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Abstract: The Internet's rapid expansion and the current trends toward automation through 

intelligent systems have given malevolent software attackers a veritable playground. Numerous 

gadgets are effortlessly connected to the Internet, and a lot of data is being collected. Consequently, 

there is a growing concern about malware attacks and security threats. Malware detection has 

emerged as a research focus. However, there are challenges in the research, such as noise, 

uncertainty, and ambiguous data. The study proposes a novel framework NSDTL, that achieves 

state-of-the-art malware detection and classification results to address this changing threat 

landscape. NSDTL leverages a neutrosophic set and advanced transfer learning techniques. There 

are three different kinds of images in the neutrosophic domain: True (T) images, Indeterminacy (I) 

images, and Falsity (F) images, which deal with uncertainty. The MaleVis dataset was used for 

experiments on multi-class malware classification, and the findings show that NSDTL significantly 

outperforms current models. This study emphasizes how crucial it is to combine transfer learning 

with a neutrosophic set at the forefront of the continuous fight against changing cyber threats. 

Keywords: Neutrosophic Set; Deep Transfer Learning; Malware detection; IoT. 

 
 

1. Introduction 

Now, we enter the fifth industrial revolution (Industry 5.0), which is being propelled by 

developments in Internet technologies and intelligent automation, we are encountering more and 

more security breaches. Developing defenses against malicious software assaults is crucial because 

these attacks have the potential to damage enterprises by infiltrating their data, applications, and 

computer systems without obtaining user authorization or authentication [1, 2]. Scholars, businesses, 

financial organizations, and governments are very concerned about these concerns, which include 

file loss, hostile extortion, information theft, telecommunication fraud, firm shutdowns, and other 

problems [3]. The two primary kinds of malware detection techniques are traditional static detection 

techniques [4] and dynamic detection techniques [5, 6]. The static technique determines whether the 

software is malware by examining its structure. The dynamic technique determines whether running 

software is malware by examining its behavior. Despite its extremely high accuracy rate, the dynamic 

detection technique requires program monitoring, which takes time and makes it difficult to discover 

dangerous software at the moment. Although static detection can compensate for this shortcoming, 

traditional static detection techniques depend on robust virus databases and effective anti-virus 

engines. As a result, it is exceedingly challenging to identify invisible malware, which contributes to 

the subpar effectiveness of traditional static detection techniques [7]. Some researchers proposed 

several techniques to identify malware by utilizing visualization technologies to make up for the 

drawbacks of traditional static detection [8, 9]. It has been demonstrated that these techniques 
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function well in the area of malware detection. The binary code or assembly code of the majority of 

malware versions is quite similar since they are frequently created by automation technology or by 

reusing key function modules [10] ], this can be seen in the visual image and makes visualization 

technology effective. Transfer learning-based malware classification has been examined in several 

previous literary works. Reputable CNN architectures can be used to refine a classification model for 

the target domain [11] or as feature extractors with machine learning algorithms for classification on 

the target domain [12-14]. Nevertheless, not many studies have yet to tackle uncertainty issues. 

To address higher degrees of uncertainty, Smarandache [15] introduced a neutrosophic set (NS) 

in 1998. Since then, NS has been applied to a wide range of computer science domains, such as image 

processing and segmentation [16], pattern recognition [17], and more. In various fields, including 

medical [18], space satellites [19], and agriculture[20], it helps to solve several research and real-world 

problems. Three distinct degrees of membership—true, indeterminacy, and false—can be assigned 

by NS to any element in the universe. Incomplete, inconsistent, and ambiguous information—which 

is found in malware images—can be represented using these domains.  

In this study, we introduce a novel framework that integrates DTL and NS to handle uncertainty in 

three degrees of membership for malware detection. The frameworks employ four different DTL 

models, VGG, MobileNetV2, DenseNet121, and Xception. We conduct our study in the MaleVis 

dataset, we concentrate on identifying different malware with high accuracy, in contrast to previous 

studies focusing on binary classification for high accuracy but may neglect the type of malware. 

