
Neutrosophic Sets and Systems, Vol. 76, 2025

University of New Mexico

A Python Class for Neutrosophic Morphology

Lorenzo Affè1,∗, Giorgio Nordo2 and Florentin Smarandache3

1MIFT Department – Mathematical and Computer Science, Physical Sciences and Earth Sciences

University of Messina, 98166 Sant’Agata, Messina, Italy; lorenzo.affe1@gmail.com
2MIFT Department – Mathematical and Computer Science, Physical Sciences and Earth Sciences

University of Messina, 98166 Sant’Agata, Messina, Italy; giorgio.nordo@unime.it
3Mathematics, Physics, and Natural Science Division University of New Mexico 705 Gurley Ave., Gallup, NM

87301, USA; smarand@unm.edu

Abstract. In this work, we introduce a Python class, named NSmorph, developed to facilitate image manip-

ulation through neutrosophic morphological operations. This innovative approach extends traditional image

processing methods by leveraging the flexibility of neutrosophic logic to handle uncertainty, indeterminacy, and

noise in digital images. The class offers implementations of essential morphological operators, such as neu-

trosophic dilation, erosion, opening, and closing, providing a robust tool for applications where image clarity

is often compromised, like medical imaging and surveillance. We detail the class structure and functions and

provide multiple examples to demonstrate its practical applications and comparative advantages over classical

morphological methods.

Keywords: neutrosophic set; neutrosophic morphology; morphological image processing; Python program-

ming; uncertainty in image analysis.

———–

1. Introduction

In contemporary society, marked by increasing complexity and interconnected systems, clas-

sical mathematical theories face significant limitations when applied to real-world scenarios

where vagueness, uncertainty, and indeterminacy are predominant. Such challenges are par-

ticularly pronounced in the field of image analysis, where accurate data interpretation plays a

crucial role in diverse applications ranging from medical diagnostics to security surveillance.

Traditional image processing techniques often struggle to handle these uncertainties effec-

tively, necessitating alternative mathematical approaches capable of modeling and managing

ambiguity [19].

Mathematical Morphology, originally developed by Matheron and Serra [13,14], provides a

powerful set of tools in nonlinear image analysis, primarily focusing on the geometric structure

of images. Classical morphological operators, extensively discussed in Dougherty’s works [2,3],

have proven effective for tasks like noise filtering, shape extraction, and image segmentation.

However, these operators are built on deterministic models of data, which can be limiting

in applications where noise or uncertainty inherently affects image quality. Researchers have

thus explored various generalizations, including Zadeh’s fuzzy sets [20] and Atanassov’s intu-

itionistic fuzzy sets [1], to accommodate situations where precise binary interpretations are

insufficient. These theories laid the groundwork for the emergence of neutrosophic sets, in-

troduced by Smarandache [17], which extend the representation of uncertainty by considering

degrees of truth, indeterminacy, and falsehood independently, providing a nuanced framework

suited to complex, real-world data.

Neutrosophic set theory has been applied successfully in various domains, including graph

theory [4], decision-making [6], and soft topological spaces [7], where traditional mathematical

approaches fall short. In image analysis, Neutrosophic Morphology applies Smarandache’s

principles to extend classical morphological operations, providing a framework that captures

and preserves information about uncertainty and noise within images. This has proven espe-

cially beneficial in applications where data reliability varies significantly, allowing each pixel in

an image to possess distinct degrees of membership, non-membership, and indeterminacy [18].

Studies have demonstrated that neutrosophic operators maintain structural transformations

without losing important information about the underlying uncertainty, making them par-

ticularly effective for medical image analysis [12] and other fields requiring enhanced data

fidelity [8, 16].

