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Abstract. Neutrosophic sets are effectual logic represented to understand ambiguous and inconsistent infor-

mation. They are frequently used to explain many types of partial or incomplete information. Researchers

have given much attention to the decision-making theory and its associated methodologies based on uncertain

linguistic factors. This article emphasizes the novel neutrosophic number approximations to handle linguistic

variables and their application in multiple-attribute decision-making. Different approximation techniques are

introduced in neutrosophic sets, but substantial data loss may occur. Hence, a hexagonal neutrosophic number

was proposed to deal with information loss during approximation. Also, the comparison study with existing

techniques is explored to show the effectiveness of the proposed approximation. The expected interval criterion

was retained although an approximation was made to give more desirable features. An MCDM (Multi-Criteria

Decision Making) problem is presented to demonstrate efficiency and simplicity with uncertain parameters.

Keywords: Neutrosophic Number; Generalized Nonlinear Hexagonal Neutrosophic Number with asymmetry;

Approximation; Expected Interval; Values; MCDM.

—————————————————————————————————————————-

1. Introduction

Fuzzy logic enables greater flexibility when dealing with imprecise or uncertain data. Zadeh

[1] initiated the fuzzy logic to deal with ambiguity and uncertainty in a flexible and enhanced

way of reasoning, which allows the truth value to range between 0 and 1, that helps to model

imprecise data in various fields like artificial intelligence, control systems, and decision-making.

Fuzzy numbers have been introduced to deal with imprecise numerical quantities in decision

analysis, risk assessment, finance, etc., In [2–4] various fuzzy numbers, such as triangular,

trapezoidal, pentagonal, and hexagonal, were discussed along with their arithmetic operators.
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A new concept of generalized ’n’ gonal linear fuzzy numbers, which encompasses triangular,

trapezoidal, hexagonal, octagonal, and decagonal fuzzy numbers was introduced in [5], and a

novel total ordering method was presented. Initially, interval approximations [6] were provided.

Later in [7], an interval approximation operator that preserves this nonspecificity measure is

provided, along with an uncertainty measure known as entropy-like nonspecificity. Various

forms of approximation of fuzzy numbers were extensively discussed in [8–19]. Later, using

the Karush Kuhn Tucker theorem [20–22], LR fuzzy representations and the L fuzzy rough set

were more thoroughly analyzed, and their approximations were described.

Compared to traditional fuzzy sets, Intuitionistic fuzzy sets (IFS) [23] provide a more com-

prehensive representation of uncertainty, which can be helpful in decision-making where a lack

of information or conflicting evidence is present. IFS captures not only an element’s degree

of membership but also its degree of non-membership. Similarly, various Intuitionistic Fuzzy

Numbers (IFN) were developed for MCDM, and their approximation operators [24, 25] were

determined for multiple polygonal IFNs.

Neutrosophic sets [26, 27] are extensions of fuzzy sets and IFS to address even more com-

plex aspects of uncertainty. The importance of neutrosophic sets lies in their ability to handle

both the degrees of truth, falsehood, and indeterminacy. The added dimension allows for bet-

ter representation in areas where the boundary between membership and non-membership is

poorly defined. Similarly, different neutrosophic numbers [28–40] were developed to approach

MCDM problems systematically. To systematically deal with decision-making problems, var-

ious arithmetic operations are required. The trapezoidal approximation [41] of neutrosophic

numbers is defined to deal with transportation problems. Since neutrosophic is an effective

tool to represent indeterminacy, and inspired by the numerous aspects of neutrosophic set,

in this paper, we describe the approximations of neutrosophic numbers using GNHNNA. In

many problem-solving scenarios, particularly those involving uncertainty and imprecision, it

can be challenging to find accurate arithmetic operations. Traditional approximation methods

frequently give rise to data loss and sometimes insufficient generalization of the (α, β, γ)-cuts.

Due to these limitations, we investigated new approximation methods, and the hexagonal

neutrosophic approximation method can be a more suitable alternative. An example is given

to show the comparison with other existing approximations. We provided various theorems

pertaining to the approximation points and their values. The Karush Kuhn Tucker (KKT)

theorem and the expected interval criterion are applied in approximation. The result obtained

approximates efficiently any linear and nonlinear neutrosophic numbers to generalized hexag-

onal neutrosophic numbers.

Contributions
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• Using Lagrange’s method, a novel approach for the approximation of neutrosophic

numbers using hexagonal neutrosophic numbers is introduced.

• The paper significantly contributes by employing advanced distance measures and ex-

pected interval criteria in the approximation process. This enhances the accuracy and

reliability of the neutrosophic number approximation, addressing practical concerns in

real-world applications.

• Providing a solid theoretical foundation, the paper establishes and discusses theorems

related to the values, ambiguity, and approximation of neutrosophic numbers. This

contributes to the understanding of the mathematical principles underlying the pro-

posed approximation method.

• A numerical example is given to show the effectiveness of the proposed method in solv-

ing real-world problems. This application demonstrates the applicability and efficiency

of the hexagonal neutrosophic number approximation in addressing complex scenarios.

• The paper makes a noteworthy contribution by conducting a comparative analysis,

demonstrating that Hexagonal neutrosophic numbers yield the least error compared to

other neutrosophic numbers.

The systematic framework of this article is as follows: The preliminaries provide the basic

definitions relevant to this paper. In the next section, the distance measure and expected

interval are discussed in the case of neutrosophic sets. Then, by satisfying the Karush Kuhn

Tucker theorem and the expected interval criterion, the distance measure is minimized. In

section 3, the approximation of any neutrosophic number to GNHNNA is explored along

with graphical interpretation. As one of the particular cases of the previous section, the

approximation of linear hexagonal neutrosophic numbers with symmetry is explored. The

comparison with an approximation of various neutrosophic numbers was given to show that

the proposed approximation has minimal data loss. In Quantitative Analysis of Decision-

Making Research, a theoretical framework was given to deal with MCDM problems effectively.

Finally, a decision-making problem was given in the stock market with vague criteria, and the

future scope is given in the conclusion.

2. Preliminaries

Definition 2.1. [36] Generalized Nonlinear Hexagonal Neutrosophic Numbers with Asym-

metry (GNHNNA) is defined as, AGNHNNA =
{
T (a1, a2, a3, a4, a5, a6; r, s;ω)(n1,n2,n3,n4)

,

I (b1, b2, b3, b4, b5, b6; r1, s1; ρ)(m1,m2,m3,m4)
, F (c1, c2, c3, c4, c5, c6; r2, s2; δ)(p1,p2,p3,p4)

}
.

where the membership function is defined as,
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TAGNHNNA
=



r
(

x−a1
a2−a1

)n1

, if a1 ≤ x ≤ a2

r + (ω − r)
(

x−a2
a3−a2

)n2

, if a2 ≤ x ≤ a3

ω , if a3 ≤ x ≤ a4

s+ (ω − s)
(

x−a5
a4−a5

)n3

, if a4 ≤ x ≤ a5

s
(

x−a6
a5−a6

)n4

, if a5 ≤ x ≤ a6

0 , otherwise.

The indeterminacy function can be described as,

IAGNHNNA
=



1− r1

(
x−b1
b2−b1

)m1

, if b1 ≤ x ≤ b2

1− r1 + (r1 − ρ)
(

x−b2
b3−b2

)m2

, if b2 ≤ x ≤ b3

1− ρ , if b3 ≤ x ≤ b4

1− s1 + (s1 − ρ)
(

x−b5
b4−b5

)m3

, if b4 ≤ x ≤ b5

1− s1

(
x−b6
b5−b6

)m4

, if b5 ≤ x ≤ b6

1 , otherwise.

Non-membership function can be described as,

FAGNHNNA
=



1− r2

(
x−c1
c2−c1

)p1
, if c1 ≤ x ≤ c2

1− r2 + (r2 − δ)
(

x−c2
c3−c2

)p2
, if c2 ≤ x ≤ c3

1− δ , if c3 ≤ x ≤ c4

1− s2 + (s2 − δ)
(

x−c5
c4−c5

)p3
, if c4 ≤ x ≤ c5

1− s2

(
x−c6
c5−c6

)p4
, if c5 ≤ x ≤ c6

1 , otherwise.

where a1 < a2 < a3 < a4 < a5 < a6, b1 < b2 < b3 < b4 < b5 < b6 and c1 < c2 < c3 < c4 <

c5 < c6 ∀ ai, bi and ci (i = 1, ..., 6) are real constants and 0 < r, s < ω, 1− ρ < r1, s1 < 1 and

1− δ < r2, s2 < 1, ω, ρ, δ ∈ [0, 1].

Definition 2.2. [36] The (α, β, γ)-cut form of GNHNNA is as follows, A(α,β,γ) = {x ∈ X/

TAGNHNNA
≥ α, IAGNHNNA

≤ β, FAGNHNNA
≤ γ}. Let Tα = {x ∈ X/ TAGNHNNA

≥ α} where

α ∈ (0, ω].

If r ≤ s then, Tα =



[
a1 +

(
α
r

) 1
n1 (a2 − a1) , a6 +

(
α
s

) 1
n4 (a5 − a6)

]
, if 0 < α ≤ r[

a2 +
(
α−r
ω−r

) 1
n2 (a3 − a2) , a6 +

(
α
s

) 1
n4 (a5 − a6)

]
, if r ≤ α ≤ s[

a2 +
(
α−r
ω−r

) 1
n2 (a3 − a2) , a5 +

(
α−s
ω−s

) 1
n3 (a4 − a5)

]
, if s ≤ α ≤ ω

[a3, a4] , if α = ω.
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If s ≤ r, then, Tα =



[
a1 +

(
α
r

) 1
n1 (a2 − a1) , a6 +

(
α
s

) 1
n4 (a5 − a6)

]
, if 0 < α ≤ s[

a1 +
(
α
r

) 1
n1 (a2 − a1) , a5 +

(
α−s
ω−s

) 1
n3 (a4 − a5)

]
, if s ≤ α ≤ r[

a2 +
(
α−r
ω−r

) 1
n2 (a3 − a2) , a5 +

(
α−s
ω−s

) 1
n3 (a4 − a5)

]
, if r ≤ α ≤ ω

[a3, a4] , if α = ω.