VGG16 shows the highest results in terms of Accuracy, MCC, Precision, Recall, F1-score, and AUC 

with 93.63%, 93.35%, 95.29%, 93.6%, 94.27%, and 97% respectively in the true domain. 

The rest of the paper is organized as follows: Section 2 covers the related work of this study. Section 

3 describes the proposed framework, including the NS-based data preprocessing technique and 

utilized DTL models. Section 4 presents the experimental setup and describes the MaleVis dataset. 

Section 5 discusses the experiments and findings. Section 6 concludes the study and discusses future 

directions.  Finally, Section 6 presents the new directions of neutrosophic logic in Malware Detection. 

 

1.1 The Role of Neutrosophic Logic in Malware Detection 

Neutrosophic logic (NL) extends traditional binary logic (true or false) by introducing a third state, 

which represents indeterminacy. This makes it suitable for scenarios where information is incomplete 

or uncertain, which is common in cybersecurity. NL is a mathematical framework that allows for the 

representation of uncertain, indeterminate, or contradictory information. In the context of 

cybersecurity, particularly in malware detection, neutrosophic logic provides significant advantages 

in handling the complexities and ambiguities inherent in identifying malicious software. 

How Neutrosophic Logic Applied in Malware Detection 

• Malware detection often relies on various indicators, such as file behavior or network 

activity, which may be incomplete or ambiguous. NL can effectively analyze these uncertain 

data points to provide a more accurate assessment of whether a file or process is malicious. 
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• NL allows for the development of dynamic classification systems that can categorize different 

types of malware based on their features, even when these features may conflict or be poorly 

defined. 

• By incorporating neutrosophic logic into machine learning algorithms, it is possible to 

improve the robustness of models used for malware detection. This integration helps the 

models adapt to changing data patterns and increases their accuracy. 

• A common challenge in malware detection is the occurrence of false positives, where 

legitimate software is mistakenly identified as malware. NL helps mitigate this issue by 

providing a nuanced analysis that considers degrees of uncertainty, leading to more reliable 

detection outcomes. 

1.2 Applications of Neutrosophic in Malware Detection 

1- In malware detection, various indicators such as file signatures, behavior patterns, and network 

traffic can often be uncertain. By applying neutrosophic logic, we can represent these indicators as 

neutrosophic triples. For example, if a certain file is suspected of being malware, we might assess: 

File_x = (0.7,0.2,0.1) 

This indicates a 70% chance that it is malware, a 20% uncertainty, and a 10% chance that it is definitely 

not malware. 

2- When analyzing multiple files, neutrosophic logic allows security systems to aggregate 

information from various sources. If we have multiple files File_x and File_y, their combined 

representation can be evaluated to determine if the overall risk increases or decreases. 

3- Traditional detection systems often suffer from high false positive rates. By integrating 

neutrosophic logic, these systems can more accurately assess the likelihood of a file being malicious 

by considering the uncertainty and providing a more balanced view. For example: 

Risk= (Tmalware, Iuncertainty, Flegitimate)  

4- Neutrosophic logic can enhance machine learning models by providing a framework that can 

adapt as new information becomes available. As more data is collected, the neutrosophic values can 

be updated, improving the model’s ability to detect new types of malware. 

The incorporation of neutrosophic logic into existing detection frameworks represents a 

significant advancement in the fight against malware, providing deeper insights and improved 

decision-making capabilities. 

2. Related work  

This section provides a summary of research on visualization-based methods for classifying 

malware. Code obfuscation or encoding problems can be resolved by image-based malware 

classification techniques [21-25]. These image-based methods convert malware samples into image 

representations using static analysis techniques. These representations are then fed into image 

classification methods to determine if the sample is benign or malicious. 

[26] Jadeite, a method for identifying Java bytecode malware programs, is presented by Obaidat et 

al. From a Java bytecode file, Jadeite extracts the Interprocedural Control Flow Graph (ICFG), prunes 
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it, and transforms it into an adjacency matrix. Jadeite then uses this matrix to create a grayscale image. 

