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Abstract 

Optimal network analysis requires advanced techniques to handle the inherent complexity and 

uncertainty of real-world systems. We have used vertex order coloring on neutrosophic graphs to 

find the most effective approach to improve network reliability and performance. Neutrosophic 

graphs( ) offer a comprehensive framework for modelling real-world networks with inherent 

uncertainties by incorporating degrees of truth, falsity, and indeterminacy. In this paper, we have 

investigated various graph product operations as a means of optimizing network structures. We 

further investigated the applications of vertex order coloring to identify  and strong vertices 

within various graph operations of . We examined several  products with the goal of 

determining the most optimal network based on particular important metrics including the total 

number of alpha-strong vertices, the weight of alpha-strong vertices, the chromatic number, and the 

weight of the graph's minimum spanning tree. The objective of our research is to identify the best 

solutions that strike a balance between robustness and association by rigorously studying and 

comparing various product operations. Our research advances the subject of network theory and 

provides useful information for a variety of applications, including social networks, transportation, 

and telecommunications. 
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Introduction  

Graph theory, a foundational field in mathematics, originated in 1736 with Leonhard Euler's 

solution to the Königsberg bridge problem, marking the birth of graph theory. This field of study 

investigates the characteristics and uses of graphs, which are mathematical structures that represent 

pairwise relationships between objects [8]. The concept of graph coloring, which holds significant 

importance in graph theory, originated in the 19th century when Francis Guthrie proposed the 

four-color theorem in 1852[25], which was subsequently validated by Kenneth Appel and Wolfgang 

Haken in 1976. It entails giving network vertices distinct colors in order to differentiate between 
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neighboring vertices. This is a technique that has applications in resource allocation, scheduling, and 

map coloring. Lotfi A. Zadeh's 1965 invention of fuzzy set theory completely changed how 

mathematical models deal with imprecision and uncertainty [2]. This development led to the rise of 

fuzzy graph theory, introduced by Azriel Rosenfeld in 1975[22], It models networks with ambiguous 

or imprecise links by fusing the ideas of fuzzy sets with graph theory. Bhutani initially presented the 

idea of coloring in fuzzy graph theory in 1993[3, 4]. By extending the classic graph coloring problem 

to fuzzy graphs, Bhutani's work made it possible to investigate coloring techniques in graphs with 

edges that have different membership levels. Gong and zhang [11, 13] explored the concepts of 

adjacent vertex distinguishing proper edge coloring and adjacent vertex distinguishing total 

coloring within the context of fuzzy graphs. In addition to outlining the necessary and sufficient 

conditions for a vertex to be strong, Nagoor Gani et al. [12] established three different kinds of 

vertices namely  and strong vertices. Based on these principles, Krassimir Atanassov's 

intuitionistic fuzzy graph theory introduced in 1986 adds another level of complexity by taking into 

account both the degree of membership and the degree of non-membership. This method makes it 

possible to model uncertainty more thoroughly. Talebi et al. [26] introduced a new concept of 

coloring intuitionistic fuzzy graphs, which have good capabilities in handling vague and 

incompatible information, unlike traditional fuzzy graphs. This concept addresses problems where 

fuzzy graphs may not provide satisfactory results. Rosyida et al. presented an algorithm for coloring 

picture fuzzy graphs based on strong and weak adjacencies between vertices, which is an extension 

of the concepts from fuzzy graphs and intuitionistic fuzzy graphs ( )[23].  Rifayathali et al. [24] 

introduced the concept of chromatic excellence in intuitionistic fuzzy graphs, providing new 

insights into graph coloring. Florentin Smarandache, introduced the concept of neutrosophic fuzzy 

set ( ) by combining fuzzy set ( ) with neutrosophic set ( ), leading to the development of 

new concept and also proposed the single valued neutrosophic fuzzy set ( ) to address 

difficulties faced in dealing with real-life problems due to nonstandard intervals of neutrosophic 

components[13]. By permitting elements to have different degrees of membership, fuzzy set theory 

expands on conventional set theory and offers a more complex depiction of real-world situations. By 

adding a third parameter to indicate the degree of indeterminancy, Florentin Smarandache's 1998 

development of  expands on these ideas and provides an even more comprehensive framework 

for managing ambiguity and uncertainty. Meenakshi et al. [17,19,20] explored the use of 

neutrosophic graphs to model real-world problems containing inconsistent information, showcasing 

the versatility and applicability of this approach in various scenarios. They also developed an 

optimal algorithm to illustrate the applications of the proposed single-valued neutrosophic graph, 

providing a practical demonstration of its efficiency in information flow within networks Assigning 

colors to vertices under fuzzy constraints is known as coloring fuzzy graphs, which includes 

intuitionistic and neutrosophic graphs. This technique has applications in network design, resource 
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allocation, and decision-making processes. These developments demonstrate how mathematical 

modelling is always changing when it comes to solving challenging real-world issues. Meenakshi et 

al.'s (17) goal is to build a single-valued neutrosophic graph using the max product of graphs, which 

should increase the efficiency of the maximized network. Aparna et al. introduced the concept of 