The importance of computational applications and frameworks developed in Python has

significantly grown within neutrosophic studies. These frameworks facilitate practical imple-

mentations of neutrosophic concepts, making them more accessible to researchers and practi-

tioners. Recent Python-based tools, such as those by El-Ghareeb [5] and Sleem et al. [16], have

laid foundational work for performing neutrosophic operations efficiently. Nordo et al. [9] fur-

ther extended this effort by developing a comprehensive Python framework specifically tailored

for neutrosophic sets and mappings, highlighting the demand for adaptable and open-source

tools in this field. Such frameworks not only simplify the computational aspects but also

expand the applicability of neutrosophic methods across various disciplines, including image

processing, where tools that address uncertainty and indeterminacy are crucial.

Despite these advancements, there remains a need for a comprehensive and user-friendly

Python-based solution that can perform neutrosophic morphological operations in image anal-

ysis with flexibility and precision. Existing frameworks either focus narrowly on numerical

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 501

neutrosophic operations or lack the modular design needed for broader applicability [5, 16].

Recognizing this gap, we propose NSmorph, a Python class designed to implement fundamen-

tal neutrosophic morphological operators, including neutrosophic dilation, erosion, opening,

and closing. These operators extend traditional morphological techniques into the neutrosophic

domain, providing a versatile toolkit for image manipulation in environments with prevalent

uncertainty, noise, and indeterminacy [11].

The structure of the paper is organized as follows: in Section 2, we delve into the data

structure and the specific methods that constitute the NSmorph class, detailing each compo-

nent’s functionality. Section 3 presents practical examples that demonstrate the efficacy of the

class in various scenarios, along with observations on the performance of neutrosophic opera-

tors relative to their classical counterparts. Finally, in Section 4, we provide our conclusions,

underscoring the advantages of neutrosophic morphology in image analysis and the potential

for future developments in this field [15].

2. The NSmorph class

The NSmorph class is designed for manipulating neutrosophic images using common mor-

phological operators, including NS-dilation, NS-erosion, NS-opening, and NS-closing. The

class constructor can initialize a neutrosophic image from various input types, such as a file

path to a PNG or JPEG image, a NumPy array, or an instance of the NSmorph class itself.

The following code shows how the constructor is implemented:

1 import os.path
2 import cv2 as cv
3 import numpy as np
4 from matplotlib import pyplot as plt

6 class NSmorph:
7 def init (self, image, radius=0):
8 if radius < 0:
9 raise ValueError(f"The radius ’{radius}’ of the neighbourhood cannot be

negative")
10 if type(image) == np.ndarray:
11 if image is None:
12 raise ValueError("The image is not valid")
13 (height, width)=image.shape
14 self. height = height
15 self. width = width
16 self. image_orig = image
17 self. radius = radius
18 i_med = np.zeros((height, width), dtype = np.float32)
19 for y in range(height):
20 for x in range(width):
21 md = 0
22 n_pixel = 0
23 for j in range(y - radius, y + radius + 1):

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 502

24 for i in range(x - radius, x + radius +1):
25 if (0<=i<width) and (0<=j<height) :
26 md += image[j][i]
27 n_pixel += 1
28 md /= n_pixel
29 i_med[y][x] = md
30 i_med_min = i_med.min()
31 i_med_max = i_med.max()
32 i_med_size = i_med_max - i_med_min
33 delta = np.zeros((height, width), dtype=np.float32)
34 for y in range(height):
35 for x in range(width):
36 delta[y][x] = abs(image[y][x] - i_med[y][x])
37 delta_min = delta.min()
38 delta_max = delta.max()
39 delta_size = delta_max - delta_min
40 ns_image = np.zeros((height, width, 3), dtype = np.float32)
41 for y in range(height):
42 for x in range(width):
43 ns_image[y][x][0] = (i_med[y][x] - i_med_min)/i_med_size if

i_med_size !=0 else 0
44 ns_image[y][x][1] = (delta[y][x] - delta_min)/delta_size if

delta_size !=0 else 0
45 ns_image[y][x][2] = 1 - ns_image[y][x][0]
46 self. ns_image = ns_image
47 elif type(image) == str:
48 tmp_imgns = NSmorph(NSmorph.load(image), radius)
49 self. ns_image = tmp_imgns.get()
50 self. image_orig = tmp_imgns.getOrig()
51 self. height = tmp_imgns.height()
52 self. width = tmp_imgns.width()
53 self. radius = radius
54 elif type(image) == NSmorph :
55 self. ns_image = image.get()
56 self. image_orig = image.getOrig()
57 self. height = image.height()
58 self. width = image.width()
59 self. radius = image.radius()
60 else:
61 raise ValueError("The first parameter must be a matrix or a string")