To increase the precision of malware classification, Jadeite also extracts a different set of features from 

the Java malware program. The CNN classifier uses these features as inputs combined with the 

retrieved images.   

The malware detection architecture for the Industrial Internet of Things (MD-IIOT) was 

designed by Naeem et al. [27], they set up three databases—traffic, behavior, and log databases—in 

cloud storage. The traffic database uses a sniffing and monitoring unit to gather the IIOT's raw 

Android files. A list of datasets representing the network history makes up a behavior database. The 

log database continually updates the behavior database and gathers new malware fingerprints. A 

Deep Convolutional Network (DCNN) and a color picture modification approach are designed for 

the analyzer unit. A DCNN model is applied once the raw Android file has been transformed into a 

color image. The analyzer unit assesses the file as benign or malicious after comparing its fingerprints 

with a behavior database. The response unit sends the system administrator a last warning to take 

appropriate action if any malicious behavior is detected within the network. 

Ding et al. [28] utilize CNN to train a malware detection model after directly extracting the 

bytecode file from the Android APK file and converting it into a two-dimensional bytecode matrix. 

The experimental findings demonstrate the efficacy of the suggested approach in detecting malware, 

particularly malware that has been encrypted via polymorphic approaches. 

A temporal convolution network (TCN)--based malware detection model for Android was presented 

by Zhang et al. [29]. First, XML files and DEX files are combined to create four grayscale image 

datasets with four distinct combinations of texture features. For experimental validation, the image 

size is then combined and fed into the neural network design using three distinct convolution 

techniques. According to the testing findings, adding XML files improves Android malware 

detection. 

A technique to determine if generative adversarial network-generated images can be 

differentiated from actual images was presented by Mercaldo et al. [30] using a dataset of real-world 

Android malware programs. Using images from both static analysis and dynamic analysis, their trials 

included two different kinds of deep convolutional generative adversarial networks. They trained 

several supervised machine learning models after creating images to see if they could distinguish 

between harmful applications that were produced and those that were real.   

A malware classification approach was presented by Ünver et al. [31] to identify malware 

samples in the Android environment. The base of the proposed model is the conversion of some 

Android application source files into grayscale images. The proposed model has been trained using 

a few image-based local and global features, four distinct local feature types, and three distinct global 

feature types, which have been taken from the created grayscale image datasets. One feature vector 

was created using the bag of visual words approach using the descriptors of the local features that 

were taken out of each image. Several machine learning classifiers, including Random Forest, k-

nearest neighbors, Decision Tree, Bagging, AdaBoost, and Gradient Boost, have been trained using 

the extracted local and global features.   

To classify 25 malware families using images, both with and without class balancing, Awan et 

al. [32] propose a deep learning framework based on spatial attention and CNN. Precision, recall, 
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specificity, precision, and F1 score were used to assess performance on the Malimg dataset. The 

proposed model with class balance achieved 97.42%, 97.95%, 97.33%, 97.11%, and 97.32% on this 

dataset and with class balancing on a benign class, which yielded results above 97%. 

Shaukat et al. [33] proposed a malware detection approach based on deep learning, A portable 

executable (PE) file is first visualized as a colored image. Second, it uses a refined deep learning model 

to extract deep information from the color image. Third, it uses support vector machines (SVM) to 

identify malware based on deep features. 

An automatic extraction technique without the need for human-expert interaction was presented 

by Zhu et al. [34]. They compare an RGB image to the essential components of the Dalvik executable 

(Dex). By utilizing multi-scale context information, they introduced MADRF-CNN, a CNN variation 

with heterogeneous receptive fields that uses max pooling and average pooling simultaneously to 

capture the dependencies between various picture elements (transferred from the Dex file). 

According to the experimental findings, their method's accuracy is 96.9%. 