Let Iβ = {x ∈ X/ IAGNHNNA
≤ β}, where β ∈ [1− ρ, 1). If r1 ≤ s1,

Iβ =



[b3, b4] , if β = 1− ρ[
b2 +

(
1−β−r1
ρ−r1

) 1
m2 (b3 − b2) , b5 +

(
1−β−s1
ρ−s1

) 1
m3 (b4 − b5)

]
, if 1− ρ ≤ β ≤ 1− s1[

b2 +
(
1−β−r1
ρ−r1

) 1
m2 (b3 − b2) , b6 +

(
1−β
s1

) 1
m4 (b5 − b6)

]
, if 1− s1 ≤ β ≤ 1− r1[

b1 +
(
1−β
r1

) 1
m1 (b2 − b1) , b6 +

(
1−β
s1

) 1
m4 (b5 − b6)

]
, if 1− r1 ≤ β < 1.

If s1 ≤ r1, then,

Iβ =



[b3, b4] , if β = 1− ρ[
b2 +

(
1−β−r1
ρ−r1

) 1
m2 (b3 − b2) , b5 +

(
1−β−s1
ρ−s1

) 1
m3 (b4 − b5)

]
, if 1− ρ ≤ β ≤ 1− r1[

b1 +
(
1−β
r1

) 1
m1 (b2 − b1) , b5 +

(
1−β−s1
ρ−s1

) 1
m3 (b4 − b5)

]
, if 1− r1 ≤ β ≤ 1− s1[

b1 +
(
1−β
r1

) 1
m1 (b2 − b1) , b6 +

(
1−β
s1

) 1
m4 (b5 − b6)

]
, if 1− s1 ≤ β < 1.

Let Fγ = {x ∈ X/FAGNHNNA
≤ γ} , where γ ∈ [1− δ, 1). If r2 ≤ s2, then,

Fγ =



[c3, c4] , if γ = 1− δ[
c2 +

(
1−γ−r2
δ−r2

) 1
p2 (c3 − c2) , c5 +

(
1−γ−s2
δ−s2

) 1
p3 (c4 − c5)

]
, if 1− δ ≤ γ ≤ 1− s2[

c2 +
(
1−γ−r2
δ−r2

) 1
p2 (c3 − c2) , c6 +

(
1−γ
s2

) 1
p4 (c5 − c6)

]
, if 1− s2 ≤ γ ≤ 1− r2[

c1 +
(
1−γ
r2

) 1
p1 (c2 − c1) , c6 +

(
1−γ
s2

) 1
p4 (c5 − c6)

]
, if 1− r2 ≤ γ < 1.

If s2 ≤ r2, then

Fγ =



[c3, c4] , if γ = 1− δ[
c2 +

(
1−γ−r2
δ−r2

) 1
p2 (c3 − c2) , c5 +

(
1−γ−s2
δ−s2

) 1
p3 (c4 − c5)

]
, if 1− δ ≤ γ ≤ 1− r2[

c1 +
(
1−γ
r2

) 1
p1 (c2 − c1) , c5 +

(
1−γ−s2
δ−s2

) 1
p3 (c4 − c5)

]
, if 1− r2 ≤ γ ≤ 1− s2[

c1 +
(
1−γ
r2

) 1
p1 (c2 − c1) , c6 +

(
1−γ
s2

) 1
p4 (c5 − c6)

]
, if 1− s2 ≤ γ < 1.

Definition 2.3. [36] Let AGNHNNA =
{
T (a1, a2, a3, a4, a5, a6; r, s;ω)(n1,n2,n3,n4)

,

I (b1, b2, b3, b4, b5, b6; r1, s1; ρ)(m1,m2,m3,m4)
, F (c1, c2, c3, c4, c5, c6; r2, s2; δ)(p1,p2,p3,p4)

}
be the

GNHNNA and Tα = [L (α) , R (α)], Iβ = [L1 (β) , R1 (β)] and Fγ = [L2 (γ) , R2 (γ)] be the

α, β and γ - cut respectively.
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(1) The values of the AGNHNNA corresponding to α - cut set, denoted by VT (AGNHNNA),

is defined as, VT (AGNHNNA) =
∫ ω
0 [L (α) +R (α)] f1 (α) dα. where f1 (α) ∈

[0, 1] (α ∈ [0, ω]) , f1 (0) = 0 and f1 (α) is increasing and monotonic in α ∈ [0, ω].

(2) The values of the AGNHNNA corresponding to β - cut set, denoted by VI (AGNHNNA),

is defined as, VI (AGNHNNA) =
∫ 1
1−ρ [L1 (β) +R1 (β)] f2 (β) dβ. where f2 (β) ∈

[0, 1] (β ∈ [ρ, 1]) , f2 (1) = 0 and f2 (β) is decreasing and monotonic in β ∈ [ρ, 1].

(3) The values of the AGNHNNA corresponding to γ - cut set, denoted by VF (AGNHNNA),

is defined as, VF (AGNHNNA) =
∫ 1
1−δ [L2 (γ) +R2 (γ)] f3 (γ) dγ. where f3 (γ) ∈

[0, 1] (γ ∈ [δ, 1]) , f3 (1) = 0 and f3 (γ) is decreasing and monotonic in γ ∈ [δ, 1].

Without loss of generality, we choose f1 (α) = α (α ∈ [0, ω]), f2 (β) = 1 − β (β ∈ [1− ρ, 1])

and f3 (γ) = 1− γ (γ ∈ [1− δ, 1]).

Theorem 2.4. [36] Let AGNHNNA =
{
T (a1, a2, a3, a4, a5, a6; r, s;ω)(n1,n2,n3,n4)

,

I (b1, b2, b3, b4, b5, b6; r1, s1; ρ)(m1,m2,m3,m4)
, F (c1, c2, c3, c4, c5, c6; r2, s2; δ)(p1,p2,p3,p4)

}
. be the

GNHNNA. Then,

(1) The α-cut set of the AGNHNNA for the truth-membership is computed as Tα =

[L (α) , R (α)] where α ∈ [0, ω]. If f1 (α) = α, we obtain the value and ambiguity

of the GNHNNA number AGNHNNA as,

VT (AGNHNNA) =

[
1

2
− n1

1 + 2n1

]
r2a1 +

[
ω2 − r2

2
− n2

(ω − r)2

1 + 2n2
− rn2

ω − r

1 + n2

]
a2

+

[
n2 (ω − r)2

1 + 2n2
+ rn2

ω − r

1 + n2

]
a3 +

[
n3 (ω − s)2

1 + 2n3
+ sn3

ω − s

1 + n3

]
a4

+

[
ω2 − s2

2
− n3

(ω − s)2

1 + 2n3
− sn3

ω − s

1 + n3

]
a5 +

[
1

2
− n4

1 + 2n4

]
s2a6

(2) The β-cut set of AGNHNNA for indeterminacy -membership is calculated as Iβ =

[L1 (β) , R1 (β)] where β ∈ [1− ρ, 1]. When f2 (β) = 1 − β, we obtain the value and

ambiguity of AGNHNNA, respectively as,

VI (AGNHNNA) =

[
1

2
− m1

1 + 2m1

]
r21b1 +

[
ρ2 − r21

2
−m2

(ρ− r1)
2

1 + 2m2
− r1m2

ρ− r1
1 +m2

]
b2

+

[
m2 (ρ− r1)

2

1 + 2m2
+ r1m2

ρ− r1
1 +m2

]
b3 +

[
m3 (ρ− s1)

2

1 + 2m3
+ s1m3

ρ− s1
1 +m3

]
b4

+

[
ρ2 − s21

2
−m3

(ρ− s1)
2

1 + 2m3
− s1m3

ρ− s1
1 +m3

]
b5 +

[
1

2
− m4

1 + 2m4

]
s21b6

(3) The γ-cut set of AGNHNNA for falsity-membership is computed as Fγ = [L2 (γ) , R2 (γ)]

where γ ∈ [1− δ, 1]. If f3 (γ) = 1−β, we obtain the value and ambiguity of AGNHNNA,
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by the following steps,

VF (AGNHNNA) =

[
1

2
− p1

1 + 2p1

]
r22c1 +

[
δ2 − r22

2
− p2

(δ − r2)
2

1 + 2p2
− r2p2

δ − r2
1 + p2

]
c2

+

[
p2 (δ − r2)

2

1 + 2p2
+ r2p2

δ − r2
1 + p2

]
c3 +

[
p3 (δ − s2)

2

1 + 2p3
+ s2p3

δ − s2
1 + p3

]
c4

+

[
δ2 − s22

2
− p3

(δ − s2)
2

1 + 2p3
− s2p3

δ − s2
1 + p3

]
c5 +

[
1

2
− p4

1 + 2p4

]
s22c6

Definition 2.5 ( [38]). The score function of a SVNS(N ) is defined as

S̃(S) = θ(x)− ι(x)− ϕ(x).

3. Hexagonal Approximation of a Neutrosophic Number

The first two definitions will provide the structure to approximate any curve to a GNHNNA.

Definition 3.1. Let A and B be two neutrosophic numbers with (α, β, γ)-cuts ([AT−, AT+],

[AI−, AI+], [AF−, AF+]) and ([BT−, BT+], [BI−, BI+], [BF−, BF+]), then the distance

measure between A and B is defined as,

d(A,B) =

√
1

3
(M +N +O) where, (1)

M =
∫ ω
0 (AT+−BT+)

2dα+
∫ ω

(AT−−BT−)
2dα, N =

∫ 1
1−ρ(AI+−BI+)

2dβ+
∫ 1
1−ρ(AI−−BI−)

2dβ

and O =
∫ 1
1−δ(AF+ −BF+)

2dγ +
∫ 1
1−δ(AF− −BF−)

2dγ

Definition 3.2. Let A be a neutrosophic number with (α, β, γ)-cut ([AT−, AT+], [AI−, AI+],

[AF−, AF+]), then the expected interval of A is defined as,

EI(A) = [X,Y, Z] where, (2)

X = [
∫ ω
0 AT−dα,

∫ ω
0 AT+dα], Y = [

∫ ω
0 AI−dβ,

∫ ω
0 AI+dβ] and Z = [

∫ ω
0 AF−dγ,

∫ ω
0 AF+dγ].

3.1. Approximation of GNHNNA

In this subsection, we approximate any neutrosophic number by preserving expected inter-

vals, and the distance measure defined in definition 3.1 to a GNHNNA by using an approx-

imation operator H: N (R) → N H(R) where N (R) represent the set of all neutrosophic

numbers defined on the real domain and N H(R) is the set of all GNHNNA.