Single Valued Neutrosophic R-dynamic Vertex Coloring, combining Single Valued Neutrosophic 

Vertex Coloring and r-dynamic coloring to address graph coloring problems [1, 3]. Graph products 

are procedures that create a new graph by joining two graphs. Graph product operations play a 

significant role in network design and optimization. The residue product of two fuzzy graphs was 

defined by K. Radha et al. [23] and its features, including efficiency, connectedness, and 

completeness, were examined. The co-normal product of IFG was first proposed by K. Kalaiarasi et 

al. [14, 15], who also examined its importance in relation to the completeness, regularity, and 

pseudo-regularity of fuzzy graphs. Mohanta et al. [22] presented various operations on , 

including rejection, symmetric difference, maximal product, and residue product. These operations 

are accompanied by appropriate examples, enhancing understanding and application 

 

This introductory section is followed by a detailed analysis of pertinent literature, and the article 

proceeds as follows: We have included the preliminary information for a better grasp of 

 concepts and coloring ideas in Section 2. Section 3 deals with the approach used in this 

investigation. Single-Valued Neutrosophic Vertex Order Coloring is a concept that incorporates the 

idea of neutrosophic graphs into traditional vertex coloring. This method minimizes coloring 

conflicts based on neutrosophic logic by assigning colors to each vertex in a graph based on a certain 

order prioritizing strong vertices followed by  and   strong vertices. Section 4 summarizes our 

research's conclusions, including theorems and an analysis of different operations. In Section 5, 

different operations on  are detailed and its coloring using Neutrosophic Vertex Order 

Coloring(NVOC) is demonstrated. We have critically discussed these findings in Section 6, 

examining possible mechanisms and providing an algorithm to determine the optimal network. The 

article concludes with a summary of its most important findings. By using this systematic approach, 

we offered an extensive understanding of various operations and identified the optimal network 

depending on specific factors. 

 

2. Preliminaries 

2.1 Single valued Neutrosophic set [4] 

Let  be a universe of discourse.  
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= {( , ( ), ( ),  ( ):  ∈ X} is a on . The degree of truth membership value is 

given by  ( ):  → [0, 1],   degree of indeterminancy value, and degree of falsity membership 

value of  on  are denoted by  ( ):  → [0, 1] and  ( ):  → [0, 1], respectively, meeting 

the criteria 0 <  ( ) + ) +  ( ) ≤ 3, ∀  ∈ . 

 

2.2 Single valued Neutrosophic Graph [5] 

The   of =( , ) is denoted by  =( , , ) where  = ( , , ) is a single-valued 

Neutrosophic set on and  = ( , , ) is a single-valued Neutrosophic symmetric relation 

on ×  is defined as follows: 

i)  ( ) ≤  ( ) ∧  ( ) ,    ∀ ( ) ∈ × . 

ii)  ( ) ≤  ( ) ∧  (  ,    ∀ ( ) ∈ × . 

iii)  ( )≥  ( ) ∨  ( ) ,    ∀ ( ) ∈ × . 

2.3 Complete single valued Neutrosophic Graph [5] 

The   is said to be complete if ∀ ( ) ∈  

 ( ) =    

 ( ) =    

 ( ) =    

2.4 Strong single valued Neutrosophic Graph [5] 

The   is known as strong single valued Neutrosophic graph if ∀ ( ) ∈  

 ( ) =    

 ( ) =    

 ( ) =    

2.5 Degree, neighborhood and Cardinality of a vertex in   [5] 
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Let  =( , , ) be a  and  be a vertex in a A vertex's degree, represented by ( ), is 

the total weight of the strong arcs that incident at it.  

The neighborhood of  is represented by the strong arc ={ / ( , )}.  

The minimum degree of  is given by . 

The maximum degree of  is given by . 