Lines 1 to 4 import necessary libraries, including OpenCV and NumPy for image handling

and pyplot for visualization. The constructor is defined in line 7, where the radius pa-

rameter is checked for validity in lines 8 and 9. The constructor can handle three types of

input:

• NumPy array (lines 10–46): If image is a NumPy array, the image’s height, width,

and radius are stored. Then, from lines 18 to 32, the average intensity I for each

pixel is computed by averaging the values within the kernel centered at each pixel.

This forms the first channel of the neutrosophic image. In lines 33 to 39, the delta

matrix, which measures intensity deviation from the local average (representing the

homogeneity function), is computed and stored as the second channel. Finally, lines 40

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 503

to 46 construct the neutrosophic image by normalizing the intensity and delta values

and calculating the non-membership degree as 1− membership.

• File path (string) (lines 47–53): If image is a file path, the constructor calls the load

method to load the image as a grayscale NumPy array. The NSmorph instance for

this image is then initialized, and the original image dimensions and radius are set.

• Existing NSmorph object (lines 54–59): If image is an existing NSmorph instance,

the neutrosophic image and related attributes are directly copied.

Finally, in lines 60 and 61, if the input does not match any valid types, an error is raised.

The NSmorph class also includes several methods to retrieve the complete neutrosophic

image or its individual components—membership, non-membership, and indeterminacy—or

to convert it back to the original binary format. These functions provide flexible access and

modification capabilities for each aspect of the neutrosophic image representation.

A particularly useful method is the static method load(img path), which loads an image

from a specified file path img path. This method reads the image in grayscale, thus sim-

plifying conversion to the neutrosophic format. If the provided path is invalid, not found, or

inaccessible, the method raises an error, leveraging os.path.isfile() to verify the file’s

existence. This ensures that only valid paths are processed, preventing runtime issues due to

incorrect paths.

1 @staticmethod
2 def load(img_path):
3 if img_path is None:
4 raise ValueError("The path of the image is not valid")
5 if not os.path.isfile(img_path):
6 raise FileNotFoundError(f"The file ’{img_path}’ does not exist or it is

not accessible.")
7 image = cv.imread(img_path, cv.IMREAD_GRAYSCALE)
8 if image is None:
9 raise IOError(f"It has not been possible to read the image file ’{

img_path}’")
10 return image

The get() method gives back the neutrosophic image.

1 def get(self):
2 return self. ns_image

Methods are also available for retrieving and assigning specific components of the neutro-

sophic image:

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 504

• Membership (getM() and setM()): getM() returns the membership degree for each

pixel, while setM(x, y, mu) allows for setting the membership degree at a specific

pixel location (x, y).

• Non-membership (getNM() and setNM()): getNM() retrieves the non-membership

degree matrix, and setNM(x, y, omega) sets the non-membership degree for the

specified pixel.

• Indeterminacy (getI() and setI()): getI() returns the indeterminacy degree,

while setI(x, y, sigma) assigns a new indeterminacy degree to a given pixel.

Each method supports fine-grained control over image processing, allowing users to either view

or modify the neutrosophic image’s distinct properties individually or as a composite.

