and δυ (κ−−,−→κ ) , δ (κ−−,−→κ ) and δ (κ−−,−→κ ) denotes the degree 

r s ξ r s ς r s 

of membership, indeterminacy and non membership of edges respectively. 

→− 

 
( →− _ 

vertices g = {κ1, κ2, κ3, κ4} and edges ϑ = {(κ−−,−κ→) , (κ−−,−κ→) , (κ−−,−κ→) , (κ−−,−κ→)} 
1 2 1 3 4 1 3 2 

→− ( →− _ 

of a vertex κr ∈ g is denoted as F (κr) = {κs, (δυ (κ−−,−→κ ) , δξ (κ−−,−→κ ) , δς (κ−−,−→κ )) / (κ−−,−→κ ) ∈ ϑ}. 
r s r s r s r s 

→− ( →− _ 

tices g = {κ1, κ2, κ3, κ4} and edges ϑ = {(κ−−,−κ→) , (κ−−,−κ→) , (κ−−,−κ→) , (κ−−,−κ→) , (κ−−,−κ→)} 

F (κ1) = {(κ2, (0.7, 0.8, 0.6)) , (κ3, (0.9, 0.5, 0.6)) , (κ4, (0.6, 0.6, 0.7))} 

F (κ2) = {(κ3, (0.9, 0.8, 0.7))} F (κ3) = {(κ4, (0.9, 0.6, 0.7))} F (κ4) = ∅ 

→− 
Definition 3.6. If Ģ̌ = 

→− 
g, ϑ is defined as GFNDG. The GFNCG C 

→− 
Ģ̌ 

→− 
of Ģ = 

→− 
g, ϑ 

is GFNG that has the same vertex set g and contains a fermatean neutrosophic edge between 
κ1 and κ2 iff F (κ1) ∩ F (κ2) /= ∅. Furthermore, there exist sets 

=  ג
  

ℵυ , κ ∈ g
 
 =  ג ,

n
ℵξ , κ ∈ g

o
=  ג ,

  
ℵς , κ ∈ g

  
and functions E  : ג × ג  → 

[0, 1] , E2 : [1 ,0] → 2ג × 2ג , E3 : [1 ,0] → 3ג × 3ג for each(κ1, κ2) ∈ ϑ where 

_ 

Example 3.3. The graph in Figure 3 is represented by the notation , with 

is defined as GFNDG.The out-neighbourhood F (κr) 

, with ver- 

( 
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κ1 , 
 

ξ 1 2 κ1 κ2 

κ2 

 

FIG2.PNG  

Figure 3. GFNDG . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIG3.PNG 

 

 

 
δυ (κ1, κ2) = E

 
ℵυ , ℵυ

 
 

Figure 4. FNDG. 

κ1 κ2 

δ (κ , κ ) = E ℵξ , ℵξ 

δς (κ1, κ2) = E
 

ℵς ς 
ℵυ = min {δυ (κ−−,−κ→) , ∀κ ∈ F (κ ) ∩ F (κ )} 

κ1 1 3 3 1 2 
ℵυ = min {δυ (κ−−,−κ→) , ∀κ ∈ F (κ ) ∩ F (κ )} 

κ2 2 3 3 1 2 
ℵξ  = max {δ (κ−−,−κ→) , ∀κ ∈ F (κ ) ∩ F (κ )} 

κ1 ξ 1 3 3 1 2 
ℵξ  = max {δ (κ−−,−κ→) , ∀κ ∈ F (κ ) ∩ F (κ )} 

κ2 ξ 2 3 3 1 2 
ℵς  = max {δς (κ−−,−κ→) , ∀κ ∈ F (κ ) ∩ F (κ )} 

κ1 1 3 3 1 2 
ℵς  = max {δς (κ−−,−κ→) , ∀κ ∈ F (κ ) ∩ F (κ )} 

κ2 2 3 3 1 2 

_ 
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_ 
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_ ( ì (