The cardinality of a vertex  in a , =( , ) is defined by  

 

The cardinality of an edge  ∈  in a , =( , ) is defined by  

 

2.7 Adjacent Vertex of a fuzzy graph [10] 

Let  be the vertex of a  fuzzy graph ,  then the adjacent vertices to the vertex is  

       (  [   

       = {  (  

       = {  ( . 

3. Neutrosophic vertex order coloring 

A sophisticated but effective development of conventional vertex coloring is NVOC. It is 

appropriate for situations where ambiguity and vagueness are crucial since it enables a more 

nuanced representation of these components. This approach offers a more advanced and adaptable 

solution to the vertex coloring problem by ensuring that the coloring complies with the rules of 

neutrosophic logic. 

3.1 -vertex coloring of  
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A family  = { , } of Neutrosophic sets on a set  is called a -vertex coloring of 

if 

a)   =  

b)  ∧  = 0 

c) For every strong edge  of , min{  = 0 and max {  = 

1,(  

The least value of for which the  has a -vertex coloring denoted by , is called the 

chromatic number of the  . 

3.2 Adjacent Vertex of  

Let  be the vertex of a ,  = , ,    then the adjacent vertices to the vertex is  

 (  [   

 = { (  where  denotes the strong adjacent vertices of a vertex 

 

 = {  (  where denotes the weak adjacent vertices of a vertex 

 

(  = { (  and {   (  where 

(  denotes the partially strong adjacent vertices of a vertex . 

3.3 Strong Vertex  

A vertex   of an , is said to be ,, if for every  

satisfies ( ( ). It is denoted by   

3.4 Strong Vertex  
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A vertex   of an ,  is said to be a , if for every  

 satisfies ( ( ). It is denoted by   

3.5 Strong Vertex  

A vertex that satisfies both conditions is said to be . 

It is denoted by   

3.5.1 All of Alpha's strong vertices are also weak ones, and vice versa. 

3.5.2 All gamma strong vertices are strong silent . 

3.6 Neutrosophic vertex order coloring of  

Neutrosophic vertex order colouring of  is defined as a family ={ (  β( ),  

( )} of strong vertices on a set  if 

i)⋃  =  

ii)⋂  =  

iii)If ∈ (  (or)  ∈ β( )for each (μ( ) > 0) of G, then c( ) c( ), where c( )is the 

colour of  

iv)For every (μ( ) > 0) of G, if  ∈  ( ),  then c( )=c( ) and μ( ) = 0 

v)If ,  ∈ ξ, then c( )=c( ) and for every (μ( ) = 0) of G. 

The chromatic number of neutrosophic graph ,  ( ) is the least number  for which a  

 -fuzzy vertex order colouring exists.  

 

3.7 Illustration 

Figure 1 is an example of a neutrosophic graph  where = ,  =(8,13) in the 

below example. 
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Figure 1  

Determine the degree of each vertex by definition 2.8. Sort vertices into α, β, and γ strong categories 

based on the criteria listed in definitions 3.2, 3.3, and 3.4. The degree and category of vertices are 

displayed in table 1. Use the fuzzy vertex order coloring approach to color the vertices so that no two 

neighboring vertices have the same color applied to them. Section 6 provides an algorithm for 

coloring ’s. 

Table 1: Degree and category of vertices 

Vertices Degree of 

Vertices 

Category 

(    

(    

(    

(    

(    

(    

(    
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(    

 

 

Figure 2: Vertex order coloring of  

 

For Figure 2, the chromatic number ( ) is observed to be 3. 

4. Results and discussion 

The most recent developments in Neutrosophic vertex order coloring have been discussed in this 

section, along with several new theorems that broaden the scope of our research. These new 

theorems improve our theoretical knowledge of Neutrosophic vertex order coloring and present us 

with fresh avenues for practical applications in a variety of fields.  

Theorem 4.1 

Let , ,  be a regular neutrosophic graph. Then All the vertices of  are α-strong vertices  

Proof:  

Vertex Category Identification of color 

  1, 3 

strong vertex  2,  1,  3,  2 

strong vertex  2,  1 
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A neutrosophic graph , ,  is regular if every vertex  has the same degree. The 

degree  is the sum of the truth membership values of the edges incident to  

=  

Since  is regular, for every vertex  we have  

As a result of their regularity, the edges incident to each vertex's total truth membership values must 

be equal to . Each vertex  has a uniformly high total of truth membership values for its incident 

edges, according to this consistent degree. 