A snake optimization algorithm with a deep convolutional neural network for an image-based 

malware classification approach is presented by Duraibi et al. [35]. The proposed approach attempts 

to identify malware images using a hyperparameter-tuned deep learning approach. The feature 

vectors are primarily derived using the ShuffleNet approach. Additionally, the snake optimization 

technique can be used to improve the ShuffleNet algorithm's hyperparameter selection. A bi-

directional long short-term memory model based on attention is used to identify malware images. 

The Malimg malware dataset has been used to evaluate the proposed approach.  According to the 

experimental results, the proposed approach yields a 98.42% accuracy rate. 

The neutrosophic set has been used in cybersecurity research in several areas, such as intrusion 

detection and risk assessment. Awotunde et al. [36] developed a multilevel random forest algorithm 

for intrusion detection, using fuzzy logic, intrusions were categorized as normal, low, medium, or 

high. Also, Ap et al. [37] presented a lightweight intrusion detection system based on fuzzy logic to 

identify malicious activities occurring during inter-IoT device connection. In risk assessment, Abdel-

Basset et al. [38] proposed the RAF-CPWS methodology using neutrosophic theory to assess risks in 

wastewater treatment technologies, considering several social, technological, environmental, 

economic, and cybersecurity factors. Another study by Abdel-Basset et al. [39] combined 

neutrosophic sets with MCDM techniques for assessing security risks in self-driving cars.  

However, this is the first study to apply the neutrosophic domain to malware images, making it 

a novel contribution to the field. 

3. Methodology 

Neutrosophic domain conversion and transfer learning architectures are the two primary 

components of the technique framework suggested in this study to identify 25 distinct kinds of 

malware. The architecture of the proposed NDDTL framework is shown in Figure 1. As a 

preprocessing step, the neutrosophic image conversion is applied, and as a classification model, the 

DTL model is employed. 
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3.1. Neutrosophic Image Domain Conversion 

A practical and beneficial theory for computing fuzzy circumstances is a neutrosophic set (NS). 

According to NS theory, events are calculated by subtracting them into three categories: true (T) 

significance, where the status is a percentage of true; indeterminacy (I) significance, where the status 

is a percentage of indefinite; and falsity (F) significance, where the status is a percentage of false. 

When classifying malware images, each pixel is separated into T, I, and F subsets. These subsets are 

then used to classify the image. As demonstrated by Eqs. 1–7, the input image transforms into the 

neutrosophic domain. The image domain P(x) pixel is transformed into the neutrosophic domain 

PNS(x): 

 𝑃𝑁𝑆(𝑥) =  {𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥)} (1) 

Using a convolution process, the local mean g(x,y) of an image 𝐺 can be used to convert it into the 

domains of a malware image G with pixel intensities. Each pixel in the image is represented as P(x,y). 

Next, Determine the absolute difference between the image's mean O(x,y) and the original image. 

𝑔(𝑥, 𝑦) =
1

25
 ∑ ∑ 𝐺(𝑥 + 𝑖, 𝑦 + 𝑗)

2

𝑗=−2

2

𝑖=−2

 (2) 

Fig.1 The detailed architecture of proposed NSDTL framework 
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𝑂(𝑥, 𝑦) = 𝑎𝑏𝑠(𝐺(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)) (3) 

The NS domains for the pixel P(x,y) can therefore be shown and delivered as follows: 

𝑃𝑁𝑆(𝑥, 𝑦) = {𝑇(𝑥, 𝑦), 𝐼(𝑥, 𝑦), 𝑇(𝑥, 𝑦)} 
(4) 

𝑇(𝑥, 𝑦) =
𝑔(𝑥, 𝑦) − 𝑔𝑚𝑖𝑛

𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛
 (5) 

𝐼(𝑥, 𝑦) =
𝑂(𝑥, 𝑦) − 𝑂𝑚𝑖𝑛

𝑂𝑚𝑎𝑥 − 𝑂𝑚𝑖𝑛

 (6) 

𝐹(𝑥, 𝑦) = 1 − 𝑇(𝑥, 𝑦) (7) 