 
_ 

( ì 

1 2 1 3 1 4 3 4 2 3 

Theorem 3.8. If Ģ represent a GFNG, then there exist a GFNDG Ģ̌ such that C Ģ̌ 

Ģ̌ 

(  

Example 3.7. The graph in Figure 4 is represented GFNDG 
→− 
Ģ = 

→− 
g, ϑ , with vertices 

g = {κ1, κ2, κ3, κ4} and edges ϑ = {(κ−−,−κ→) , (κ−−,−κ→) , (κ−−,−κ→) , (κ−−,−κ→) , (κ−−,−κ→)} 

. The consequent competition graph (Figure 5) 
 

 

FIG4.PNG 
 

Figure 5. GFNCG of graph (Figure 4). 

 
→− 

 

 
(→− _ 

proof Given a GFNG Ģ = (g, ϑ). (u1, u2) indicates an edge in Ģ , the goal is to create a 

GFNDG 
→− 
Ģ̌ , the competition graph C 

→− 
Ģ̌ is equal to Ģ . Let uˇ1 and uˇ2 be the corresponding 

vertices of u1 and u2 in Ģ .Then, from vertices uˇ1, uˇ2we may construct two directed edges to →− 
a vertex uˇ3 ∈ Ģ̌ such that uˇ3 ∈ F (uˇ1) ∩ F (uˇ2).In a similar manner, we may do this for each 

(→− _ 
  

 

 
Definition 3.9. Let Ģ represent a GFNG. The minimal graph 

→− 
Ģ̌ of Ģ is a GFNDG with 

→− 
C Ģ̌ = Ģ and 

→− 
Ģ̌ has the minimum number of edges, i.e, if another graph, 

→− 
Ģ̌ exists and 

→− 
C Ģ̌ = Ģ , then number of edges of 

→− 
Ģ̌ ≤ number of edges of 

→− 
Ģ̌ . 

Given a GFNCG, we may create a directed variant(a GFNDG) that emphasizes these com- 

petitive interactions. However, for a single GFNCG there may be many comparable digraphs 

with various amount of edges. Our objective is to identify the most compact digraph-one with 

the minimum number of edges- that appropriately represents the competition. →− 
Theorem 3.10. In a generalized fermatean neutrosophic connected graph →− Ģ̌ which has an 

underlying complete graph with vertex n. The minimal graph of Ģ̌ has 2n edges where n ≥ 2. 

vertex and edge of Ģ , and as a result, C = Ģ 
 

= Ģ 
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1 2 3 

1 2 1 3 2 3 2 4 

proof →− 
Let Ģ̌ be the connected GFNG which has an underlying complete graph with vertex n this 

means that each vertex is linked to every other vertex. Let k and r be two neighboring vertices 
→− 

in Ģ̌ and k1, r1 be the corresponding vertices in the minimal graph 
→− 
Ģ̌ . Let 

→− 
Ģ̌ is a GFNDG 

every vertex except k1 has only out neighbourhood as k1. Hence −→ 

−→ 
Ģ̌ has n − 1edges. In a −→ 

similar way, a GFNDG Ģ̌  is taken into consideration r1 and consequently Ģ̌ . There are 
−→ 2 −→ 

n −  ̌  ̌
2 −−−−→−−−−→ 

1 edges in Ģ 2. Let us now examine GFNDG Ģ 3 including only the edges (k1, u1)(r1, u1). →− −→ −→ −→ 
Consequently, the combined graph Ģ̌ = Ģ̌ ∪ Ģ̌ ∪ Ģ̌ has a total (n − 1) + (n − 1) + 2 = 2n 

edges. 

