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Abstract: The A* search algorithm is widely utilized to evaluate the shortest path in a given network. 

However, in a traditional A* search algorithm, the nodes are assumed to have crisp values, i.e., a 

single value. This assumption may not hold in many real-world scenarios where uncertainty or 

ambiguity is involved. In such cases, an interval-valued Neutrosophic Pythagorean (IVNP) 

environment can provide a more sound and accurate representation. Interval-valued Neutrosophic 

Pythagorean sets (IVNPS) are an effective way to model vague and imprecise data, which is prevalent 

in executive problems. These sets provide a more flexible way to capture uncertainty by allowing the 

values of nodes in the graph to vary within certain intervals rather than having fixed values. This 

interval representation can effectively handle imprecise or incomplete information and is a powerful 

tool in executive processes. In this research paper, we proposed an improved A* search algorithm that 

takes advantage of the interval-valued neutrosophic Pythagorean environment. This algorithm aims 

to evaluate the shortest path in a graph under uncertainty and ambiguity. The proposed algorithm 

incorporates the IVNPS theory into the A* search framework to handle the uncertainty in node values 

and edge weights. It utilizes the concept of neutrosophic Pythagorean distance to calculate the 

heuristic function and make informed decisions on the next node to expand. 

Keywords: 

A* search algorithm; heuristic function; interval-valued Neutrosophic Pythagorean number. 

 



Neutrosophic Sets and Systems, Vol. 76, 2025     361  

 

 

Prasanta Kumar Raut, Sakya Singh Satapathy, Siva Prasad Behera, Said Broumi, Ajay Kumar Sahoo, Solving the shortest 

path Problem in an interval-valued Neutrosophic Pythagorean environment using an enhanced A* search algorithm 

1. Introduction: 

In a neutrosophic environment, uncertainty and indeterminacy play an important part. The 

conception of a neutrosophic set (NS), first suggested by Smarandache in 1995, and allows for the 

representation of indeterminacy in the form of three components, i.e., truth, indeterminacy, and false 

membership. Thus, as a result, numerous papers [1–10] have been available in the area of uncertainty 

environment. 

Various researchers have provided different work on SPP in various environments. Ahuja et al. [11] 

suggested a different kind of distributed heap as an efficient technique for finding the SPP of the 

graph. Yang et al. [12] demonstrated a diagram-theoretic method for calculating the right line. Zheng 

and Ibarra [13] showed how to evaluate the single-basis shortest possible route problem using the 

logarithmic sequence of 'n'. Arsham [14] investigated the shortest path problem's robustness. Tzoreff 

[15] investigated an unconnected SPP with different group path lengths. 

Zhang and Lin [17] proposed the reverse SPP. Samaranadache and Vasantha proposed a fundamental 

neutrosophic mathematical structure in their paper [18], and it can also be applied to uncertain and 

neutrosophic models. Zwick and Roditty [19] obtained some findings related to valuable types of the 

SPP. Desaulniers and Irnich [20] suggested SPP with holdup forces. Jowers and Buckley [21] used 

fuzzy logic to present SPP. Said broumi [22] solved the SPP problem using ACO. Turner [23] 

successfully developed an algebraic method for solving a set of SPP on both normal and acyclic 

graphs. Deng et al. [24] suggested a new method for ambiguous SPP. 

Broumi et al. [25] proposed a new idea to conduct a study on features that include verification and 

representations. Harish and Nancy [26] suggested an updated score function for use in the executive 

process. For address the issue of neutrosophic decision-making with insufficient weight support, 

Sahin and Liu [27] optimized the use of variations. Broumi et al. [28, 29] suggested a novel idea to 

evaluate the SPP.Hu and Sotirov [30] suggested semi-definite training for the rectangular SPP, and 

the QSPP was solved with some arithmetic operations using the division algorithm. Leitert and 

Dragan [31] solved SPP with little difficulty. Zhang et al. [32] suggested a new idea to solve SPP with 

scattered uncertainties. 

The purpose of this study is to (i) improve the A* search method for finding the shortest path problem 

over neutrosophic interval-valued Pythagorean numbers; (ii) find the heuristic values and the best 

one for each node in IVNPS; (iii) find the good things about A* search in terms of its features, 

adaptability, and quick selections; and (iv) figure out the suggested approach at each step and find the 

results. 

This research paper arranges the remaining sections in the following order: In Section 2, we talk about 

why we're doing this. Section-3 discuss the fundamental concepts of neutrosophic sets, intuitionistic 

neutrosophic sets, neutrosophic Pythagorean sets, neutrosophic interval-valued Pythagorean sets, 

and the various operations applicable to them. In Section-4, the A* search algorithm and the heuristic 

function are defined and explained. Section-5 provides a mathematical explanation for determining 
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the most efficient route using the IVNPS, a heuristic computational method, and a modified A* Search 

algorithm. Section-6 presents a numerical illustration of the process for calculating the IVNPS in 

neutrosophic situations. Section-7 conducted a comparative analysis of the shortest path using 

various networks and parameters, while also highlighting the benefits of the proposed methodology. 