G(x,y) denotes the pixel value at the coordinate (x,y) in the image, where x and y variables normally 

indicate the pixel coordinates in a 2D image. The neighboring pixels surrounding a given pixel (x,y) 

are indicated by the indices G, I, and j.  The highest average pixel value in a specified neighborhood 

is known as g_max. The lowest average pixel value in the same neighborhood is called g_min. The 

greatest absolute difference seen throughout the neighborhood is known as O_max. The smallest 

absolute difference that has been observed is O_min [40,41]. Figure 2 shows samples of malware 

images for five different classes (out of the dataset's twenty-five classes) after the conversion of the 

neutrosophic image domain in various domains. 

Agent 

    

Injector 

    

HackHMS 

    

Hlux 
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VBA 

    

 (a) (b) (c) (d) 

Fig. 2 Five malware families using different neutrosophic image domains (a) original 

images, (b) true significance images, (b) indeterminacy significance images, and (d) 

falsity significance images 

3.2. Deep Transfer Learning Model 

CNNs are ideal for image classification because they gradually extract a more meaningful 

representation of the visual content. CNN uses the entire image as input, creates useful feature maps 

from the image, and then deduces information about the item it contains, as opposed to processing 

the data to extract an image's features. It takes a lot of time and depends on the dataset to develop 

and train a new CNN model. Transfer learning is helpful in this situation since it offers a technique 

that allows knowledge to be transferred from the source domain to the target domain with minimal 

adjustments to the deep CNN models [42]. Four DTL models—VGG16[43], MobileNetV2[44], 

DenseNet121[45], and Xception[46]—are used in this study to classify malware families. 

Convolutional layers from the TL model, which was previously trained on the ImageNet dataset, are 

transferred to our DNN model to construct a Deep Neural Network (DNN) model. Five 

convolutional layer blocks make up the first part of the VGG16 architecture, which is followed by 

three fully connected layers. Utilizing 3 × 3 kernels with a stride of 1 and padding of 1, convolutional 

layers guarantee that every activation map maintains the same spatial dimensions as the one before 

it. A max pooling operation is used at the end of each block to minimize the spatial dimension, and 

a rectified linear unit (ReLU) activation is carried out immediately following each convolution. Each 

spatial dimension of the activation map from the preceding layer is divided by max-pooling layers 

using 2 × 2 kernels with a stride of 2 and no padding. Ends with two fully connected layers with 4096 

ReLU-activated units and 1000 fully connected softmax. Inverted residual and linear bottleneck 

modules were added to MobileNetV1 to create MobileNetV2. Depthwise separable convolution 

served as the foundation for the MobileNet architecture. The conventional 2D convolution convolves 

in the depth dimension (channel) as well, processing each input channel directly to create one output 

channel. The input image and filter are divided into distinct channels by the depthwise convolution, 

which then convolves each input channel with its matching filter channel. Following the production 

of the filtered output channel, the output channels are stacked back. In inseparable depthwise 

convolution, the stacked output channels are combined into a single channel by filtering them using 

a 1×1 convolution, also known as pointwise convolution[47].  A convolutional layer and a connected 

layer are the two types of layers that make up the DenseNet121 architecture. By tightly connecting 

layers, densely connected convolutional networks transformed neural network topologies. Every 

layer receives information from the layers that came before it. By using fewer parameters, this 

approach allows the network to increase accuracy and reuse features. The term Xception refers to the 

Extreme version of Inception, which consists of a convolution layer that mixes depthwise and 

pointwise convolution. This combination was subsequently shown to provide higher classification 
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accuracy for images in a dataset. As the basis of the feature extraction network, the Xception NN layer 

architecture consists of 36 convolution layers. Except for the first and last modules, all 14 of the 36 

convolutional layers are arranged into modules with linear residual connections surrounding them. 

4. Experimental Setup 

This section covers the datasets and experimental settings used in the study in detail.  