Definition 3.11. In a GFNG, the score of an edge (κ1, κ2) connecting the vertices is denoted 

by S (κ , κ ) = 
2δυ + δξ − 2δυ δς

 1 2 3 

Example 3.12. The GFNG in Figure 6 is represented by the notation Ģ = (g, ϑ), with 

vertices g = {κ1, κ2, κ3, κ4} and edges ϑ = {(κ−−,−κ→) , (κ−−,−κ→) , (κ−−,−κ→) , (κ−−,−κ→) , (κ−−,−κ→)} 
1 2 1 4 

. 
2 3 3 4 2 4 

 

 
FIG5.PNG 

Figure 6. GFNG . 
 

 
Definition 3.13. The vertexκ1 with neighbouring vertices r1, r2, ..., rhis considered isolated 

in GFNG if S (κ1, rl) if l = 1, 2, ..., h. 

Example 3.14. The GFNG in Figure 7 is represented by the notation Ģ = (g, ϑ), with ver- 

tices g = {κ1, κ2, κ3, κ4} and edges ϑ = {(κ−−,−κ→) , (κ−−,−κ→) , (κ−−,−κ→) , (κ−−,−κ→)} 

. The neighboring vertex of κ4 is κ2, with the edge score (κ2, κ4) is 0, indicating the κ4 is an 

isolated vertex. 

1 
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Edges Score Value 

κ1κ2 0.386 

κ2κ4 0.466 

κ2κ3 0.466 

κ3κ4 0.366 

κ4κ1 0.33 

 

Table 1. Edge score values. 

 

 

FIG6.PNG 

Figure 7. GFNG with isolated vertex . 

 
Definition 3.15. In a GFNG, a cycle with a length of more than 4 is referred to as a hole if 

each edge in the cycle has a score that is not zero. 

Example 3.16. In Example 5, the graph κ1 −κ2 −κ3 −κ4 −κ1 shows a 4-cycle with non-zero 

scores, indicating a hole. 

Definition 3.17. In a generalized neighborhood graph, the competition number refers to the 

smallest isolated vertex, denoted by CF ( Ģ  ). 

Lemma 3.18. A crisp graph with a single hole has a maximum completion number of two. A 

GFNG with a single hole may have a competition number larger than two. 

Consider a graph (Figure 8) with a single hole with competition number two. Edge Scores 
(κ−−,−κ→) , (κ−−,−κ→) , (κ−−,−κ→) and (κ−−,−κ→) are non- zero by definition. However, the score of 

1 2 2 3 3 4 4 1 

Neutrosophic Sets and Systems, Vol. 73, 2024         659

Wadei Faris AL-Omeri, M Kaviyarasu, M. Rajeshwari. Key performance indicators in technology firms using 
generalized fermatean neutrosophic competition graph



 

 

 
 
 
 
 
 
 
 

 

FIG7.PNG 

Figure 8. GFNG with competition number 2 . 

 

(κ4, κ5) and (κ3, κ5) may be zero. Hence, κ5 is an isolated vertex. The competition num- 

ber is three. 

Definition 3.19. A fermatean neutrosophic chordal graph(FNCG) is one in which every hole 

has a chord with a score than zero. 

Example 3.20. In Example 5, the graph if FNCG if the edges (κ2, κ4) are chords with non- 

zero scores and κ1 is a hole. 

Lemma 3.21. A FNCG with a pendent vertex must have a competition number larger than 

one. The isolation of vertex κ5 in the FNCG (Figure 9) results in a competition number larger 

than two. 

 

 

 

 

 

 

 

 

FIG8.PNG 

Figure 9. FNCG . 
 
 
4. GFNCG represented as a matrix 

The following procedure calculates the elements of the adjacency matrix of a GFNCG. 