1 def getM(self):
2 return self. ns_image[:,:,0]

4 def getI(self):
5 return self. ns.image[:,:,1]

7 def getNM(self):
8 return self. ns.image[:,:,2]

11 def setM(self, x, y, mu):
12 self. ns_image[y][x][0] = mu

14 def setI(self, x, y, sigma):
15 self. ns_image[y][x][1] = sigma

17 def setNM(self, x, y, omega):
18 self. ns_image[y][x][2] = omega

The getOrig() method returns the original grayscale image from which the neutrosophic

image was derived. This can be useful for comparison purposes, allowing users to access the

unprocessed version of the image alongside its neutrosophic representation. The method is

implemented as follows:

1 def getOrig(self):
2 return self. image

The width() and height() methods return the width and height of the image, respec-

tively. These methods are particularly useful when constructing other morphological opera-

tions, such as dilation and erosion, as they provide easy access to the dimensions of the image,

which is essential for managing boundary conditions and kernel application across the entire

image. The implementations are straightforward:

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 505

1 def width(self):
2 return self. width

4 def height(self):
5 return self. height

The radius()method returns the radius of the neighborhood associated with the uploaded

image. This radius defines the size of the local region around each pixel that is used in

various neutrosophic morphological operations, such as calculating local intensity averages

or applying structuring elements in dilation and erosion. Accessing the radius through this

method is particularly useful when the neighborhood size impacts processing or when adapting

the morphological operators to different kernel sizes. The implementation is as follows:

1 def radius(self):
2 return self. radius

The getBinary() method performs thresholding on the current image, producing a bi-

nary image based on a threshold value specified by the user. The method returns a binary

representation of the image as a NumPy matrix, where rows and columns are indexed from

(0, 0) at the top left corner. In this binary matrix, pixel values are set to 0 (black) for inten-

sities below the threshold and 1 (white) for intensities equal to or above the threshold. The

method is implemented as follows:

1 def getBinary(self, threshold):
2 (ret, bin_image) = cv.threshold(self.__image_orig, threshold, 1, cv.

THRESH_BINARY)
3 return bin_image

The getRepresentation() method returns a grayscale image that represents an inter-

polation of the three neutrosophic levels: membership, indeterminacy, and non-membership.

This interpolation combines the three levels based on customizable weights provided as op-

tional parameters. By default, these weights prioritize the membership degree, reflecting its

primary influence on the pixel intensity in the resulting grayscale image. The following code

illustrates this implementation:

1 def getRepresentation(self, weightM=0.85, weightI=0.25, weightNM=-0.1, binary
=False, limit_value=128):

2 img_M = self.getM()
3 img_I = self.getI()
4 img_NM = self.getNM()
5 mat_rap = np.zeros((self. height, self. width, 3), dtype = np.float32)

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 506

6 for y in range(self. height):
7 for x in range(self. width):
8 mat_rap[y][x][0] = weightM*img_M[y][x] + weightI*img_I[y][x] +

weightNM*img_NM[y][x]
9 img_rap = cv.cvtColor(mat_rap, cv.COLOR_BGR2GRAY)

10 if binary == True:
11 (ret, img_rap) = cv.threshold(img_rap, limit_value, 1, cv.THRESH_BINARY)
12 return img_rap

The method signature is as follows:

• weightM: Weight assigned to the membership degree. Default is 0.85.

• weightI: Weight assigned to the indeterminacy degree. Default is 0.25.

• weightNM: Weight assigned to the non-membership degree. Default is -0.1.

• binary: Boolean flag to enable binarization of the resulting image based on a thresh-

old.

• limit value: Threshold value used for binarization if binary is set to True. De-

fault is 128.

The grayscale image is generated by combining the three components, emphasizing areas

with higher membership and optionally applying thresholding if binary is True. If thresh-

olding is active, the method uses limit value to convert the grayscale image to a binary

one, mapping values above the threshold to white and those below to black.

This function is particularly useful for visualizing the overall neutrosophic information in a

single image, allowing for quick interpretation of complex neutrosophic properties in greyscale

or binary format.