The truth membership values of the edges incident to must be sufficiently high for a vertex  to 

maintain a degree . All vertices  in  are 𝛼-strong since every vertex in a regular  has low 

indeterminacy and falsity values and high truth membership values. 

Therefore, All the vertices of  are α-strong vertices if it is a regular neutrosophic graph. 

Theorem 4.2 

A complete , , , must have at least one pair of α-strong vertices whose degrees are 

same. 

Proof: Every vertex in a complete  with n vertices is connected to every other vertex. As a result, 

every vertex  has 𝑛 − 1 edges incident with it. 

The degree  is the sum of the truth membership values of the edges incident to  

=  

The degrees are constrained within a specified range due to the total connectivity of the graph and 

the limited range of truth membership values. Therefore, if we distribute the degrees across n 

vertices, there must be at least one pair of vertices with the same degree, according to the pigeonhole 

principle. 

Therefore, A complete , , , have at least one pair of α-strong vertices whose degrees are 

same. 

 

 

 

 



Neutrosophic Sets and Systems, Vol. 76, 2025     410  

 

 

A. Meenakshi, S. Dhanushiya, Optimizing Network Structures Through Neutrosophic Graph Product Operations and its 

Coloring: A Comprehensive Approach for Enhanced Connectivity and Robustness 

Theorem 4.3 

A vertex u is γ-strong in a neutrosophic graph , , if there is at least one distinct weakest arc 

among the edges incident to 𝑢. 

Proof: 

Consider of a vertex  in the neutrosophic network , , .  

The set = { = (  , )∣ ∈ 𝑉 } represents the edges incident to . The truth membership values 

of these edges are provided by .  

In order for  to be γ-strong, there needs to be an edge = ( ) ∈  

such that 𝜎( ) is the smallest truth membership value among all the edges in , and this value is 

unique, (i.e) no other edge in shares this minimum value. This condition can be mathematically 

represented as follows: 𝜎( ) < 𝜎(  ) ∀ ∈ ,  ≠  . 

The definition of a γ-strong vertex is satisfied by  if it has at least one unique weakest arc among 

its incident edges, which is indicated by the existence of the edge . In contrast to other vertices 

that might not have such a unique weakest arc, this condition guarantees that the vertex  is 

distinct in having a uniquely minimal truth membership value for one of its incident edges. 

Therefore, the neutrosophic graph  unique weakest arc verifies that  is a γ-strong vertex. 

Theorem 4.4 

The degree of every γ-strong node in a , , ,  with a crisp graph underlying that is 

regular is smaller than the minimum degree of any α-strong node  

[ ( ) < min ( )], where i ∈ . 

Proof: Let , , ,  be a neutrosophic graph. The underlying crisp graph , is regular, (i.e) 

each vertex in  has an equal number of edges. A vertex is considered γ-strong in  if it is 

connected to at least one edge with a significantly lower truth membership value (i.e) there must be 

at least one unique weakest arc among the edges incident to . The total degree ( ) of  is 
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decreased by this particular weakest arc because a vertex's degree is determined by the total truth 

membership values of its incident edges. Conversely, a vertex with high truth membership values 

( ) and low indeterminacy ( ) and falsity ( ) is said to be α-strong because of constant and 

comparatively high truth membership values of its incident edges, resulting in a higher degree 

( ).The degrees are uniform since   is regular. However, the γ-strong condition lowers the truth 

membership value of γ-strong vertices, decreasing their degree of comparison in α-strong vertices. 

Because the α-strong vertices consistently maintain higher truth membership values across their 

incident edges, for any γ-strong vertex , its degree ( )  is less than the minimum degree 

min( ( )) of any α-strong vertex  . This is because α-strong vertices consistently maintain 

higher truth membership values across their incident edges. 

 

Integrating other advanced techniques, such as machine learning models, could help improve 

scalability and efficiency, particularly in large networks. Some managerial implications include 

network optimization, resource allocation and in healthcare systems. This approach can significantly 

enhance patient referral systems by optimizing the flow between different healthcare providers, 

ultimately reducing waiting times and improving service efficiency. 

5. Study of  strong vertices in Neutrosophic graph Operations 

Using vertex and edge cardinality (definitions 2.6), we can find the membership values for the  

represented in Figure 2. Determine each vertex's degree by definition 2.5, Sort vertices into α, β, and 

γ strong categories based on the criteria listed in definitions 3.3, 3.4, and 3.5. Use the neutrosophic 

vertex order coloring approach to color the vertices so that no two neighboring vertices have the 

same color applied to them. This section deals with an innovative technique for coloring  

networks.  

 strong vertices of Co-normal product 

Consider two single-valued Neutrosophic graphs  = ( , ) and  = ( , ) whose  = 

( , ) and  = ( , ) respectively.  