(1) Consider GFNDG. 
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(2) Identify the vertices kl and rl for l = 1, 2, ..., n such that their exist an edge 

(kl, up) (rl, up) for p = 1, 2, ..., m with F (kl) and F (rl) 

(3) Determine the set F (kl) ∩ F (rl) = {uq, q = 1, 2, ..., n} 
(4) Compute 

ℵυ = min 
n

δυ 
−−−→ 
kl, u1  , δυ 

−−−→ 
kl, u2  , ..., δυ 

−−−→ 
kl, un 

ℵυ = min {δυ (r−−,−u→) , δ (r−−,−u→) , ..., δ (r−−,−u→)} r l 1 υ l 2 υ l n 

ℵξ = max 
n

δξ 
−−−→ 
kl, u1  , δξ 

−−−→ 
kl, u2  , ..., δξ 

−−−→ 
kl, un 

ℵξ = max {δ (r−−,−u→) , δ (r−−,−u→) , ..., δ (r−−,−u→)} r ξ l 1 ξ l 2 ξ l n 

ς = max 
n

δς 
−−−→ 
kl, u1  , δς 

−−−→ 
kl, u2  , ..., δς 

−−−→ 
kl, un 

ℵς = max {δς (r−−,−u→) , δ (r−−,−u→) , ..., δ (r−−,−u→)} 
r l 1 ς l 2 ς l n 

 

(5) For the pair of vertices k, r use functions E1, E2 and E3 to get the combined membership 

degrees. 
δυ (k, r) = E1 (ℵυ, ℵυ) k r 

δ (k, r) = E 
(
ℵξ , ℵξ

_
 

δς (k, r) = E1

 
ℵς , ℵς

 
 

For the sake of simplicity, the functions E1, E2 and E3 may be replaced by a single 

function E. 

(6) A competition matrix is a square matrix. The number of vertices is equal to its order. 

The entries are as follows 

 
  




(
E

  
ℵυ, ℵυ

 
, E 

(
ℵξ, ℵξ

_ 
, E

  
ℵς , ℵς

 _ 
if there exists an edge between l and p. 

(0, 0, 0) if there is no edge between l and p. 
 
 
 
Example 4.1. A matrix representation example is provided, complete with all phases. 

Step 1: Consider GFNDG. 

Step 2: F (k1) = {k2} , F (k2) = {k5} , F (k3) = {k1, k2} , F (k4) = {k1, k2, k3} , F (k5) = 

{k3} , F (k6) = {k5} , F (k7) = {k5} 

Step 3: F (k1) ∩ F (k2) = F (k1) ∩ F (k5) = F (k1) ∩ F (k6) = F (k1) ∩ F (k7) = ∅, F (k1) ∩ 

F (k3) = {k2}, F (k1) ∩ F (k4) = {k2}, F (k2) ∩ F (k3) = F (k2) ∩ F (k4) = F (k2) ∩ F (k5) = ∅, 

F (k2) ∩ F (k6) = {k5}, F (k2) ∩ F (k7) = {k5}, F (k3) ∩ F (k4) = {k1}, F (k3) ∩ F (k5) = 

F (k3)∩ F (k6) = F (k3)∩ F (k7) = ∅,F (k4)∩ F (k5) = {k3} , F (k4)∩ F (k6) = F (k4)∩ F (k7) = 

F (k5) ∩ F (k6) = F (k5) ∩ F (k7) = F (k6) ∩ F (k7) = ∅ 

ℵ 

α l
 

= 
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FIG9.PNG 

Figure 10. GFNG with 7 vertices . 
 
 
 
 
 
 
Step 4: 

 
 
 

 

υ = 0.75 ℵξ = 0.5 ℵς = 0.6 

υ = 0.75 ℵξ = 0.55 ℵς = 0.5 

υ = 0.8 ℵξ = 0.4 ℵς = 0.35 

υ = 0.8 ℵξ = 0.35 ℵς = 0.45 

ℵυ = 0.7 ℵξ = 0.45 ℵς = 0.4 
31 31 31 

υ  = 0.75 ℵξ  = 0.45 ℵς 

ℵυ = 0.6 ℵξ  = 0.55 ℵς 

= 0.55 

= 0.45 
53 53 53 

υ  = 0.55 ℵξ  = 0.55 ℵς 

ℵυ = 0.65 ℵξ  = 0.6 ℵς 

= 0.45 

= 0.65 
25 25 

υ = 0.6 ℵξ 

25 

= 0.6 ℵς 

 