Section-8 states the outcome of the work. 

2. Motivation: 

• In this chapter, we proposed an improved A* search algorithm. This algorithm objectives to 

evaluate the shortest path in a graph under uncertainty and ambiguity. The proposed 

algorithm incorporates the IVNPS theory into the A* search framework to handle the 

uncertainty in node values and edge weights. It utilizes the concept of neutrosophic 

Pythagorean distance to calculate the heuristic function and make informed decisions on the 

next node to expand. 

• In this chapter, our aim is to evaluate the minimum cost between the initial vertex and the 

final vertex. 

• Furthermore, we illustrate one numerical example using an algorithm. 

3. Preliminaries: 

This section of the paper presents an analysis of the fundamental concepts and definitions of the 

different sets.  

 

 

Definition-3.1 [33] 

A Neutrosophic set  in a universal set  is defined as   

}. Here , ,  defined the 

three membership degrees and  to the set .  

Three membership degrees is written as 

  

Definition-3.2[35] 

A Pythagorean neutrosophic set  in a universal set  is defined as   

, where ,  are dependent, and 
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 independent component., for all , with the condition 

. 

 

Definition-3.3[36] 

An Interval-valued neutrosophic Pythagorean set  in a universal set  is 

defined as    

  

Where , ,[ ] represents the inferior and superior 

bound of the three membership degrees. 

 

 

 

 

 

Definition-3.4[36] 

Let and 

 be two neutrosophic 

interval-valued Pythagorean set, then sum of two set is defined as  

       

 

 

Definition-3.5[36] 
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Let           

Let us assume  then the 

improved IVNP score function is expressed as      

  

4. A* search algorithm 

In computer science and machine learning, the A* search technique is a famous way to identify the 

most efficient route between any two given nodes in a network. We call it "A*" because it adds up the 

heuristic function to evaluate the path from initial node (g) to final node (h). The A* algorithm uses an 

arrangement of best-first search and Dijkstra's algorithm to efficiently explore the search gap and 

evaluate the optimal path. It guarantees to get the shortest path providing the heuristic function 

satisfies certain conditions, such as being admissible (never overestimating the actual cost) and 

consistent (always satisfying the triangle inequality). 

 

The parameter  is utilized to determine the most efficient route from each specific node to the 

other node. 

The parameter  is utilized to calculate the expense of transitioning from each moment of one 

node to another node. 

The parameter  represents the heuristic, which is the estimated cost between the initial node and 

the final node. 

 

4.1 The neutrosophic Pythagorean SPP with interval values 

The implementation of the neutrosophic interval-valued Pythagorean technique could be used for 

formulating the problem of determining the shortest route in a connected network.  

Variables: 

Let  represent the shortest path (SP) between two corresponding nodes  and . 

Let  represent the membership degree of the path that is shortest between  and  at a 

node. 
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The non-membership degree of the shortest path (SP) from node  to node  is indicated by the 

symbol  

Let  represent the degree of indeterminacy of the shortest path (SP) connecting node and 

. 

Objective: 

Reduce the total length of all the path's edges or arc lengths i.e., minimize  

Constraints: 

For each edge  . 

For each vertex , the membership degrees , non-membership degrees , and 

indeterminacy degrees  satisfy the neutrosophic Pythagorean equation: 

 

For each vertex , . 

The three variables  and  detain the uncertainty related to this path, 

and this formulation guarantees that the value of  represents the SP length from node  to 

. The goal function aims to reduce the overall length of every edge in the path. The constraints 

guarantee that the neutrosophic Pythagorean equation is satisfied by the membership, 

non-membership, and indeterminacy degrees, and that the membership degrees for all outgoing 

edges from each vertex sum up to one.  

4.2 Theorem: 

If  is optimal under an Interval-valued Neutrosophic Pythagorean environment, then h~j is 

permissible with an Interval-valued Neutrosophic Pythagorean cost 

Proof 

To prove this statement by using the contradiction method, we assume that  is optimal under an 

Interval-valued Neutrosophic Pythagorean environment, but  is not admissible with an 
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Interval-valued Neutrosophic Pythagorean cost. We will then show that this assumption leads to a 

contradiction, which proves that the original statement is true. 

Let's denote the optimal solution as , and its cost as  

Now, we assume that  is not admissible with an Interval-valued Neutrosophic Pythagorean 

cost. This means that there exists another solution, , such that . 