Suppose A be any neutrosophic number with (α, β, γ)-cut ([AT−, AT+], [AI−, AI+], [AF−,

AF+]). Now we will try to find the nearest GNHNNA H(A), the closest to A that satisfies the

distance measure defined in definition 3.1. Let (α, β, γ)-cut of H(A) be ([HT−, HT+], [HI−,

HI+], [HF−, HF+]), then the distance measure between A and B = H(A) is defined as,

d(A,B) =

√
1

3
(M +N +O) where, (3)
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M =
∫ ω
0 (AT+ − HT+)

2dα +
∫ ω
0 (AT− − HT−)

2dα, N =
∫ 1
1−ρ(AI+ − HI+)

2dβ +
∫ 1
1−ρ(AI− −

HI−)
2dβ and O =

∫ 1
1−δ(AF+ −HF+)

2dγ +
∫ 1
1−δ(AF− −HF−)

2dγ

By using definition 2.2, equation 3 reduces to,

d(A,B) =

√
1

3
(M +N +O) where, (4)

M =

∫ s

0
(AT+ − (a6 +

(α
s

) 1
n4 (a5 − a6))

2dα+

∫ ω

s
(AT+ − (a5 +

(
α− s

ω − s

) 1
n3

(a4 − a5)))
2dα

+

∫ r

0
(AT− − (a1 +

(α
r

) 1
n1 (a2 − a1)))

2dα+

∫ ω

r
(AT− − (a2 +

(
α− r

ω − r

) 1
n2

(a3 − a2)))
2dα

N =
∫ 1−s1
1−ρ (AI+−(b5+

(
1−β−s1
ρ−s1

) 1
m3 (b4 − b5)))

2dβ+
∫ 1
1−s1

(AI+−(b6+
(
1−β
s1

) 1
m4 (b5 − b6)))

2dβ+∫ 1−r1
1−ρ (AI−− (b2+

(
1−β−r1
ρ−r1

) 1
m2 (b3 − b2)))

2dβ+
∫ 1
1−r1

(AI−− (b1+
(
1−β
r1

) 1
m1 (b2 − b1)))

2dβ and

O =
∫ 1−s2
1−δ (AF+−(c5+

(
1−γ−s2
δ−s2

) 1
p3 (c4 − c5)))

2dγ+
∫ 1
1−s2

(AF+−(c6+
(
1−γ
s2

) 1
p4 (c5 − c6)))

2dγ+∫ 1−r2
1−δ (AF− − (c2 +

(
1−γ−r2
δ−r2

) 1
p2 (c3 − c2)))

2dγ +
∫ 1
1−r2

(AF− − (c1 +
(
1−γ
r2

) 1
p1 (c2 − c1)))

2dγ

For GNHNNA,
∫ r
0 (AT−) =
r a1+a2n1

n1+1 , if 0 < n1

a1r − limα→0 a1α−
αn1(a1 − a2)(

α
r )

1
n1

n1 + 1
, if n1 ≤ 0

(5)

In a similar way we can compute the other integrals,
∫ ω
0 AT+dα,

∫ ω
0 AI−dβ,

∫ ω
0 AI+dβ,∫ ω

0 AF−dγ,
∫ ω
0 AF+dγ given in Definition 3.2.

Minimizing D(a1, a2, a3, a4, a5, a6,b1, b2, b3, b4, b5, b6,c1, c2, c3, c4, c5, c6)= d2(A,H(A)) in con-

sidering the following constraints is sufficient for finding the approximation.∫ ω

0
HT− dα−

∫ ω

0
AT− dα = 0

∫ ω

0
HT+ dα−

∫ ω

0
AT+ dα = 0 (6)

∫ ω

0
HI− dβ −

∫ ω

0
AI− dβ = 0

∫ ω

0
HI+ dβ −

∫ ω

0
AI+ dβ = 0 (7)

∫ ω

0
HF− dγ −

∫ ω

0
AF− dγ = 0

∫ ω

0
HF+ dγ −

∫ ω

0
AF+ dγ = 0 (8)

Using the Lagrangian multiplier method, we can find the value of real numbers

a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6 such that a1 ≤ a2 ≤ ... ≤ a6, b1 ≤ b2 ≤ ... ≤ b6 and
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c1 ≤ c2 ≤ ... ≤ c6 that minimize the function,

L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6) = d2(A,H(A)) + λ1(

∫ ω

0
HT−dα−

∫ ω

0
AT−dα)

+λ2(

∫ ω

0
HT+dα−

∫ ω

0
AT+dα)+λ3(

∫ ω

0
HI−dβ−

∫ ω

0
AI−dβ)+λ4(

∫ ω

0
HI+dβ−

∫ ω

0
AI+dβ)

+ λ5(

∫ ω

0
HF−dγ −

∫ ω

0
AF−dγ) + λ6(

∫ ω

0
HF+dγ −

∫ ω

0
AF+dγ) (9)

where λ1, λ2,..., λ6 are Lagrangian multipliers.

Now we have to find the partial derivatives. The minimization problem is rewritten as follows

using the KKT theorem.

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂a1
= 0 (10)

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂a2
= 0 (11)

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂a3
= 0 (12)

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂a4
= 0 (13)

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂a5
= 0 (14)

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂a6
= 0 (15)

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂b1
= 0 (16)

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂b2
= 0 (17)

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂b3
= 0 (18)

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂b4
= 0 (19)

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂b5
= 0 (20)

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂b6
= 0 (21)

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂c1
= 0 (22)

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂c2
= 0 (23)

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂c3
= 0 (24)

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂c4
= 0 (25)

∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂c5
= 0 (26)
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∂L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6)

∂c6
= 0 (27)

By solving 10, 11 and 12 we get

a1 =

− (2X−ω − 2X−r + 5X−n1ω − 4X−n1r − Y −n1r + Z−n1r + 4X−n2
1ω +X−n3

1ω − 2X−n2
1r − Y −n2

1r+

Z−n2
1r + 2X−n1n2r − 2Y −n1n2r + Z−n1n2r +X−n1n

2
2r + 4X−n2

1n2r + 2X−n3
1n2r − Y −n1n

2
2r−

2Y −n2
1n2r + Z−n2

1n2r + 2X−n2
1n

2
2r +X−n3

1n
2
2r − Y −n2

1n
2
2r)

2r(n1rn2
2 + 2n1rn2 + 2ω − 2r + 2n1ω − n1r)

a2 =

2Z− − 2Y − +X−n1 − 2Y −n1 − 4Y −n2 + 2Z−n1 + 2Z−n2 +X−n2
1 − 2Y −n2

2 +X−n2
1n

2
2+

2X−n1n2 − 4Y −n1n2 + 2Z−n1n2 +X−n1n
2
2 + 2X−n2

1n2 − 2Y −n1n
2
2

2n1rn2
2 + 4n1rn2 + 4ω − 4r + 4n1ω − 2n1r

a3 =

− (4Z−ω − 4Z−r − 2Y −n2ω + 4Z−n1ω + 4Z−n2ω + 2Y −n2r − 2Z−n1r − 4Z−n2r − 2Y −n2
2ω + 2Y −n2

2r+

X−n1n2ω − 2Y −n1n2ω + 4Z−n1n2ω −X−n1n2r + 2Y −n1n2r + Z−n1n2r +X−n1n
2
2ω +X−n2

1n2ω−

2Y −n1n
2
2ω −X−n1n

2
2r −X−n2

1n2r + 2Y −n1n
2
2r + 4Z−n1n

2
2r + Z−n1n

3
2r +X−n2

1n
2
2ω −X−n2

1n
2
2r)

2n2(ω − r)(n1rn2
2 + 2n1rn2 + 2ω − 2r + 2n1ω − n1r)

By solving 13, 14 and 15 we get

a4 =

− (4Z+ω − 4Z+s− 2Y +n3ω + 4Z+n4ω + 4Z+n3ω + 2Y +n3s− 2Z+n4s− 4Z+n3s− 2Y +n2
3ω + 2Y +n2

3s+

X+n4n3ω − 2Y +n4n3ω + 4Z+n4n3ω −X+n4n3s+ 2Y +n4n3s+ Z+n4n3s+X+n4n
2
3ω +X+n2

4n3ω−

2Y +n4n
2
3ω −X+n4n

2
3s−X+n2

4n3s+ 2Y +n4n
2
3s+ 4Z+n4n

2
3s+ Z+n4n

3
3s+X+n2

4n
2
3ω −X+n2

4n
2
3s)

2n3(ω − s)(n4sn2
3 + 2n4sn3 + 2ω − 2s+ 2n4ω − n4s)

a5 =

2Z+ − 2Y + +X+n4 − 2Y +n4 − 4Y +n3 + 2Z+n4 + 2Z+n3 +X+n2
4 − 2Y +n2

3 +X+n2
4n

2
3+

2X+n4n3 − 4Y +n4n3 + 2Z+n4n3 +X+n4n
2
3 + 2X+n2

4n3 − 2Y +n4n
2
3

2n4sn2
3 + 4n4sn3 + 4ω − 4s+ 4n4ω − 2n4s

a6 =

− (2X+ω − 2X+s+ 5X+n4ω − 4X+n4s− Y +n4s+ Z+n4s+ 4X+n2
4ω +X+n3

4ω − 2X+n2
4s−

Y +n2
4s+ Z+n2

4s+ 2X+n4n3s− 2Y +n4n3s+ Z+n4n3s+X+n4n
2
3s+ 4X+n2

4n3s+ 2X+n3
4n3s−

Y +n4n
2
3s− 2Y +n2

4n3s+ Z+n2
4n3s+ 2X+n2

4n
2
3s+X+n3

4n
2
3s− Y +n2

4n
2
3s)

2s(n4sn2
3 + 2n4sn3 + 2ω − 2s+ 2n4ω − n4s)

,
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where

X− = 2

∫ r

0

[(α
r

) 1
n1 − 1

]
AT− dα,

Y − = 2

∫ ω

r

[(
α− r

ω − r

) 1
n2

− 1

]
AT− dα− 2

∫ r

0

(α
r

) 1
n1 AT− dα,

Z− = −2

∫ ω

r

(
α− r

ω − r

) 1
n2

AT− dα,X+ = 2

∫ s

0

[(α
s

) 1
n4 − 1

]
AT+ dα,

Y + = 2

∫ ω

s

[(
α− s

ω − s

) 1
n3

− 1

]
AT+ dα− 2

∫ s

0

(α
s

) 1
n4 AT+ dα,

Z+ = −2

∫ ω

s

(
α− s

ω − s

) 1
n3

AT+ dα.