= 0.5 

ℵ 

ℵ 

ℵ 

ℵ 

ℵ 

ℵ 

ℵ 
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Step 5: 

 
υ = 0 δξ = 0.1 δς = 0.25 

υ = 0.3 δξ = 0.25 δς = 0.25 

δυ = 0.3 δξ = 0.25 δς = 0.3 
34 34 34 

δυ = 0.4 δξ = 0.3 δς = 0.35 
45 45 45 

υ = 0.25 δξ = 0.35 δς = 0 

υ = 0.3 δξ = 0.4 δς = 0.25 

υ = 0.25 δξ = 0.25 δς = 0.25 
 
 

 

Step 6: 

 

 


 

 
 

 
− 

 
(0,0.25,0.1) 

(0,0,0) 

 
 

 
(0,0,0) 

(0,0,0) 

(0,0,0) 

 
 

 


 

 
 

 

5. Application of key performance indicators in technology firms 

Many competitions exist in various aspects of everyday life, comparable to those seen in 

ecosystems. This study investigates the competition for technological innovation among major 

technology businesses in a fermatean neutrosophic environment. We take two things into 

consideration: Market share and R&D expenses. A company’s market share is the total 

amount of sales it controls in its industry during a certain time period. The R&D Investment 

refers to the cash allocated for the company’s research and innovation initiatives. 

Market share increases represent true membership, whereas R&D spending measures non- 

membership. Uncertainty factors including market volatility, regulatory changes, and economic 

crises are measured against the level of indeterminacy membership. Data on market share and 

R&D investment are sourced from industry journals and business financial filings. 

Leading technology companies such as Apple, Google, Microsoft, and Amazon are vying for 

technological superiority. Because all enterprises compete, the competition graph is complete. 

The membership values of the businesses (nodes) are displayed in tabular form (Table2 and 

Table3), whilst the membership values of edges are calculated using the following formula and 

provided in matrix style. 

The matrix structure above depicts the competitiveness of technology businesses. 

δ 

δ 

δ 

δ 

δ 

 
(0,0,0) (0,0.25,0.1) (0.3,0.25,0.25) (0,0,0) (0,0,0) 

 

(0,0,0) − (0,0,0) (0,0,0) (0,0,0) (0.25,0,0.35) (0.3,0.25,0.4) 
 (0,0,0) − (0.3,0.3,0.25) (0,0,0) (0,0,0)  

(0.3,0.25,0.25) (0,0,0) (0.3,0.3,0.25) − (0.4,0.35,0.3) (0,0,0) (0,0,0) 
 (0,0,0) (0,0,0) (0.4,0.35,0.3) − (0,0,0)  

(0,0,0) (0.25,0,0.35) (0,0,0) (0,0,0) (0,0,0) − (0.25,0.25,0.25) 
(0,0,0) (0.3,0.25,0.4) (0,0,0) (0,0,0) (0,0,0) (0.25,0.25,0.25) − 
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  

 

Tech corporations Market share R&D expenditures 

Apple 10 6.5 

Microsoft 8.8 5.4 

Google 7.2 7.5 

Amazon 4 10 

Meta 3.2 6.6 

Samsung 2.8 4.3 

Intel 2 3.6 

Table 2. Market share and R&D expenditures of technology firms. 

 

 

Tech corporations NMS N R&D NMS ∼NR&D 

Apple 1 0.65 0.35 

Microsoft 0.88 0. 54 0.34 

Google 0.72 0.75 0.03 

Amazon 0.4 0.10 0.6 

Meta 0.32 0.66 0.34 

Samsung 0.28 0.43 0.15 

Intel 0.2 0.36 0.16 

Table 3. Normalized value of Market share and R&D expenditures of tech- 

nology firms. 