2.1. Neutrosophic dilation

The dilation(self, kernel) method performs the dilation operation on a neutro-

sophic image, using another neutrosophic image as the structuring element (kernel). The

method returns the dilated neutrosophic image and it is implemented as follows:

1 def dilation(self, kernel):
2 (height, width) = (self. height, self. width)
3 (height_k, width_k) = (kernel.height(), kernel.width())
4

5 img_M = self.getM()
6 img_I = self.getI()
7 img_NM = self.getNM()
8 kernel_M = kernel.getM()
9 kernel_I = kernel.getI()

10 kernel_NM = kernel.getNM()
11

12 mat_generating = np.zeros((height, width, 3), dtype=np.uint8)
13 im_empty = cv.cvtColor(mat_generating, cv.COLOR_BGR2GRAY)

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 507

14 im_dil = NSmorph(im_empty)
15

16 for y in range(height):
17 for x in range(width):
18

19 width_sx = x - width_k//2
20 if width_sx<0 :
21 width_sx = 0
22 width_dx = x + width_k//2 +1
23 if width_dx > width - 1 :
24 width_dx = width - 1
25 height_up = y - height_k//2
26 if height_up < 0 :
27 height_up = 0
28 height_down = y+ height_k//2 + 1
29 if height_down > height - 1 :
30 height_down = height - 1
31

32 mat_M = img_M[height_up:height_down, width_sx:width_dx]
33 mat_I = img_I[height_up:height_down, width_sx:width_dx]
34 mat_NM = img_NM[height_up:height_down, width_sx:width_dx]
35

36 (n_rows, n_columns) = mat_M.shape
37

38 width_sx_kernel = width_k//2 - n_columns//2
39 if width_sx_kernel > n_columns//2 - 1:
40 width_sx_kernel = 0
41 width_dx_kernel = width_k//2 + n_columns//2 + 1
42 if width_dx_kernel > n_columns//2 + 1:
43 width_dx_kernel = n_columns
44 height_up_kernel = height_k//2 - n_rows//2
45 if height_up_kernel > n_rows//2 - 1:
46 height_up_kernel = 0
47 height_down_kernel = height_k//2 + n_rows//2 + 1
48 if height_down_kernel > n_rows//2 + 1 :
49 height_down_kernel = n_rows
50

51 mat_kernelM = kernel_M[height_up_kernel:height_down_kernel,
width_sx_kernel:width_dx_kernel]

52 mat_kernelI = kernel_I[height_up_kernel:height_down_kernel,
width_sx_kernel:width_dx_kernel]

53 mat_kernelNM = kernel_NM[height_up_kernel:height_down_kernel,
width_sx_kernel:width_dx_kernel]

54

55 minimum_M = np.minimum(mat_M, mat_kernelM)
56 minimum_I = np.minimum(mat_I, mat_kernelI)
57 maximum_NM = np.maximum(mat_NM, 1 - mat_kernelNM)
58

59 mu = minimum_M.max()
60 sigma = minimum_I.max()
61 omega = maximum_NM.min()
62

63 im_dil.setM(x, y, mu)
64 im_dil.setI(x, y, sigma)
65 im_dil.setNM(x, y, omega)
66 return im_dil

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 508

In lines 2 and 3, the dimensions of both the input image and the kernel are stored in separate

tuples. Then, in lines 5 to 10, the membership, indeterminacy, and non-membership matrices

of the image and kernel are retrieved.

From lines 12 to 14, an empty matrix, mat generating, is created using np.zeros()

from the NumPy library. This matrix is converted into a grayscale image, im empty, with

OpenCV’s cv.cvtColor() function and serves as the base for creating the dilated neutro-

sophic image im dil.

Lines 16 and 17 use nested for loops to iterate through each pixel of the input image.

Within each loop, lines 19 to 30 define the bounds for the image region centered on the

current pixel (x, y), ensuring that the extracted region matches the size of the kernel. This is

done by adjusting for any out-of-bounds areas along the edges of the image, where the kernel

might partially exceed the image boundaries.

In lines 32 to 34, the membership, indeterminacy, and non-membership matrices are ex-

tracted for the region defined by these bounds, centered around (x, y). Line 36 then evaluates

the actual dimensions of these matrices, accounting for cases where the region is truncated by

image boundaries.