By solving 16, 17 and 18 we get

b1 =

− (2X−ρ− 2X−r1 − 4X−m1r1 + 5X−m1ρ− Y −m1r1 + Z−m1r1 − 2X−m2
1r1 + 4X−m2

1ρ+X−m3
1ρ)

− (Y −m2
1r1 − Z−m2

1r1 + 2X−m1m2r1 − 2Y −m1m2r1 + Z−m1m2r1 +X−m1m
2
2r1)− (4X−m2

1m2r1+

2X−m3
1m2r1 − Y −m1m

2
2r1 − 2Y −m2

1m2r1 + Z−m2
1m2r1 + 2X−m2

1m
2
2r1 +X−m3

1m
2
2r1 − Y −m2

1m
2
2r1)

2r1(m1r1m2
2 + 2m1r1m2 − 2r1 + 2ρ−m1r1 + 2m1ρ)

b2 =

2Z− − 2Y − +X−m1 − 2Y −m1 − 4Y −m2 + 2Z−m1 + 2Z−m2 +X−m2
1 − 2Y −m2

2

+X−m2
1m

2
2 + 2X−m1m2 − 4Y −m1m2 + 2Z−m1m2 +X−m1m

2
2 + 2X−m2

1m2 − 2Y −m1m
2
2

2m1r1m2
2 + 4m1r1m2 − 4r1 + 4ρ− 2m1r1 + 4m1ρ

b3 =

4Z−ρ− 4Z−r1 + 2Y −m2r1 − 2Y −m2ρ− 2Z−m1r1 − 4Z−m2r1 + 4Z−m1ρ+ 4Z−m2ρ

+ 2Y −m2
2r1 − 2Y −m2

2ρ−X−m1m2r1 +X−m1m2ρ+ 2Y −m1m2r1 − 2Y −m1m2ρ

+ Z−m1m2r1 + 4Z−m1m2ρ−X−m1m
2
2r1 −X−m2

1m2r1 +X−m1m
2
2ρ+X−m2

1m2ρ

+ 2Y −m1m
2
2r1 − 2Y −m1m

2
2ρ+ 4Z−m1m

2
2r1 + Z−m1m

3
2r1 −X−m2

1m
2
2r1 +X−m2

1m
2
2ρ

2m2(r1 − ρ)(m1r1m2
2 + 2m1r1m2 − 2r1 + 2ρ−m1r1 + 2m1ρ)

By solving 19, 20 and 21 we get

b4 =

4Z+ρ− 4Z+s1 + 2Y +m3s1 − 2Y +m3ρ− 2Z+m4s1 − 4Z+m3s1 + 4Z+m4ρ+ 4Z+m3ρ

+ 2Y +m2
3s1 − 2Y +m2

3ρ−X+m4m3s1 +X+m4m3ρ+ 2Y +m4m3s1 − 2Y +m4m3ρ

+ Z+m4m3s1 + 4Z+m4m3ρ−X+m4m
2
3s1 −X+m2

4m3s1 +X+m4m
2
3ρ+X+m2

4m3ρ

+ 2Y +m4m
2
3s1 − 2Y +m4m

2
3ρ+ 4Z+m4m

2
3s1 + Z+m4m

3
3s1 −X+m2

4m
2
3s1 +X+m2

4m
2
3ρ

2m3(s1 − ρ)(m4s1m2
3 + 2m4s1m3 − 2s1 + 2ρ−m4s1 + 2m4ρ)

b5 =

2Z+ − 2Y + +X+m4 − 2Y +m4 − 4Y +m3 + 2Z+m4 + 2Z+m3 +X+m2
4 − 2Y +m2

3

+X+m2
4m

2
3 + 2X+m4m3 − 4Y +m4m3 + 2Z+m4m3 +X+m4m

2
3 + 2X+m2

4m3 − 2Y +m4m
2
3

2m4s1m2
3 + 4m4s1m3 − 4s1 + 4ρ− 2m4s1 + 4m4ρ
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b6 =

− (2X+ρ− 2X+s1 − 4X+m4s1 + 5X+m4ρ− Y +m4s1 + Z+m4s1 − 2X+m2
4s1 + 4X+m2

4ρ+X+m3
4ρ)

− (Y +m2
4s1 − Z+m2

4s1 + 2X+m4m3s1 − 2Y +m4m3s1 + Z+m4m3s1 +X+m4m
2
3s1)− (4X+m2

4m3s1+

2X+m3
4m3s1 − Y +m4m

2
3s1 − 2Y +m2

4m3s1 + Z+m2
4m3s1 + 2X+m2

4m
2
3s1 +X+m3

4m
2
3s1 − Y +m2

4m
2
3s1)

2s1(m4s1m2
3 + 2m4s1m3 − 2s1 + 2ρ−m4s1 + 2m4ρ)

where

X− = 2

∫ 1

1−r1

[(
1− β

r1

) 1
m1

− 1

]
AI− dβ,

Y − = −2

∫ 1

1−r1

[(
1− β

r1

) 1
m1

]
AI− dβ − 2

∫ 1−r1

1−ρ

[(
1− β − r1
ρ− r1

) 1
m2

− 1

]
AI− dβ,

Z− = −2

∫ 1−r1

1−ρ

(
1− β − r1
ρ− r1

) 1
m2

AI− dβ,X+ = 2

∫ 1

1−s1

[(
1− β

s1

) 1
m4

− 1

]
AI+ dβ,

Y + = −2

∫ 1

1−s1

[(
1− β

s1

) 1
m4

]
AI+ dβ − 2

∫ 1−s1

1−ρ

[(
1− β − s1
ρ− s1

) 1
m3

− 1

]
AI+ dβ,

Z+ = −2

∫ 1−s1

1−ρ

(
1− β − s1
ρ− s1

) 1
m3

AI+ dβ.

By solving 20, 21 and 22 we get

c1 =

− (2X−δ − 2X−r2 − 4X−p4r2 + 5X−p4δ − Y −p4r2 + Z−p4r2 − 2X−p24r2 + 4X−p24δ +X−p34δ)

− (Y −p24r2 − Z−p24r2 + 2X−p4p2r2 − 2Y −p4p2r2 + Z−p4p2r2 +X−p4p
2
2r2)− (4X−p24p2r2+

2X−p34p2r2 − Y −p4p
2
2r2 − 2Y −p24p2r2 + Z−p24p2r2 + 2X−p24p

2
2r2 +X−p34p

2
2r2 − Y −p24p

2
2r2)

2r2(p4r2p22 + 2p4r2p2 − 2r2 + 2δ − p4r2 + 2p4δ)

c2 =

2Z− − 2Y − +X−p4 − 2Y −p4 − 4Y −p2 + 2Z−p4 + 2Z−p2 +X−p24 − 2Y −p22

+X−p24p
2
2 + 2X−p4p2 − 4Y −p4p2 + 2Z−p4p2 +X−p4p

2
2 + 2X−p24p2 − 2Y −p4p

2
2

2p4r2p22 + 4p4r2p2 − 4r2 + 4δ − 2p4r2 + 4p4δ

c3 =

4Z−δ − 4Z−r2 + 2Y −p2r2 − 2Y −p2δ − 2Z−p4r2 − 4Z−p2r2 + 4Z−p4δ + 4Z−p2δ

+ 2Y −p22r2 − 2Y −p22δ −X−p4p2r2 +X−p4p2δ + 2Y −p4p2r2 − 2Y −p4p2δ

+ Z−p4p2r2 + 4Z−p4p2δ −X−p4p
2
2r2 −X−p24p2r2 +X−p4p

2
2δ +X−p24p2δ

+ 2Y −p4p
2
2r2 − 2Y −p4p

2
2δ + 4Z−p4p

2
2r2 + Z−p4p

3
2r2 −X−p24p

2
2r2 +X−p24p

2
2δ

2p2(r2 − δ)(p4r2p22 + 2p4r2p2 − 2r2 + 2δ − p4r2 + 2p4δ)
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By solving 23, 24 and 25 we get

c4 =

4Z+δ − 4Z+s2 + 2Y +p3s2 − 2Y +p3δ − 2Z+p4s2 − 4Z+p3s2 + 4Z+p4δ + 4Z+p3δ

+ 2Y +p23s2 − 2Y +p23δ −X+p4p3s2 +X+p4p3δ + 2Y +p4p3s2 − 2Y +p4p3δ

+ Z+p4p3s2 + 4Z+p4p3δ −X+p4p
2
3s2 −X+p24p3s2 +X+p4p

2
3δ +X+p24p3δ

+ 2Y +p4p
2
3s2 − 2Y +p4p

2
3δ + 4Z+p4p

2
3s2 + Z+p4p

3
3s2 −X+p24p

2
3s2 +X+p24p

2
3δ

2p3(s2 − δ)(p4s2p23 + 2p4s2p3 − 2s2 + 2δ − p4s2 + 2p4δ)

c5 =

2Z+ − 2Y + +X+p4 − 2Y +p4 − 4Y +p3 + 2Z+p4 + 2Z+p3 +X+p24 − 2Y +p23

+X+p24p
2
3 + 2X+p4p3 − 4Y +p4p3 + 2Z+p4p3 +X+p4p

2
3 + 2X+p24p3 − 2Y +p4p

2
3

2p4s2p23 + 4p4s2p3 − 4s2 + 4δ − 2p4s2 + 4p4δ

c6 =

− (2X+δ − 2X+s2 − 4X+p4s2 + 5X+p4δ − Y +p4s2 + Z+p4s2 − 2X+p24s2 + 4X+p24δ +X+p34δ)

− (Y +p24s2 − Z+p24s2 + 2X+p4p3s2 − 2Y +p4p3s2 + Z+p4p3s2 +X+p4p
2
3s2)− (4X+p24p3s2+

2X+p34p3s2 − Y +p4p
2
3s2 − 2Y +p24p3s2 + Z+p24p3s2 + 2X+p24p

2
3s2 +X+p34p

2
3s2 − Y +p24p

2
3s2)

2s2(p4s2p23 + 2p4s2p3 − 2s2 + 2δ − p4s2 + 2p4δ)

X− = 2

∫ 1

1−r2

[(
1− γ

r2

) 1
p1

− 1

]
AF− dγ,

Y − = −2

∫ 1

1−r2

[(
1− γ

r2

) 1
p1

]
AF− dγ − 2

∫ 1−r2

1−ρ

[(
1− γ − r2
ρ− r2

) 1
p2

− 1

]
AF− dγ,

Z− = −2

∫ 1−r2

1−ρ

(
1− γ − r2
ρ− r2

) 1
p2

AF− dγ,X+ = 2

∫ 1

1−s2

[(
1− γ

s2

) 1
p4

− 1

]
AF+ dγ,

Y + = −2

∫ 1

1−s2

[(
1− γ

s2

) 1
p4

]
AF+ dγ − 2

∫ 1−s2

1−ρ

[(
1− γ − s2
ρ− s2

) 1
p3

− 1

]
AF+ dγ,

Z+ = −2

∫ 1−s2

1−ρ

(
1− γ − s2
ρ− s2

) 1
p3

AF+ dγ.