 
 
 
 

(0.06,0,0.055) 
(0.14,0,0.05)  

 
(0.02,0,0.085) (0.26,0,0.195)  

(0.3,0,0.175)  (0.24,0,0.23) (0.16,0,0.125) (1,0,1) (0.04,0,0.17) (0.06,0,0.285)  (0.1,0,0.32) 
(0.34,0,0.005) (0.28,0,0.06)  (0.2,0,0.045) (0.4,0.35,0.3) (1,0,1) (0.02,0,0.115) (.060,0,0.15) 
(0.36,0,0.11)  (0.3,0,0.055) (0.02,0,0.085) (0.06,0,0.285) (0.02,0,0.115) (1,0,1) (0.04,0,0.035) 
(0.4,0,0.145)  (0.34,0,0.09) (0.26,0,0.195)  (0.1,0,0.32)  (0.06,0,0.15) (0.04,0,0.035) (1,0,1) 

The matrix structure above represents the competitiveness among tech corporations. 

 
6. Comparative Analysis 

The competitive environment in the technology industry is sophisticated and dynamic, de- 

manding the adoption of current analytical tools to understand the intricate interrelationships 

between leading businesses. Such competitive settings have been described using Generalized 

Neutrosophic Competition Graphs (GNCGs), which provide a complex representation using 

truth, falsity, and indeterminacy memberships. GNCGs, on the other hand, have the poten- 

tial to oversimplify competition through their linear combination strategy. Key Performance 

Indicators (KPIs) such as market share and R&D expenditures are also used to evaluate 

 
(1,0,1) (0.06,0,0.055) 

(1,0,1) 
(0.14,0,0.05)  (0.3,0,0.175) 
(0.08,0,0.105) (0.24,0,0.23) 

(0.34,0,0.005) 
(0.28,0,0.06) 

(0.36,0,0.11)  (0.4,0,0.145) 

 

(0.3,0,0.055)  (0.34,0,0.09) 
 (0.08,0,0.105) (1,0,1) (0.16,0,0.125) (0.2,0,0.045)  
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competitive performance; however, due to their quantitative nature, they frequently fail to 

capture the full range of dynamics, excluding indeterminate factors such as market volatility 

and regulatory changes. The introduction of Generalized Fermatean Neutrosophic Competi- 

tion Graphs (GFNCGs) represents a substantial advance. GFNCGs use a complex algorithm 

to score edges between vertices that better captures the reality of competitive dynamics by al- 

lowing for uncertainty. This method provides more detailed insights for strategic planning and 

decision-making. Compared to GNCGs and KPIs, GFNCGs give a more comprehensive view 

of the competitive environment by combining quantitative and qualitative metrics. This is 

vital in the rapidly changing technology industry, where understanding the link between mar- 

ket share growth, innovation investment, and external uncertainty is essential for maintaining 

a competitive edge. Thus, GFNCGs are superior tools for modeling competitive scenarios in 

the technology sector because they provide a balanced analytical framework that captures the 

complexities and unpredictable nature of industrial rivalry. 
 

 
Figure 11. Comparision between GFNCG AND GNCG . 

 

 
Conclusion 

This work proposes a GFNCG that overcomes edge constraints. It depicts the GFNCG 

using a square matrix and explores concepts such as the minimal graph and competition num- 

ber. In addition, the GFNCG framework is used to define a real-world application. In this 

application, nations’ actual membership value is represented by their market share, whereas 

non-membership value is represented by the complement of their R&D spending. These cri- 

teria may be adjusted to capture different aspects of international competition, providing a 

useful perspective for studying real-world competitions. The research focuses on one-step 
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competition, with plans to examine n-step fermatean neutrosophic competition graphs and 

other related concepts in the future. This study will serve as the foundation for subsequent 

research. 
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