Lines 38 to 49 set up further bounds to ensure that the extracted kernel matrices align pre-

cisely with the region around (x, y) in the image. This step helps reduce the kernel dimensions

to match those of the extracted region when scanning near boundaries.

The actual dilation operation occurs in lines 55 to 61, applying the following neutrosophic

morphological formulas:

µA⊕B(v) = sup
u∈U

min {µA(v + u), µB(u)} ,

σA⊕B(v) = sup
u∈U

min {σA(v + u), σB(u)} ,

ωA⊕B(v) = inf
u∈U

max {ωA(v + u), 1− ωB(u)} ,

where µA⊕B(v), σA⊕B(v), and ωA⊕B(v) represent the degrees of membership, indeterminacy,

and non-membership, respectively, after dilation.

In lines 63 to 65, the calculated values for membership, indeterminacy, and non-membership

are stored in the im dil image at position (x, y). Finally, in line 66, the fully processed dilated

neutrosophic image is returned.

2.2. Neutrosophic erosion

The erosion(self, kernel) method applies the neutrosophic erosion operation to the

input image using a specified kernel, which is also a neutrosophic image. The method returns

the eroded neutrosophic image and is implemented as follows:

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 509

1 def erosion(self, kernel):
2 (height, width) = (self.__height, self.__width)
3 (height_k, width_k) = (kernel.height(), kernel.width())
4

5 img_M = self.getM()
6 img_I = self.getI()
7 img_NM = self.getNM()
8 kernel_M = kernel.getM()
9 kernel_I = kernel.getI()

10 kernel_NM = kernel.getNM()
11

12 mat_generating = np.zeros((height, width, 3), dtype=np.uint8)
13 im_empty = cv.cvtColor(mat_generating, cv.COLOR_BGR2GRAY)
14 im_er = NSmorph(im_empty)
15

16 for y in range(height):
17 for x in range(width):
18

19 width_sx = x - width_k//2
20 if width_sx<0 :
21 width_sx = 0
22 width_dx = x + width_k//2 +1
23 if width_dx > width - 1 :
24 width_dx = width - 1
25 height_up = y - height_k//2
26 if height_up < 0 :
27 height_up = 0
28 height_down = y+ height_k//2 + 1
29 if height_down > height - 1 :
30 height_down = height - 1
31

32 mat_M = img_M[height_up:height_down, width_sx:width_dx]
33 mat_I = img_I[height_up:height_down, width_sx:width_dx]
34 mat_NM = img_NM[height_up:height_down, width_sx:width_dx]
35

36 (n_rows, n_columns) = mat_M.shape
37

38 width_sx_kernel = width_k//2 - n_columns//2
39 if width_sx_kernel > n_columns//2 - 1:
40 width_sx_kernel = 0
41 width_dx_kernel = width_k//2 + n_columns//2 + 1
42 if width_dx_kernel > n_columns//2 + 1:
43 width_dx_kernel = n_columns
44 height_up_kernel = height_k//2 - n_rows//2
45 if height_up_kernel > n_rows//2 - 1:
46 height_up_kernel = 0
47 height_down_kernel = height_k//2 + n_rows//2 + 1
48 if height_down_kernel > n_rows//2 + 1 :
49 height_down_kernel = n_rows
50

51 mat_kernelM = kernel_M[height_up_kernel:height_down_kernel,
width_sx_kernel:width_dx_kernel]

52 mat_kernelI = kernel_I[height_up_kernel:height_down_kernel,
width_sx_kernel:width_dx_kernel]

53 mat_kernelNM = kernel_NM[height_up_kernel:height_down_kernel,
width_sx_kernel:width_dx_kernel]

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 510

54

55 maximum_M = np.maximum(mat_M, 1 - mat_kernelM)
56 maximum_I = np.maximum(mat_I, 1 - mat_kernelI)
57 minimum_NM = np.minimum(mat_NM, mat_kernelNM)
58