Since  is optimal, we have: 

 

But since  is not admissible with an Interval-valued Neutrosophic Pythagorean cost, we also 

have: 

 
Combining these two inequalities, we have: 

 

However, since   is optimal, it should have the lowest possible cost. Therefore, we can write: 

 

This implies that  

But this contradicts our assumption that  is not admissible with an Interval-valued 

Neutrosophic Pythagorean cost. If  is not admissible, it means that there exists another solution 

 with a lower cost. But from our contradiction, we know that . 

Thus, our assumption that  is not admissible leads to a contradiction. Therefore, we can 

conclude that if  is optimal under an Interval-valued Neutrosophic Pythagorean environment, 

and then   is admissible with an Interval-valued Neutrosophic Pythagorean cost. 

 

4.3 Calculation of heuristic costs  
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The heuristic value is a cost calculates approximately from every single node to the destination node. 

The approximate cost can be determined in several of manner, such as Hamming distance, Manhattan 

distance, Euler distance, and others. A reversal search strategy based on breadth first was used to 

evaluate the heuristic values in this case.  

4.3.1 The Heuristic Cost Algorithm 

Step 1: Initiate with the targeted node and set the node value  to 0, where . The 

computation is carried out in the opposite order.  

Step 2: Add the real cost values from the current node to the values from the possible precursor node. 

Using the score equation, compare the values, Then select the value that is the smallest as a heuristic 

value and label it .   . 

Step 3: Continue with the procedure until you come to the last node. 

  

 

 

Fig-1: The idea for the algorithm is represented by a flow chart diagram. 
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5. Proposed algorithm 

This section presents a method for determining the most efficient route between initial to final node 

using a heuristic methodology. This proposed algorithm is used for classification.  

 

Step-1: Select the node that originated to be the starting node and label the initial node as node 1. 

Step-2: Determine the estimate cost  where  and  

for each current node's neighbor node. 

Step-3: Utilize the score function   to the existing node's value and then label the node 

according to the lowest value as . 

Step-4: Continue with the labeled nodes' successors  and determine the assessment cost. Step 3 

should be repeated to get the smallest amount value and connect the node. 

Step -5: Continue the procedure until you arrive at node n, i.e. destination node. 

Step- 6: The path with the least distance is calculated through the combination of each and every one 

of the nodes discovered in the preceding steps (Fig. 1). 

6. Numerical Example:    

 

                                      Fig-2: IVNP Network 
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Table-1: Arc Weights 

 

 

Arc Neutrosophic Pythagorean cost with 

interval values 

1-2 <[0.4,0.6],[0.3,0.5],[0.3,0.4]> 

1-3 <[0.4,0.5],[0.3,0.4],[0.3,0.5]> 

2-3 <[0.5,0.6],[0.4,0.5],[0.3,0.4]> 

2-5 <[0.5,0.6],[0.3,0.5],[0.3,0.4]> 

3-4 <[0.4,0.6],[0.3,0.5],[0.2,0.3]> 

3-5 <[0.3,0.5],[0.4,0.5],[0.5,0.6]> 

4-6 <[0.3,0.4],[0.2,0.4],[0.3,0.5]> 

5-6 <[0.3,0.4],[0.4,0.7],[0.5,0.7]> 

 

 

 
                 Fig-3:  Heuristic Calculation of IVNP Network 
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From  &   minimum is  which value is 0.28. Hence label 

from  

Step-3 

Now we visit node-4 and Node-5 from successor’s node  , and then carry 

out step-2 according to the proposed. 

 

           

 

 

 

 

                                    , 
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From  &   minimum is  which value is 0.43. Hence label 

from  

Step 4: Only node 6 serves as the successor of node 5, so continue with step-2 of 

the algorithm to determine its estimated cost. 

 

 

 

 
The shortest path can be identified by adding all of the nodes in the above steps  

 with the minimum Cost is 0.45 

 

 

7. Comparison study: 

This section involves the evaluation of our algorithm using alternative 

methodologies. [37] and [38].  

    

Table-2: Shortest path with different network 

8.  Conclusion: 

This research paper examines the benefits of using the interval-valued Neutrosophic Pythagorean 

Number to determine the Shortest Path. This method integrates uncertainty by utilizing the 

interval-valued Neutrosophic Pythagorean Number edge weight in an interval-valued Neutrosophic 

Optimal route with varying 

network configurations 

Path(route) Shortest path cost 

Enayattabar M. et al. [37] 
      

0.95 

Jan N. et al.  [38] 
      

---- 

Our proposed   
      

0.45 
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Pythagorean environment. The outcome demonstrates the usefulness and efficiency of the algorithm 

in calculating the shortest path under an IVNP environment. Compared to the traditional A* 

algorithm, our approach provides more accurate and robust solutions, considering the uncertainty 

and imprecision in the graph. The suggested approach can be used in real life applications in logistics 

management, communication systems, and many other network optimization issues that are 

expressed as shortest-path issues. 
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