 Then the Co-normal product   = (   ,  ) is defined as 

i. ∀ ( , ) ∈   ,  
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   ( , ) =  ( )   ( ); 

   ( , ) =  ( ) ∧  ( ) and  

( , ) =  ( ) ∨  ( ) 

 

ii. ( , ) ( , = ( ( )   ( , )); 

( , ) ( , =  ( ( )   ( , )); 

( , ) ( , = ( ( )   ( , ));   and  ,   where 

,   

 

iii. ( , ) ( , = ( ( )   ( , )); 

( , ) ( , =  ( ( )   ( , )); 

( , ) ( , = ( ( )   ( , ));    and    

where ,   

The construction of the Co-normal product network   is shown in the following steps. 

Step 1: Construct the co-normal product network,   of two  

(Figure 3,4). 

Step 2: The truth, indeterminancy and falsity membership values, makes up each vertex. The values 

are assigned in accordance with Table 2 using Vertex cardinality (definition 2.6).  

Step 3: The values are assigned in accordance with Table 3 by using edge cardinality (definition 2.6).  

Step 4: Determine each vertex's adjacent vertices and degree for each vertex. Table 4 provides the 

degree of each vertex in Figure 5.  

Step 5: Sort the α, β, and γ strong vertices according to the conditions given in definition 3.3,3.4 and 

3.5. 

Figure 3 and 4 are the examples of neutrosophic graphs where =(3,3) and =(4,5) 

respectively. 
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           Figure 3:                                        Figure 4:    

 

Figure 5 is the neutrosophic network,   which is driven by applying co-normal 

product between  and . 

 

 

Figure 5:    

Table 2: Membership values of the vertices of    

Vertices Membership Values Vertex Cardinality 

|  
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Table 3: Membership 

values of the edges of  

  

 

(0.4,0.6,0.8) 0.33 

 

(0.4.0.2,0.8) 0.46 

 

(0.4,0.3,0.8) 0.43 

 

(0.4.0.6,0.8) 0.33 

 

(0.4,0.3,0.7) 0.46 

 

(0.4,0.3,0.8) 0.43 

 

(0.4,0.3,0.5) 0.53 

 

(0.4,0.3,0.7) 0.46 

 

(0.7,0.5,0.8) 0.46 

 

(0.4,0.4,0.8) 0.4 

 

(0.4,0.3,0.5) 0.53 

 

(0.6,0.5,0.6) 0.5 

Edges Membership 

Values 

Edge 

Cardinality 

|  

Edges Membership 

Values 

Edge 

Cardinality 

|  

 
(0.3,0.1,0.7) 0.5 

 
(0.3,0.1,0.6) 0.53 

 
(0.3,0.2,0.7) 0.43 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.1,0.7) 0.43 

 
(0.3,0.2,0.7) 0.43 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.2,0.8) 0.43 
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Table 4:  List of strong, strong, and strong vertices of   

 
(0.4,0.5,0.8) 0.36 

 
(0.3,0.2,0.7) 0.46 

 
(0.3,0.2,0.8) 0.43 

 
(0.4,0.3,0.7) 0.46 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.2,0.8) 0.43 

 
(0.2,0.3,0.9) 0.33 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.1,0.5) 0.56 

 
(0.2,0.3,0.9) 0.33 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.2,0.5) 0.53 

 
(0.3,0.1,0.8) 0.46 

 
(0.3,0.2,0.6) 0.5 

 
(0.3,0.2,0.8) 0.53 

 
(0.3,0.2,0.7) 0.46 

 
(0.3,0.2,0.8) 0.43 

 
(0.5,0.4,0.7) 0.46 

 
(0.2,0.3,0.9) 0.33    

Vertex Adjacent vertices Degree 
strong strong strong 

 ,  
2.15 - 

 
- 

  
2.08 - 

 
- 

  
1.85 - 

 
- 

  
1.65 - - 

 

  
2.31 

 
- - 

  
2.08 - 

 
- 

  
1.98 - 

 
- 

  
1.82 - 

 
- 
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Table 5: Color identification of α, β, and γ strong vertices 

 