Suppose A be a neutrosophic number defined as given below.

Where the membership function is defined as, TA =



(x− 1)
1
2 , if 1 ≤ x ≤ 2

1 , if 2 ≤ x ≤ 3

(4− x)
1
2 , 3 ≤ x ≤ 4

0 , otherwise.

Indeterminacy function is described as, IA =



1− (x− 1)
1
2 , if 1 ≤ x ≤ 2

0 , if 2 ≤ x ≤ 3

1− (4− x)
1
2 , 3 ≤ x ≤ 4

1 , otherwise.
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The non-membership function is described as, FA =



1− (x− 1)
1
2 , if 1 ≤ x ≤ 2

0 , if 2 ≤ x ≤ 3

1− (4− x)
1
2 , 3 ≤ x ≤ 4

1 , otherwise.

The comparison of the Membership,Indeterminacy and falsity function with GNHNNA, Trape-

zoidal and triangular neutrosophic numbers is given in FIGURE 1a,1b and 1c.

(a) Membership function (b) Indeterminacy function (c) Non-membership function

Figure 1. Approximation of Neutrosophic Numbers

4. Approximation of Linear Hexagonal Neutrosophic Numbers with Symmetry

In this section, the approximation of Linear Hexagonal Neutrosophic Numbers with Sym-

metry (LHNNS) is given by putting r = s, n1 = n2 = n3 = n4 = 1, r1 = s1,m1 = m2 = m3 =

m4 = 1, r2 = s2, p1 = p2 = p3 = p4 = 1. The LHNNS is defined as, ALHNNS ={
T (a1, a2, a3, a4, a5, a6; r, r; 1)(1,1,1,1) , I (b1, b2, b3, b4, b5, b6; r1, r1; 1)(1,1,1,1) ,

F (c1, c2, c3, c4, c5, c6; r2, r2; 1)(1,1,1,1)

}
= {T (a1, a2, a3, a4, a5, a6; r) , I (b1, b2, b3, b4, b5, b6; r1) ,

F (c1, c2, c3, c4, c5, c6; r2)}

Lemma 4.1. Let {T (a1, a2, a3, a4, a5, a6; r) ,

I (b1, b2, b3, b4, b5, b6; r1) , F (c1, c2, c3, c4, c5, c6; r2)} be a Linear Hexagonal Neutrosophic Num-

ber with Symmetry then approximation of the truth function of any curve A which preserves

the expected interval criterion is given by,

a1 = −6A− 6B + 6Ar − 2Br − 6Cr + 4Dr

2r
(28)

a2 = 6A− 2B − 6C + 4D and (29)

a3 =
6A− 2B − 12C + 4D − 6Ar + 2Br + 6Cr − 4Dr

2(r − 1)
, (30)

a4 =
6A1 − 2B1 − 12C1 + 4D1 − 6A1r + 2B1r + 6C1r − 4D1r

2(r − 1)
,
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a5 = 6A1 − 2B1 − 6C1 + 4D1 and a6 = −6A1 − 6B1 + 6Ar − 2B1r − 6C1r + 4D1r

2r

where

A =

∫ r

0
[(
α

r
)AT−]dα,B =

∫ r

0
[AT−]dα,C =

∫ 1

r
[(
α− r

1− r
)AT−]dα, and D =

∫ 1

r
[AT−]dα

A1 =

∫ r

0
[(
α

r
)AT+]dα,B1 =

∫ r

0
[AT+]dα,C1 =

∫ 1

r
[(
α− r

1− r
)AT+]dα, and D1 =

∫ 1

r
[AT+]dα

Proof. By using equation 3.2 the lower limit of expected interval for truth value is given by∫ ω

0
HT−dα =

r(a1 + a2)− (a2 + a3)(r − 1)

2
(31)

By equation 3 we get,

d(A,H(A)) =

√
1

3
(M +N +O)

where

M =

∫ r

0
(AT+ − (a6 +

(α
r

)
(a5 − a6))

2dα+

∫ 1

r
(AT+ − (a5 +

(
α− r

1− r

)
(a4 − a5)))

2dα

+

∫ r

0
(AT− − (a1 +

(α
r

)
(a2 − a1)))

2dα+

∫ 1

r
(AT− − (a2 +

(
α− r

1− r

)
(a3 − a2)))

2dα,

N = N(b1, b2, b3, b4, b5, b6) and O = O(c1, c2, c3, c4, c5, c6)

By Equation 9 we get,

L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6) = d2(A,H(A)) + P1(a4, a5, a6)+

λ1(
r(a1 + a2)− (a2 + a3)(r − 1)

2
−
∫ 1

0
AT−dα) +K(b1, b2, b3, b4, b5, b6, c1, c2, c3, c4, c5, c6)

Using Equations 10, 11, 12 and KKT theorem we form the partial derivatives corresponding

to the Lagrangian multipliers

2A− 2B +
λ1r

2
+

r(2a1 + a2)

3
= 0 (32)

2C − 2A− 2E +
λ1

2
+

r(a1 + 2a2)

3
− (2a2 + a3)(r − 1)

3
= 0 (33)

−2C − (a2 + 2a3)(r − 1)

3
− λ1

r − 1

2
= 0 (34)

By solving equations 31, 32 and 34 we will get

a1 = −6A− 6B + 6Ar − 2Br − 6Cr + 4Dr

2r
, a2 = 6A− 2B − 6C + 4D and

a3 =
6A− 2B − 12C + 4D − 6Ar + 2Br + 6Cr − 4Dr

2(r − 1)

By using equation 3.2 the lower limit of expected interval for truth value is given by∫ ω

0
HT+dα =

r(a6 + a5)− (a5 + a4)(r − 1)

2
(35)
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By equation 3 we get,

d(A,H(A)) =

√
1

3
(M +N +O) where,

M =

∫ r

0
(AT+ − (a6 +

(α
r

)
(a5 − a6))

2dα+

∫ 1

r
(AT+ − (a5 +

(
α− r

1− r

)
(a4 − a5)))

2dα

+

∫ r

0
(AT− − (a1 +

(α
r

)
(a2 − a1)))

2dα+

∫ 1

r
(AT− − (a2 +

(
α− r

1− r

)
(a3 − a2)))

2dα,

N = N(b1, b2, b3, b4, b5, b6) and O = O(c1, c2, c3, c4, c5, c6). By Equation 9 we get,

L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6) = d2(A,H(A)) + P2(a1, a2, a3)+

λ2(
r(a6 + a5)− (a5 + a4)(r − 1)

2
−
∫ 1

0
AT+dα) +K(b1, b2, b3, b4, b5, b6, c1, c2, c3, c4, c5, c6)

Using Equations 13, 14, 15 and KKT theorem we form the partial derivatives corresponding

to the Lagrangian multipliers

2A1 − 2B1 +
λ2r

2
+

r(2a6 + a5)

3
= 0 (36)

2C1 − 2A1 − 2E1 +
λ2

2
+

r(a6 + 2a5)

3
− (2a5 + a4)(r − 1)

3
= 0 (37)

−2C1 −
(a5 + 2a4)(r − 1)

3
− λ1

r − 1

2
= 0 (38)

By solving equations 35, 36 and 38 we will get

a4 =
6A1 − 2B1 − 12C1 + 4D1 − 6A1r + 2B1r + 6C1r − 4D1r

2(r − 1)
,

a5 = 6A1 − 2B1 − 6C1 + 4D1 and a6 = −6A1 − 6B1 + 6Ar − 2B1r − 6C1r + 4D1r)

2r

Lemma 4.2. Let {T (a1, a2, a3, a4, a5, a6; r) , I (b1, b2, b3, b4, b5, b6; r1) ,

F (c1, c2, c3, c4, c5, c6; r2)} be a Linear Hexagonal Neutrosophic Number with Symmetry then

approximation of the indeterminacy function of any curve A which preserves the expected

interval criterion is given by,

b1 = −6CI − 6DI + 4AIr1 − 6BIr1 + 6CIr1 − 2DIr1
2r1

, b2 = 4AI − 6BI + 6CI − 2DI (39)

b3 =
4AI − 12BI + 6CI − 2DI − 4AIr1 + 6BIr1 − 6CIr1 + 2DIr1

2(r1 − 1)
(40)

b4 =
4AI1 − 12BI1 + 6CI1 − 2DI1 − 4AI1r1 + 6BI1r1 − 6CI1r1 + 2DI1r1

2(r1 − 1)
, (41)

b5 = 4AI1−6BI1+6CI1−2DI1 and b6 = −6CI1 − 6DI1 + 4AI1r1 − 6BI1r1 + 6CI1r1 − 2DI1r1
2r1

(42)

Augus Kurian, Sumathi I R and Omaima Al-Shanqiti, The Theoretical Framework on
Approximation of Neutrosophic Numbers and Their Application

Neutrosophic Sets and Systems, Vol. 75, 2025                                                                               356



where AI=
∫ 1−r1
0 [AI−]dβ, BI=

∫ 1−r1
0 [(1−β−r1

1−r1
)AI−]dβ, CI=

∫ 1
1−r1

[(1−β
r1

)AI−]dβ and DI=∫ 1
1−r1

[AI−]dβ. AI1=
∫ 1−r1
0 [AI+]dβ, BI1=

∫ 1−r1
0 [(1−β−r1

1−r1
)AI+]dβ, CI1=

∫ 1
1−r1

[(1−β
r1

)AI+]dβ

and DI1=
∫ 1
1−r1

[AI+]dβ

Proof. By using equation 3.2 the upper limit of the expected interval for indeterminacy value

is given by ∫ 1

0
HI−dβ =

r1(b1 + b2)− (b2 + b3)(r1 − 1)

2
(43)

By equation 3 we get,

d(A,H(A)) =

√
1

3
(M +N +O)

where M = M(a1, a2, a3, a4, a5, a6),

N =

∫ 1−r1

0
(AI+ − (b5 +

(
1− β − r1
1− s1

)
(b4 − b5)))

2dβ +

∫ 1

1−r1

(AI+ − (b6 +

(
1− β

r1

)
(b5 − b6)))

2dβ

+

∫ 1−r1

0
(AI− − (b2 +

(
1− β − r1
1− r1

)
(b3 − b2)))

2dβ +

∫ 1

1−r1

(AI− − (b1 +

(
1− β

r1

)
(b2 − b1)))

2dβ

and O = O(c1, c2, c3, c4, c5, c6). By Equation 9 we get,

L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6) = d2(A,H(A)) + P3(b4, b5, b6)+

λ3(
r1(b1 + b2)− (b2 + b3)(r1 − 1)

2
−
∫ 1

0
AI−dα) +K(a1, a2, a3, a4, a5, a6, c1, c2, c3, c4, c5, c6)

Using Equations 16, 17, 18, and KKT theorem we form the partial derivatives corresponding

to the Lagrangian multipliers

2CI − 2EI +
λ3r1
2

+
r1(2b1 + b2)

3
= 0 (44)

2BI − 2AI − 2CI +
λ3

2
+

r1(b1 + 2b2)

3
− (2b2 + b3)(r1 − 1)

3
= 0 (45)

−2BI − (b2 + 2b3)(r1− 1)

3
− λ3(

r

2
− 1

2
) = 0 (46)

By solving equations 43, 44, 45 and 46 we will get

b1 = −6CI − 6DI + 4AIr1 − 6BIr1 + 6CIr1 − 2DIr1
2r1

,

b2 = 4AI − 6BI + 6CI − 2DI and

b3 = (4AI − 12BI + 6CI − 2DI − 4AIr1 + 6BIr1 − 6CIr1 + 2DIr1)/(2(r1 − 1)).