4.1. Dataset 

The Malevis [48] dataset consists of byte pictures of 26 (25+1) classes and is based on RGB ground 

truth. In this case, 1 class stands for the "legitimate" samples, whereas the remaining 25 classes 

represent various malware variants. Using a bin2png script created by Sultanik, the binary images 

from malware files (provided by Comodo Inc.) were initially extracted in three-channel RGB format 

to create this dataset. The Malevis dataset consists of 1482 images in total. Malware classes contain 

Adposhel, Agent, Allaple, Amonetize, Androm, Autorun, BrowseFox, Dinwod, Elex, Expiro, Fasong, 

HackKMS, Hlux, Injector, InstallCore, MultiPlug, Neoreklami', Neshta, Regrun, Sality, Snarasite, 

Stantinko, VBA, VBKrypt, and Vilsel. 

4.2. Implementation Details 

Deep learning frameworks Keras and TensorFlow were used to implement the models. An 

NVIDIA GeForce RTX 4060 graphics card and an Intel(R) Core (TM) i7-13700HX@2.10 GHz CPU were 

the hardware components; Windows 11 pro-64-bit was the experimental operating system.  The 

batch size for all models is 64, and there are 30 epochs with early stopping. They employed the Adam 

optimizer and the Sparse Categorical Cross-Entropy loss function.  

4.3. Evaluation Metrics   

Several measures of performance, including F1-score, accuracy, recall, precision, and AUC, are 

provided.  

• Accuracy is defined as the proportion of successfully identified instances to all objects in 

the dataset.  

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
                               (8) 

• Precision for a particular class is the proportion of examples that are accurately categorized 

as belonging to a certain class out of all instances of the model that are predicted to belong 

to that class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃 
                                           (9) 

• Recall is the proportion of examples in a class that the model correctly identified out of all 

instances in the class.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑁 
                                            (10) 
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• The F1 score is a metric that evaluates the model's overall performance by combining recall 

and precision. The harmonic mean of recall and precision is used to calculate it. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                    (11) 

• MCC measure the discrepancy between the expected and actual values. It is similar to two-

by-two contingency table chi-square statistics. 

MCC =
TP ∗ TN − FP ∗ FN 

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
           (12) 

 

Where TP, FN, TN, and FP stand for the number of true positives, false negatives, and true negatives, 

and false positives, respectively. 

5. Results and Discussion  

The effectiveness of our malware detection NSDTL framework is discussed in this section. Four 

distinct DL models—VGG16, MobileNetV2, DenseNet121, and Xception—were used to evaluate our 

methodology. According to Table 1, deep learning models perform best on the True domain in terms 

of accuracy, MCC, precision, recall, F1-score, and AUC, with 93.63%, 93.35%, 95.29%, 93.6%, 94.27%, 

and 97%, respectively. The VGG16 model is superior, according to table 1 in all domains. Figure 3 

displays the ROC curves and confusion matrices for DTL models in the True domain. 

 

Table. 1 Comparison of Deep Learning Models Performance on the Original and NS Domains 

 