The minimum spanning tree of    is computed using kruskal’s algorithm and its 

weights is observed as  ) = 4.36 

From Table 7, The chromatic number for   is given by, (  ) = 4 

5.2  strong vertices of Tensor product 

Assume that the single-valued neutrosophic graphs of  = ( , ) and = ( , ) are  = 

( , ) and = ( , ) are respectively. A pair ( , ) is considered to be the tensor product 

  if: 

i. ( , ) =  ( )   ( ); 

( , ) =  ( )   ( ); 

( , ) =  ( )   ( )  ( , )   

ii. ( , ) ( , = ( )   ( , ); 

  
2.24 - 

 
- 

  
2.15 - 

 
- 

  
1.85 - 

 
- 

  
1.72 - 

 
- 

Vertex Identification of  Color 

  

strong vertex , , , - 4, , , 

,  

strong vertex  
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( , ) ( , =  ( )   ( , ); 

( , ) ( , = ( )   ( , );    and  ,   

The construction of the tensor product network   is shown in the following steps.  

Step 1: Construct the tensor product network,   of two  (Figure 3,4). 

Step 2: Three truth, indeterminancy and falsity membership values, make up each vertex. The values 

are assigned in accordance with Table 6 using Vertex cardinality (definition 2.6).  

Step 3: The values are assigned in accordance with Table 7 by using edge cardinality (definition 2.7).  

Step 4: Determine each vertex's adjacent vertices and degree for each vertex. Table 8 provides the 

degree of each vertex in Figure 6.  

Step 5: Sort the α, β, and γ strong vertices according to the conditions given in definition 3.3,3.4 and 

3.5. 

Figure 6 is the neutrosophic network,   which is driven by applying tensor product 

between  and . 

 

 

Figure 6:   

Table 6: Membership values of the vertices of   

Vertices Membership Values Vertex Cardinality 

|  
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Table 7: Membership 

values of the edges of  

  

 

Edges Membership 

Values 

Edge 

Cardinality 

|  

Edges Membership 

Values 

Edge 

Cardinality 

|  

 
(0.3,0.1,0.8) 0.46 

 
(0.3,0.2,0.8) 0.43 

 
(0.2,0.1,0.7) 0.46 

 
(0.2,0.2,0.9) 0.36 

 
(0.3,0.1,0.7) 0.5 

 
(0.3,0.2,0.8) 0.43 

 

(0.4,0.5,0.8) 0.36 

 

(0.3.0.4,0.8) 0.36 

 

(0.3,0.2,0.8) 0.43 

 

(0.3.0.5,0.8 0.33 

 

(0.3,0.2,0.7) 0.46 

 

(0.3,0.3,0.8) 0.4 

 

(0.3,0.3,0.5) 0.5 

 

(0.3,0.2.0.6) 0.5 

 

(0.5,0.5,0.7) 0.43 

 

(0.3,0.4,0.8) 0.36 

 

(0.3,0.3,0.5) 0.5 

 

(0.4,0.5,0.6) 0.43 
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(0.3,0.2,0.8) 0.43 

 
(0.3,0.2,0.7) 0.46 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.2,0.7) 0.46 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.1,0.8) 0.46 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.1,0.8) 0.46 

 
(0.2,0.2,0.9) 0.36 

 
(0.2,0.1,0.9) 0.4 

 
(0.3,0.2,0.7) 0.46 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.2,0.7) 0.43 

 
(0.3,0.2,0.8) 0.43 

 
(0.2,0.2,0.9) 0.46 

 
(0.3,0.1,0.8) 0.5 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.1,0.8) 0.46 

 
(0.3,0.1,0.7) 0.43 

 
(0.3,0.2,0.8) 0.43 

 
(0.2,0.1,0.9) 0.4 

 

Table 8:  List of strong, strong, and strong vertices of   

Vertex Adjacent vertices Degree  
strong strong strong 

  
2.71 

 
- - 

  
2.61 - 

 
- 

  
1.82 - - 
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Table 9: Color identification of α, β, and γ strong vertices 

 

The minimum spanning tree of   is computed using kruskal’s algorithm and its weights 

is observed as  ) = 4.53 

From Table 7, The chromatic number for   is given by, (  ) = 3 

5.3  strong vertices of Residue product [15] 

Consider two single-valued Neutrosophic networks of the graphs    = ( , ) and     = 

( , ) with  = ( , ) and  = ( , ) respectively. Then the Residue product  

 = (   ,  ) is defined as 

  
1.62 - - 

 

  
2.81 

 
- - 

  
2.54 - 

 
- 

  
1.81 - - 

 