By using equation 3.2 the upper limit of the expected interval for indeterminacy value is given

by ∫ 1

0
HI+dβ =

r1(b6 + b5)− (b5 + b4)(r1 − 1)

2
(47)

By equation 3 we get,

d(A,H(A)) =

√
1

3
(M +N +O) where,
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M = M(a1, a2, a3, a4, a5, a6),

N =

∫ 1−r1

0
(AI+ − (b5 +

(
1− β − r1
1− s1

)
(b4 − b5)))

2dβ +

∫ 1

1−r1

(AI+ − (b6 +

(
1− β

r1

)
(b5 − b6)))

2dβ

+

∫ 1−r1

0
(AI− − (b2 +

(
1− β − r1
1− r1

)
(b3 − b2)))

2dβ +

∫ 1

1−r1

(AI− − (b1 +

(
1− β

r1

)
(b2 − b1)))

2dβ

By Equation 9 we get,

L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6) = d2(A,H(A)) + P (b1, b2, b3)+

λ4(
r1(b6 + b5)− (b5 + b4)(r1 − 1)

2
−
∫ 1

0
AI+dβ) +K(a1, a2, a3, a4, a5, a6, c1, c2, c3, c4, c5, c6)

Using Equations 19, 20, 21, and KKT theorem we form the partial derivatives corresponding

to the Lagrangian multipliers

2CI1 − 2EI1 +
λ4r1
2

+
r1(2b6 + b5)

3
= 0 (48)

2BI1 − 2AI1 − 2CI1 +
λ4

2
+

r1(b6 + 2b5)

3
− (2b5 + b4)(r1 − 1)

3
= 0 (49)

−2BI1 −
(b5 + 2b4)(r1− 1)

3
− λ4(

r

2
− 1

2
) = 0 (50)

By solving equations 47, 48, 49 and 50 we will get

b4 =
4AI1 − 12BI1 + 6CI1 − 2DI1 − 4AI1r1 + 6BI1r1 − 6CI1r1 + 2DI1r1

2(r1 − 1)
,

b5 = 4AI1−6BI1+6CI1−2DI1 and b6 = −6CI1 − 6DI1 + 4AI1r1 − 6BI1r1 + 6CI1r1 − 2DI1r1
2r1

Lemma 4.3. Let {T (a1, a2, a3, a4, a5, a6; r) , I (b1, b2, b3, b4, b5, b6; r1) ,

F (c1, c2, c3, c4, c5, c6; r2)} be a Linear Hexagonal Neutrosophic Number with Symmetry then

approximation of the falsity function of any curve A which preserves the expected interval

criterion is given by,

c1 = −6CF − 6DF + 4AFr2 − 6BFr2 + 6CFr1 − 2DFr2
2r2

, c2 = 4AF − 6BF + 6CF − 2DF

(51)

c3 =
4AF − 12BF + 6CF − 2DF − 4AFr2 + 6BFr2 − 6CFr2 + 2DFr2

2(r2 − 1)
(52)

c4 =
4AF1 − 12BF1 + 6CF1 − 2DF1 − 4AF1r2 + 6BF1r2 − 6CF1r2 + 2DF1r2

2(r2 − 1)
, (53)

c5 = 4AF1 − 6BF1 + 6CF1 − 2DF1 and (54)

c6 = −6CF1 − 6DF1 + 4AF1r2 − 6BF1r2 + 6CF1r1 − 2DF1r2
2r2

(55)
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where AF=
∫ 1−r2
0 [AF−]dγ, BF=

∫ 1−r2
0 [(1−γ−r2

1−r2
)AF−]dγ,CF=

∫ 1
1−r2

[(1−γ
r2

)AF−]dγ and DF=∫ 1
1−r2

[AF−]dγ. AF1=
∫ 1−r2
0 [AF+]dγ, BF1=

∫ 1−r2
0 [(1−γ−r2

1−r2
)AF+]dγ, CF1=

∫ 1
1−r2

[(1−γ
r2

)AF+]dγ

and DF1=
∫ 1
1−r2

dγ.

Proof. By using equation 3.2 the upper limit of expected interval for falsity value is given by∫ 1

0
HF−dγ =

r2(c1 + c2)− (c2 + c3)(r2 − 1)

2
(56)

By equation 3 we get,

d(A,H(A)) =

√
1

3
(M +N +O) where,

M = M(a1, a2, a3, a4, a5, a6), N = N(b1, b2, b3, b4, b5, b6) and

O =

∫ 1−r2

0
(AF+ − (c5 +

(
1− γ − r2
1− r2

)
(c4 − c5)))

2dγ +

∫ 1

1−r2

(AF+ − (c6 +

(
1− γ

r2

)
(c5 − c6)))

2dγ

+

∫ 1−r2

0
(AF− − (c2 +

(
1− γ − r2
1− r2

)
(c3 − c2)))

2dγ +

∫ 1

1−r2

(AF− − (c1 +

(
1− γ

r2

)
(c2 − c1)))

2dγ

By Equation 9 we get,

L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6) = d2(A,H(A)) + P (c4, c5, c6)+

λ5(
r2(c1 + c2)− (c2 + c3)(r2 − 1)

2
−
∫ 1

0
AF−dγ) +K(a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6)

Using Equations 22, 23, 24, and KKT theorem we form the partial derivatives corresponding

to the Lagrangian multipliers

2CF − 2EI +
λ4r2
2

+
r2(2c1 + c2)

3
= 0 (57)

2BF − 2AF − 2CF +
λ4

2
+

r2(c1 + 2c2)

3
− (2c2 + c3)(r2 − 1)

3
= 0 (58)

−2BI − (c2 + 2c3)(r1− 1)

3
− λ4(

r

2
− 1

2
) = 0 (59)

By solving equations 56, 57, 58 and 59 we will get

c1 = −6CF − 6DF + 4AFr2 − 6BFr2 + 6CFr1 − 2DFr2
2r2

, c2 = 4AF − 6BF + 6CF − 2DF

c3 =
4AF − 12BF + 6CF − 2DF − 4AFr2 + 6BFr2 − 6CFr2 + 2DFr2

2(r2 − 1)

. By using equation 3.2 the upper limit of expected interval for falsity value is given by∫ 1

0
HF+dα =

r2(c6 + c5)− (c5 + c4)(r2 − 1)

2
(60)

By equation 3 we get,

d(A,H(A)) =

√
1

3
(M +N +O) where,
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M = M(a1, a2, a3, a4, a5, a6), N = N(b1, b2, b3, b4, b5, b6) and

O =

∫ 1−r2

0
(AF+ − (c5 +

(
1− γ − r2
1− r2

)
(c4 − c5)))

2dγ +

∫ 1

1−r2

(AF+ − (c6 +

(
1− γ

r2

)
(c5 − c6)))

2dγ

+

∫ 1−r2

0
(AF− − (c2 +

(
1− γ − r2
1− r2

)
(c3 − c2)))

2dγ +

∫ 1

1−r2

(AF− − (c1 +

(
1− γ

r2

)
(c2 − c1)))

2dγ

By Equation 9 we get,

L(a1, a2, ..., a6, b1, b2, ..., b6, c1, c2, ..., c6) = d2(A,H(A)) + P (c1, c2, c3)+

λ6(
r2(c6 + c5)− (c5 + c4)(r2 − 1)

2
−
∫ 1

0
AF+dγ) +K(a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6)

Using Equations 25, 26, 27, and KKT theorem we form the partial derivatives corresponding

to the Lagrangian multipliers

2CF1 − 2DF1 +
λ6r2
2

+
r2(2c6 + c5)

3
= 0 (61)

2BF1 − 2AF1 − 2CF1 +
λ6

2
+

r2(c6 + 2c5)

3
− (2c5 + c4)(r2 − 1)

3
= 0 (62)

−2BF1 −
(c5 + 2c4)(r1− 1)

3
− λ6(

r

2
− 1

2
) = 0 (63)

By solving equations 47, 61, 62 and 63 we will get

c4 =
4AF1 − 12BF1 + 6CF1 − 2DF1 − 4AF1r2 + 6BF1r2 − 6CF1r2 + 2DF1r2

2(r2 − 1)
, (64)

c5 = 4AF1 − 6BF1 + 6CF1 − 2DF1 and (65)

c6 = −6CF1 − 6DF1 + 4AF1r2 − 6BF1r2 + 6CF1r1 − 2DF1r2
2r2

(66)

Note 4.4. The solution of the equations in Lemma 4.1 to Lemma 4.3 are solved using Matlab.

Example 4.5. Suppose A be a neutrosophic number defined as given below.

Where the membership function is defined as, TA =



(x− 1)
1
2 , if 1 ≤ x ≤ 2

1 , if 2 ≤ x ≤ 3

(4− x)
1
2 , 3 ≤ x ≤ 4

0 , otherwise.

Indeterminacy function is described as, IA =



1− (x− 1)
1
2 , if 1 ≤ x ≤ 2

0 , if 2 ≤ x ≤ 3

1− (4− x)
1
2 , 3 ≤ x ≤ 4

1 , otherwise.
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The non-membership function is described as, FA =



1− (x− 1)
1
2 , if 1 ≤ x ≤ 2

0 , if 2 ≤ x ≤ 3

1− (4− x)
1
2 , 3 ≤ x ≤ 4

1 , otherwise.