Original Data 

Model Accuracy MCC Precision Recall F1-score AUC 

VGG 93.25 92.92 94.45 93.6 93.8 97 

MobileNetV2 89.6 89.11 90.52 90.08 90.06 95 

DenseNet121 91.56 91.17 93.14 91.95 92.43 96 

Xception 87.67 87.11 88.24 88.55 88.26 94 

True Domain 

Model Accuracy MCC Precision Recall F1-score AUC 

VGG 93.63 93.35 95.29 93.6 94.27 97 

MobileNetV2 90.25 89.81 91.38 91.01 91.03 95 

DenseNet121 91.28 90.88 92.67 91.68 92.02 96 

Xception 88.71 88.19 89.8 89.7 89.61 95 

Indeterminacy Domain 

Model Accuracy MCC Precision Recall F1-score AUC 

VGG 92.97 92.65 93.86 93.64 93.69 95 

MobileNetV2 87.77 87.23 89.36 87.84 88.09 94 

DenseNet121 88.57 88.04 89.32 89 88.9 94 

Xception 86.03 85.4 87.6 86.84 86.81 93 

False Domain 

Model Accuracy MCC Precision Recall F1-score AUC 

VGG 93.25 92.94 94.29 93.5 93.75 97 

MobileNetV2 89.97 89.5 91.99 90.47 91.03 95 

DenseNet121 91.24 90.84 92.2 92.12 91.97 96 

Xception 86.31 85.7 88.96 86.39 87.41 93 
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(a) ROC curve of VGG16 (b) Confusion metrics of VGG16 

 
 

(c) ROC curve of MobileNetV2 (d) Confusion metrics of MobileNetV2 
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(e) ROC curve of DenseNet121 (f) Confusion metrics of DenseNet121 

(g)  
(h)  

(i) ROC curve of Xception (j) Confusion metrics of Xception 

Fig. 3 ROC curves and confusion matrices for DTL models in the True domain 

 

6. Conclusion 

In this paper, we integrate the neutrosophic domain with advanced transfer learning 

algorithms to present a novel NSDTL framework for malware detection. The inherent difficulties 

presented by ambiguity, noise, and uncertainty in malware datasets are effectively addressed by the 

approach. The NSDTL framework improves detection capabilities by transforming malware images 

into the neutrosophic domain, which consists of True, Indeterminacy, and Falsity 

components. Experiments on the MaleVis dataset show that NSDTL is superior in the True dataset 



Neutrosophic Sets and Systems, Vol. 76, 2025     217 

 

 

Alaa Elmor, NSDTL: A Robust Malware Detection Framework Under Uncertainty 

across various evaluation metrics. The best model is the VGG16, which achieves accuracy, MCC, 

precision, recall, F1-score, and AUC of 93.63%, 93.35%, 95.29%, 93.6%, 94.27%, and 97%, respectively. 

The findings demonstrate that using the neutrosophic set in conjunction with transfer learning 

greatly increases the accuracy of malware classification, surpassing current techniques. This study 

demonstrates how hybrid approaches might improve cybersecurity defenses and provides a 

promising avenue for further investigation in the continuous fight against evolving cyber threats. 

 

7. New Trends in Neutrosophic Logic for Malware Detection 

• Neutrosophic logic allows for the integration of diverse data sources (like behavioral patterns 

and system logs) into a unified analysis, providing a clearer picture of potential threats. 

• By using neutrosophic models, systems can dynamically evaluate the risk levels of files or 

processes based on varying degrees of uncertainty, leading to more informed decision-

making. 

• Neutrosophic logic enhances machine learning models by enabling them to adapt to new 

information and evolving malware techniques, improving detection accuracy over time. 

• Neutrosophic methods allow for a more nuanced classification of malware types by 

considering not just binary classifications (malicious or benign) but a range of possibilities 

that reflect uncertainty. 

• Neutrosophic logic helps minimize false positives by providing a more detailed analysis of 

uncertainty, allowing legitimate software to be correctly identified without being flagged as 

malware. 

• Neutrosophic approaches are increasingly being applied to analyze the behavior of 

applications in real time, identifying suspicious activities even when traditional signatures 

fail. 

• Neutrosophic logic supports collaborative frameworks where different systems can share 

and analyze data collectively, enhancing overall detection capabilities. 

• New tools and dashboards using neutrosophic principles allow security analysts to visualize 

uncertainty and risk levels, making it easier to understand complex threat landscapes. 

• Neutrosophic logic is being combined with artificial intelligence and big data analytics to 

enhance predictive capabilities and improve the overall effectiveness of malware detection 

systems. 

• The principles of neutrosophic logic are being explored in various domains beyond 

cybersecurity, such as IoT security and cloud computing, demonstrating its versatility and 

potential for broader application. 

These trends highlight how neutrosophic logic is shaping the future of malware detection, 

offering innovative solutions to the ongoing challenges in cybersecurity. 
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