  
1.72 - - 

 

  
2.64 

 
- - 

  
2.44 - 

 
- 

  
1.75 - - 

 

  
1.68 - - 

 

Vertex Identification of  Color 

 , -1 

strong vertex , ,  

strong vertex , , ,  
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i) ∀ ( , ) ∈   ,  

   ( , ) = (  ( )   ( ); 

   ( , ) =  ( ) ∧  ( ) and  

 ( , ) =  ( ) ∨  ( ),  

ii) ∀ ( ) ∈  and  ∈ , 

(   ) (( , ), ( , )) =  ( );  

(    ) (( , ), ( , )) =  ( ) and  

(   ) (( , ), ( , )) =  ( ). 

 

The construction of the residue product network   is shown in the following steps.  

Step 1: Construct the residue product network,   of two  (Figure 

3,4). 

Step 2: The truth, indeterminancy and falsity membership values, make up each vertex. Step 3: The 

values are assigned in accordance with Table 10 by using edge cardinality (definition 2.7).  

Step 4: Determine each vertex's adjacent vertices and degree for each vertex. Table 8 provides the 

degree of each vertex in Figure 7.  

Step 5: Sort the α, β, and γ strong vertices according to the conditions given in definition 3.3,3.4 and 

3.5. 

Figure 7 is the neutrosophic network,   which is driven by applying residue product 

between  and . 
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Figure 7:   

Table 10: Membership values of the edges of   

Edges Membership 

Values 

Edge 

Cardinality 

|  

Edges Membership 

Values 

Edge 

Cardinality 

|  

 
(0.3,0.1,0.8) 0.43 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.1,0.7) 0.5 

 
(0.2,0.2,0.9) 0.36 

 
(0.3,0.1,0.7) 0.5 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.2,0.7) 0.46 

 
(0.3,0.2,0.8) 0.46 

 
(0.3,0.2,0.7) 0.46 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.1,0.8) 0.46 

 
(0.3,0.2,0.8) 0.43 
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Table 11:  List of strong, strong, and strong vertices of   

 
(0.3,0.1,0.8) 0.46 

 
(0.2,0.2,0.9) 0.36 

 
(0.2,0.1,0.9) 0.4 

 
(0.3,0.2,0.7) 0.46 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.2,0.7) 0.43 

 
(0.3,0.1,0.8) 0.46 

 
(0.2,0.2,0.9) 0.46 

 
(0.3,0.1,0.7) 0.5 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.2,0.8) 0.43 

 
(0.3,0.1,0.7) 0.43 

 
(0.3,0.2,0.8) 0.46 

 
(0.2,0.1,0.9) 0.4 

 
(0.4,0.2,0.1) 0.7 

 
(0.4,0.3,0.8) 0.43 

 
(0.3,0.2,0.8) 0.43 

 
(0.4,0.2,0.1) 0.7 

 
(0.4,0.3,0.1) 0.66 

 
(0.4,0.3,0.1) 0.66 

Vertex Adjacent vertices Degree 
strong strong strong 

  
2.75 - 

 
- 

  
2.64 - - 

 

  
2.95 - 

 
- 

 ,  
2.82 - 

 
- 

  
2.81 - 

 
- 

  
2.48 - - 

 

  
2.91 

 
- - 
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Table 12: Color identification of α, β, and γ strong vertices 

 

The minimum spanning tree of   is computed using kruskal’s algorithm and its 

weights is observed as  ) = 4.56 

From Table 7, The chromatic number for   is given by, (  ) = 3 

6. Applications of Neutrosophic product network- vertex order coloring 

The fuzzy graph theory discipline has made great strides with the introduction of the NVOC 

method, which provides an advanced tool for network structure optimization under uncertainty. In 

this section, we have presented the algorithm for NVOC, a technique used to assign colors to 

vertices while accommodating uncertainty and vagueness. The NVOC algorithm makes use of the 

special qualities of neutrosophic graphs to offer practical recommendations for a variety of 

real-world applications, enhancing the effectiveness, dependability, and resilience of network 

systems. 

Input: Neutrosophic graphs   and  

Output: Optimal Neutrosophic network .  

 ,  
3.08 

 
- - 

  
2.67  

 
- 

  
2.44 - - 

 

  
2.87 - 

 
- 

 ,  
2.8 - 

 
- 

Vertex Identification of  Color 

  

strong vertex ,  

strong vertex ,  
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Step 1: using several kinds of network operations, construct a connected network , with the 

vertex set   

Step 2: Select the relevant operations and  ascertain the effective edges in the   with  

vertices. 