The Hexagonal approximation of this curve H(A) is given by, (here r = r1 = r2 = .5)

By using Lemma 4.1 - Lemma 4.3 we get a1 = 1, a2 = 5
4 , a3 = 2, a4 = 3, a5 = 15

4 , a6 = 4,

b1 = 1, b2 = 5
4 , b3 = 2, b4 = 3, b5 = 15

4 , b6 = 4, c1 = 1, c2 = 5
4 , c3 = 2, c4 = 3, c5 = 15

4 c6 = 4,

where the membership function is defined as,

TH(A) =



.5
(

x−1
5
4
−1

)
, if 1 ≤ x ≤ 5

4

.5 + .5
(
x− 5

4

2− 5
4

)
, if 5

4 ≤ x ≤ 2

1 , if 2 ≤ x ≤ 3

.5 + .5
(
x− 15

4

3− 15
4

)
, if 3 ≤ x ≤ 15

4

.5
(

x−4
15
4
−4

)
, if 15

4 ≤ x ≤ 4

0 , otherwise.

The comparison of membership function with LHNNS, Trapezoidal (TI) and triangular (Tr)

neutrosophic numbers is given in FIGURE 2a. Indeterminacy function can be described as,

IH(A) =



1− .5
(

x−1
5
4
−1

)
, if 1 ≤ x ≤ 5

4

1− (.5 + .5
(
x− 5

4

2− 5
4

)
) , if 5

4 ≤ x ≤ 2

0 , if 2 ≤ x ≤ 3

1− (.5 + .5
(
x− 15

4

3− 15
4

)
) , if 3 ≤ x ≤ 15

4

1− (.5
(

x−4
15
4
−4

)
) , if 15

4 ≤ x ≤ 4

1 , otherwise.

The comparison of Indeterminacy function with LHNNS, Trapezoidal and triangular neutro-

sophic numbers is given in FIGURE 2b. Non-membership function can be described as,

FH(A) =



1− .5
(

x−1
5
4
−1

)
, if 1 ≤ x ≤ 5

4

1− (.5 + .5
(
x− 5

4

2− 5
4

)
) , if 5

4 ≤ x ≤ 2

0 , if 2 ≤ x ≤ 3

1− (.5 + .5
(
x− 15

4

3− 15
4

)
) , if 3 ≤ x ≤ 15

4

1− (.5
(

x−4
15
4
−4

)
) , if 15

4 ≤ x ≤ 4

1 , otherwise.

The comparison of non-membership function with LHNNS, Trapezoidal (a2 = a3, a4 = a5, r =

s = 1, b2 = b3, b4 = b5, r1 = s1 = 1, c2 = c3, c4 = c5, r2 = s2 = 1) and triangular

(a2 = a3 = a4 = a5, r = s = 1, b2 = b3 = b4 = b5, r1 = s1 = 1, c2 = c3 = c4 = c5, r2 = s2 = 1)
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neutrosophic numbers is given in the FIGURE 2c.

(a) Membership function (b) Indeterminacy function (c) Non-membership function

Figure 2. Approximation of Neutrosophic Numbers

d(A,H(A)) =

√
1

3
(M +N +O) where,

M =
∫ r
0 (AT+ − (a6 +

(
α
r

)
(a5 − a6))

2dα+
∫ 1
r (AT+ − (a5 +

(
α−r
1−r

)
(a4 − a5)))

2dα+
∫ r
0 (AT− −

(a1 +
(
α
r

)
(a2 − a1)))

2dα+
∫ 1
r (AT− − (a2 +

(
α−r
1−r

)
(a3 − a2)))

2dα,

N =
∫ 1−r1
0 (AI+ − (b5 +

(
1−β−r1
1−s1

)
(b4 − b5)))

2dβ +
∫ 1
1−r1

(AI+ − (b6 +
(
1−β
r1

)
(b5 − b6)))

2dβ +∫ 1−r1
0 (AI− − (b2 +

(
1−β−r1
1−r1

)
(b3 − b2)))

2dβ +
∫ 1
1−r1

(AI− − (b1 +
(
1−β
r1

)
(b2 − b1)))

2dβ and

O =
∫ 1−r2
0 (AF+ − (c5 +

(
1−γ−r2
1−r2

)
(c4 − c5)))

2dγ +
∫ 1
1−r2

(AF+ − (c6 +
(
1−γ
r2

)
(c5 − c6)))

2dγ +∫ 1−r2
0 (AF− − (c2 +

(
1−γ−r2
1−r2

)
(c3 − c2)))

2dγ +
∫ 1
1−r2

(AF− − (c1 +
(
1−γ
r2

)
(c2 − c1)))

2dγ

d(A, H(A))= 0.0645; d(A, Tl(A))= 0.3651; d(A, Tr(A))= 0.6831.

Example 4.6. Suppose A be a neutrosophic number defined as given below.

Where the membership function is defined as, TA =


(x− 1)2 , if 1 ≤ x ≤ 2

(4− x)2 , 2 ≤ x ≤ 3

0 , otherwise.

The indeterminacy function is be described as, IA =


1− (x− 1)2 , if 1 ≤ x ≤ 2

1− (4− x)2 , 2 ≤ x ≤ 3

1 , otherwise.

The non-membership function is described as, FA =


1− (x− 1)2 , if 1 ≤ x ≤ 2

1− (4− x)2 , 2 ≤ x ≤ 3

1 , otherwise.

The Hexagonal approximation of this curve H(A) is given by, (here r = r1 = r2 = .5)

By using Lemma 4.1 - Lemma 4.3 we get

a1 = 1, a2 = 1 + 1√
2
, a3 = 2, a4 = 2, a5 = 3− 1√

2
, a6 = 3,b1 = 1, b2 = 1 + 1√

2
, b3 = 2, b4 = 2,
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b5 = 3 − 1√
2
, b6 = 3, c1 = 1, c2 = 1 + 1√

2
, c3 = 2, c4 = 2, c5 = 3 − 1√

2
, c6 = 3, where the

membership function is defined as,

TH(A) =



1√
2
(x− 1) , if 1 ≤ x ≤ 1 + 1√

2

1 +
x− 2

2−
√
2

, if 1 + 1√
2
≤ x ≤ 2

1 +
2− x

2−
√
2

, if 2 ≤ x ≤ 3− 1√
2

3− x√
2

, if 3− 1√
2
≤ x ≤ 3

0 , otherwise.

The comparison of membership function with LHNNS, Trapezoidal and triangular neutro-

sophic numbers is given in the FIGURE 3a. The indeterminacy function can be described as,

IH(A) =



1− 1√
2
(x− 1) , if 1 ≤ x ≤ 1 + 1√

2
2− x

2−
√
2

, if 1 + 1√
2
≤ x ≤ 2

x− 2

2−
√
2

, if 2 ≤ x ≤ 3− 1√
2

1− 3− x√
2

, if 3− 1√
2
≤ x ≤ 3

1 , otherwise.

The comparison of the Indeterminacy function with LHNNS, Trapezoidal and triangular neu-

trosophic numbers is given in FIGURE 3b. Non-membership function can be described as,

FH(A) =



1− 1√
2
(x− 1) , if 1 ≤ x ≤ 1 + 1√

2
2− x

2−
√
2

, if 1 + 1√
2
≤ x ≤ 2

x− 2

2−
√
2

, if 2 ≤ x ≤ 3− 1√
2

1− 3− x√
2

, if 3− 1√
2
≤ x ≤ 3

1 , otherwise.

The comparison of non-membership function with LHNNS, Trapezoidal and triangular neu-

trosophic numbers is given in FIGURE 3c. d(A, H(A))= 0.1294; d(A, Tl(A))= 0.2582; d(A,

Tr(A))= 0.2582.

From the above two examples, we can conclude that the distance in the hexagonal case is

minimal.

Theorem 4.7. Let {T (a1, a2, a3, a4, a5, a6; r) , I (b1, b2, b3, b4, b5, b6; r1) ,

F (c1, c2, c3, c4, c5, c6; r2)} be a Linear Hexagonal Neutrosophic Number with Symmetry and

T(A) denotes the approximation with LHNNS then, VT (T (A)) = ((0.3333(r−1)2−0.5000r(r−
1))(6A1 − 2B1 − 12C1 + 4D1 − 6A1r+ 2B1r+ 6C1r− 4E1r))/(2 ∗ r− 2)− 0.0833r(6A− 6B +

6Ar − 2Br − 6Cr + 4rD)− 0.0833r(6A1 − 6B1 + 6A1r − 2B1r − 6C1r + 4E1r)− (6A− 2B −
6C +4E)(0.3333(r− 1)2 − 0.5000r(r− 1)+ 0.5000r2 − 0.5000)− (0.3333(r− 1)2 − 0.5000r(r−
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(a) Membership function (b) Indeterminacy function (c) Non-membership function

Figure 3. Functions for Neutrosophic Numbers

1)+0.5000r2−0.5000)(6A1−2B1−6C1+4E1)+((0.3333(r−1)2−0.5000r(r−1))(6A−2B−
12C + 4E − 6Ar + 2Br + 6Cr − 4rE))/(2r − 2)

Proof. We know,

a1 = −6A− 6B + 6Ar − 2Br − 6Cr + 4Dr

2r
, a2 = 6A− 2B − 6C + 4D,

a3 =
6A− 2B − 12C + 4D − 6Ar + 2Br + Cr − 4Dr

2(r − 1)
,

a4 =
6A1 − 2B1 − 12C1 + 4D1 − 6A1r + 2B1r + 6C1r − 4D1r

2(r − 1)
,

a5 = 6A1 − 2B1 − 6C1 + 4D1 and a6 = −6A1 − 6B1 + 6Ar − 2B1r − 6C1r + 4D1r

2r
,

from definition 2.3 we get

VT (T (A)) =
[
1
2 − 1

3

]
r2a1 +

[
1−r2

2 − (1−r)2

3 − r 1−r
2

]
a2 +

[
(1−r)2

3 + r 1−r
2

]
a3 +[

(1−r)2

3 + r 1−r
2

]
a4 +

[
1−r2

2 − (1−r)2

3 − r 1−r
2

]
a5 +

[
1
2 − 1

3

]
r2a6

Substituting the values of a1 − a6 and simplifying we get, VT (T (A)) = ((0.3333(r − 1)2 −
0.5000r(r−1))(6A1−2B1−12C1+4D1−6A1r+2B1r+6C1r−4E1r))/(2∗r−2)−0.0833r(6A−
6B+6Ar−2Br−6Cr+4rD)−0.0833r(6A1−6B1+6A1r−2B1r−6C1r+4E1r)−(6A−2B−
6C +4E)(0.3333(r− 1)2 − 0.5000r(r− 1)+ 0.5000r2 − 0.5000)− (0.3333(r− 1)2 − 0.5000r(r−
1)+0.5000r2−0.5000)(6A1−2B1−6C1+4E1)+((0.3333(r−1)2−0.5000r(r−1))(6A−2B−
12C + 4E − 6Ar + 2Br + 6Cr − 4rE))/(2r − 2)

Theorem 4.8. Let {T (a1, a2, a3, a4, a5, a6; r) , I (b1, b2, b3, b4, b5, b6; r1) ,

F (c1, c2, c3, c4, c5, c6; r2)} be a Linear Hexagonal Neutrosophic Number with Symmetry and

T(A) denotes the approximation with LHNNS then,

VI(T (A)) = ((0.3333(r − 1)2 − 0.5000r(r − 1))(2AI − 6BI + 3CI − DI − 2AIr1 + 3BIr1 −
3CIr1+DIr1))/(r1−1)− (0.3333(r−1)2−0.5000r(r−1)+0.5000r2−0.5000)(4AI1−6BI1+
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6CI1 − 2DI1) − (0.3333(r − 1)2 − 0.5000r(r − 1) + 0.5000r2 − 0.5000)(4AI − 6BI + 6CI −
2DI) + ((0.3333(r − 1)2 − 0.5000r(r − 1))(2AI1 − 6BI1 + 3CI1 − DI1 − 2AI1r1 + 3BI1r1 −
3CI1r1 +DI1r1))/(r1 − 1) − (0.1667r2(3CI − 3DI + 2AIr1 − 3BIr1 + 3CIr1 −DIr1))/r1 −
(0.1667r2(3CI1 − 3DI1 +AI1r1 − 3BI1r1 + 3CI1r1 −DI1r1))/r1

Proof. The proof is similar to theorem 4.7

Theorem 4.9. Let {T (a1, a2, a3, a4, a5, a6; r) ,

I (b1, b2, b3, b4, b5, b6; r1) , F (c1, c2, c3, c4, c5, c6; r2)} be a Linear Hexagonal Neutrosophic Num-

ber with Symmetry and T(A) denotes the approximation with LHNNS then,

VF (T (A)) = ((0.3333(r− 1)2 − 0.5000r(r− 1))(2AF − 6BF +3CF −DF − 2AFr1 +3BFr1 −
3CFr1 + DFr1))/(r1 − 1) − (0.3333(r − 1)2 − 0.5000r(r − 1) + 0.5000r2 − 0.5000)(4AF1 −
6BF1 + 6CF1 − 2DF1)− (0.3333(r− 1)2 − 0.5000r(r− 1) + 0.5000r2 − 0.5000)(4AF − 6BF +

6CF − 2DF ) + ((0.3333(r − 1)2 − 0.5000r(r − 1))(2AF1 − 6BF1 + 3CF1 −DF1 − 2AF1r1 +

3BF1r1 − 3CF1r1 +DF1r1))/(r1 − 1)− (0.1667r2(3CF − 3DF + 2AFr1 − 3BFr1 + 3CFr1 −
DFr1))/r1 − (0.1667r2(3CF1 − 3DF1 +AF1r1 − 3BF1r1 + 3CF1r1 −DF1r1))/r1

Proof. The proof is similar to theorem 4.7

5. Quantitative Analysis of Decision-Making Research

This section discusses a decision-making problem to show the effectiveness of approximation

in LHNNS. Here decision-makers can use any linear or non-linear neutrosophic number as pa-

rameters. The Neutrosophic numbers, which are employed to express linguistic variables, are

approximated to LHNNS. Then we will find an LHNNS for each characteristic using weighted

arithmetic addition and use the values of LHNNS to accomplish single-valued neutrosophic

numbers. By using the score function, deneutrosophication is done. Finally, we will compare

the score corresponding to each available alternative and choose the best one. This approach

can compare any decision-making issue using any neutrosophic number. This hexagonal ap-

proximation will get a better outcome if two separate data sets need to be analyzed. The

following is an algorithm for determining the ideal result.

(1) Approximate each linguistic variable to LHNNS.

(2) Calculate the LHNNS corresponding to each attribute using scalar multiplication and

addition operations.

(3) Find the values corresponding to each attribute which converts them into a single-

valued neutrosophic number.

(4) Find the score function.

(5) Ranking is given according to score, and the best outcome is selected.
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5.1. Numerical Example

Consider a problem for investing in a stock market that will give excellent yield. The stock

markets were shortlisted into five xi(1 ≤ i ≤ 5) categories by considering the feasibility. Now,

the investor has to choose the best stock market by evaluating the criteria of c1 - Earnings

Growth, c2 - Revenue Growth, c3 - Profit Margins, c4 - Dividend Yield, and c5 - Valuation

Metrics.

Step:1 Let table 1 denote the decision-making matrix with linguistic variables given below.

SU-Subdued; RE-Reasonable; EX-Exceptional; SUB-Substantial; SC-Scant.

Step:2 Corresponding to each criterion, the linguistic variables are given in terms of non-linear

trapezoidal numbers in table 2.

Step:3 The weights w1 = 0.4, w2 = 0.2, w3 = 0.15, w4 = 0.17 and w5 = 0.08 are assigned for

each criteria c1 to c5 respectively.

Step:4 The approximation is applied to each linguistic variable and is given in Table 3.

Step:5 Table 4 gives hexagonal values corresponding to each xi using addition and scalar

multiplication.

Step:6 Table 5 shows the single-valued neutrosophic number obtained using Values (Definition

2.3).

Step:7 The score function is evaluated and shown in Table 6. Also, we get x2 > x3 > x4 >

x5 > x1. Therefore x2 is the best possible outcome.

Table 1. Decision making Matrix

c1 c2 c3 c4 c5

x1 SU RE SU EX RE

x2 EX EX EX RE RE

x3 SUB SU RE EX SC

x4 SUB SC EX SU RE

x5 SU EX SUB RE SC
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Table 2. Linguistic Variable (LV) and the corresponding Nonlinear Trapezoidal

Number (NLTN)

LV NLTN

Scant [T(0,0,0,0;0.5,0.5),I(3,5,6,8;0.5,0.5), F(3,5,6,8;0.5,0.5)]

Subdued [T(0,2,3,5;0.5,0.5), I(2,4,5,7;0.5,0.5),F(2,4,5,7;0.5,0.5)]

Reasonable [T(1,3,4,6;0.5,0.5), I(1,3,4,6;0.5,0.5), F(1,3,4,6;0.5,0.5)]

Substantial [T(2,4,5,7;0.5,0.5), I(0,2,3,5;0.5,0.5), F(0,2,3,5;0.5,0.5)]

Exceptional [T(3,5,6,8;0.5,0.5), I(0,0,0,0;0.5,0.5), F(0,0,0,0;0.5,0.5)]

Table 3. Approximation of NLTN to LHNNS

LV LHNNS

Scant [T(0,0,0,0,0,0;0.5,0.5), I(3,3.5,5,6,7.5,8;0.5,0.5),F(3,3.5,5,6,7.5,8;0.5,0.5)]

Subdued [T(0,0.5,2,3,4.5,5;0.5,0.5),I(2,2.5,4,5,6.5,7;0.5,0.5), F(2,2.5,4,5,6.5,7;0.5,0.5)]

Reasonable [T(1,1.5,3,4,5.5,6;0.5,0.5), I(1,1.5,3,4,5.5,6;0.5,0.5), F(1,1.5,3,4,5.5,6;0.5,0.5)]

Substantial [T(2,2.5,4,5,6.5,7;0.5,0.5),I(0,0.5,2,3,4.5,5;0.5,0.5), F(0,0.5,2,3,4.5,5;0.5,0.5)]

Exceptional [T(3,3.5,5,6,7.5,8;0.5,0.5), I(0,0,0,0,0,0;0.5,0.5), F(0,0,0,0,0,0;0.5,0.5)]

Table 4. Hexagonal Neutrosophic number corresponding to each xi

Attribute LHNNS

x1 [T(0.79,1.29,2.79,3.79,5.29,5.79), I(1.38,1.79,3.04,3.87,5.11,5.53), F(1.38,1.79,3.04,3.87,5.11,5.53)]

x2 [T(2.50,3.00,4.50,5.50,7.00,7.50), I(0.25,0.37,0.75,1.00,1.37,1.50), F(0.25,0.37,0.75,1.00,1.37,1.50)]

x3 [T(1.46,1.92,3.30,4.22,5.60,6.06), I(0.79,1.20,2.45,3.28,4.52,4.94), F(0.79,1.20,2.45,3.28,4.52,4.94)]

x4 [T(1.33,1.73,2.93,3.73,4.93,5.33), I(1.02,1.44,2.72,3.57,4.84,5.27), F(1.02,1.44,2.72,3.57,4.84,5.27)]

x5 [T(1.07,1.53,2.91,3.83,5.21,5.67), I(1.21,1.61,2.81,3.61,4.81,5.21), F(1.21,1.61,2.81,3.61,4.81,5.21)]

Table 5. Value of LHNNS

Attribute Neutrosophic Number

x1 (2.7417,0.8797,0.8797)

x2 (4.167, 0.7292, 0.7292)

x3 (3.1333, 2.3875, 2.3875)

x4 (2.775, 2.6208, 2.6208)

x5 (2.8083,2.675,2.675)

Table 6. Score of table 5

Attribute Score

x1 -3.0167

x2 2.7083

x3 -1.6417

x4 -2.4667

x5 -2.542

6. Conclusion

In this study, we explored the approximation of generalized neutrosophic numbers with

asymmetry and provided a comparison with other well-known approaches for approximating
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neutrosophic numbers. The results emphasize the significance of taking uneven membership

degrees into account within the neutrosophic context since it more precisely captures the

complexities of actual uncertainty. The complexity and subjectivity associated with depict-

ing uncertainty using neutrosophic numbers have come to light due to research of numerous

theories relating to value assignment and approximation points.

We have illustrated the benefits and limitations of several approximation strategies us-

ing numerical examples. When nonlinearity in membership degrees is typical, the suggested

method for approximating generalized neutrosophic numbers with asymmetry shows accuracy

and broad application.

The neutrosophic theory offers a versatile framework for modelling uncertainty in various

domains. Future research may focus on hybrid strategies that combine neutrosophic numbers

with alternative uncertainty representations and broaden the application of these models to

more challenging decision-making scenarios.
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