Step 3: Determine the adjacent edges and make sure they are effective edges in order to construct an 

effective network. The condition to verify the effectiveness of the edge is given as follows. 

 =  [   

Construct a new network with effective edges and eliminate the non-effective ones.  

Step 4: Next, get the degree of each vertex using the formula ( = )) 

Step 5: Based on the criteria listed in definitions 3.2, 3.3, and 3.4, evaluate the properties of vertices 

and categorize them as α strong, β strong, or γ strong vertices.  

Step 6: Determine an m-coloring of the vertices in the . Let { } represent the vertices of 

 : ( , , ), and let {1, 2,..., m} represent the vertex colors in Z+.  

Step 7: From  to ( ), assign colors 1 to . 

Step 8: Assign each strong vertex a unique color that corresponds to ( ) if they are adjacent. If 

they are not adjacent, then assign the same color to each vertex. 

Step 9: Assign color values j+1 to k for each β( ), and then repeat step 7 for all β( ).  

Step 10: Give each vertex of  ( ) the same value from [ +1, ]. An edge that connects two γ 

strong vertices should be removed. If not, apply the same color to each vertex that is a member of 

( ). 

Step 11: For every product network, the weight of the minimum spanning tree (  has been 

calculated in order to evaluate the effective product graph. The chromatic number for each selected 

network can be obtained using .  

Step 12: (|  |) provides the cardinality of α strong vertices, and (  ( )) provides the weight 

of α strong vertices. The analysis of the most optimal network among the many networks will be 

done using the summation ( ) of all these parameters. 
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Step 13: To determine the optimal Neutrosophic product network ( ), the smallest value of , 

where =1,2,..., . Therefore, } 

From Section 5.1, 5.2, 5.3, we arrived at the following,  

Let  be the Co-normal product of Neutrosophic network and its sum of the values of 

, ,  ( ) and ( say =11.67. 

Let  be the Tensor product of Neutrosophic network and its sum of the values of , ,  

( ) and ( say =18.69. 

Let  be the Residue product of Neutrosophic network and its sum of the values of 

, ,  ( ) and ( say =15.55.  

 

Table 13: Comparison of optimal values of neutrosophic product networks 

 

The four elements that make up the ideal network are the identification of various node types, 

examination of the network's effective nodes, assessment of the effectiveness level, and calculation 

of the chromatic number. The Co-normal Neutrosophic product network is the most optimal 

network, according to Table 13. The proposed method effectively handles network structures using 

neutrosophic graph product operations and vertex order coloring, particularly in dealing with 

uncertainty and indeterminacy. However, the limitations may include scalability issues and 

applications scope. The complexity of neutrosophic graphs can increase significantly with the size 

of the network, which may lead to computational challenges in larger datasets. While neutrosophic 

graphs are well-suited for uncertain data, the method may not be optimal for networks where 

certainty and crisp values dominate. 

 

7. Conclusion 

Network optimization can be effectively achieved by examining several graph product operations, 

such as co-normal, tensor, and residue products, through vertex order coloring on neutrosophic 

graphs. With this approach, we could analyze network stability, performance, and 

relationship while taking into consideration the inherent uncertainties of real-world systems. This 

Operations on ’s   ( ) (    

Co- normal product 1 2.31 4.36 4 11.67 

Tensor product 3 8.16 4.53 3 18.69 

Residue product 2 5.99 4.56 3 15.55 
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research improves the ability to design more resilient, dependable, and efficient networks by 

discovering ideal configurations. The healthcare industry is one of the areas where this idea has the 

greatest influence. Neutrosophic graph theory optimization of patient referral networks can result in 

notable enhancements in the provision of healthcare services. Through efficient management of 

patient movement across several healthcare providers and institutions, this methodology guarantees 

prompt access to medical care. This strategy guarantees prompt access to medical care, lowers 

patient wait times, and maximizes the use of medical resources by efficiently regulating the flow of 

patients between different healthcare providers and facilities. Such developments show the 

significant societal benefits of this research by improving patient outcomes as well as the general 

sustainability and efficiency of healthcare systems. Future studies could explore the application of 

neutrosophic graph coloring in diverse areas such as financial networks, transportation logistics, 

and supply chain management. Development of more efficient algorithms to handle large-scale 

neutrosophic graphs and to improve computational performance is another important future 

direction. 
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