59 mu = maximum_M.min()
60 sigma = maximum_I.min()
61 omega = minimum_NM.max()
62

63 im_er.setM(x, y, mu)
64 im_er.setI(x, y, sigma)
65 im_er.setNM(x, y, omega)
66 return im_er

Similar to the neutrosophic dilation method, the dimensions of both the input image and

kernel are stored in tuples (lines 2 and 3), and the membership, indeterminacy, and non-

membership matrices of the input image and kernel are assigned to img M, img I, img NM

and kernel M, kernel I, kernel NM respectively (lines 5 to 10).

Lines 12 to 14 create an empty matrix, mat generating, which serves as the base

for the output eroded image, im er. The matrix is initialized as a grayscale image using

cv.cvtColor() from the OpenCV library.

Nested for loops in lines 16 and 17 iterate over each pixel in the input image. Lines 19 to 30

define the region within the input image centered at each pixel (x, y), ensuring the extracted

region matches the kernel size. These boundary checks ensure that when the kernel partially

overlaps the image edges, the region adjusts accordingly to prevent out-of-bounds errors.

The membership, indeterminacy, and non-membership matrices for the region around (x, y)

are extracted in lines 32 to 34. In line 36, the actual dimensions of these matrices are deter-

mined to account for potential edge clipping.

Lines 38 to 49 then adjust the kernel’s size to match that of the extracted region, ensuring

alignment during the operation.

The erosion operation is applied in lines 55 to 61, using the following formulas for neutro-

sophic morphological erosion:

µA⊖B(v) = inf
u∈U

max {µA(v + u), 1− µB(u)} ,

σA⊖B(v) = inf
u∈U

max {σA(v + u), 1− σB(u)} ,

ωA⊖B(v) = sup
u∈U

min {ωA(v + u), ωB(u)} ,

where µA⊖B(v), σA⊖B(v), and ωA⊖B(v) represent the degrees of membership, indeterminacy,

and non-membership, respectively, for the eroded image.

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 511

Finally, in lines 63 to 65, the computed membership, indeterminacy, and non-membership

values are saved to im er at (x, y). In line 66, the method returns the fully processed eroded

neutrosophic image.

2.3. Neutrosophic opening and closing

The opening(self, kernel) method performs the neutrosophic opening operation on

the image. This operation first applies the erosion operator, followed by the dilation operator,

using the same kernel, which is also a neutrosophic image, passed as a parameter. The result

is a neutrosophic image where small structures are removed, and larger shapes are preserved

without altering their boundaries significantly. This method is especially useful for tasks where

noise reduction or shape smoothing is required. The implementation is straightforward:

1 def opening(self, kernel):
2 return self.erosion(kernel).dilation(kernel)

The closing(self, kernel) method, in contrast, performs the neutrosophic closing

operation. This operation first applies the dilation operator to the image, followed by the

erosion operator, using the same kernel provided. Closing is typically used to fill small holes

and connect adjacent structures within an image without significantly altering their contours,

making it useful in image enhancement tasks. The implementation is as follows:

1 def closing(self, kernel):
2 return self.dilation(kernel).erosion(kernel)

The complete source code for this Python class has been released under the Open Source

GNU General Public License version 3.0 (or GPL-3.0) and is freely accessible at the url

github.com/lorenzoaffe/nsmorph.

3. Examples and Observations

In this section, we demonstrate the NSmorph class by using neutrosophic dilation, erosion,

opening, and closing operations on an image affected by noise. These examples showcase how

each neutrosophic morphological operator interacts with noisy data, specifically observing the

effect on the image’s brightness, clarity, and feature preservation. Such noise, often introduced

as random variations in pixel values, can significantly compromise image quality in real-world

applications.

1 from ns_morph import NSmorph
2 import cv2 as cv

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 512

https://github.com/lorenzoaffe/nsmorph

3 import numpy as np
4 from matplotlib import pyplot as plt

6 path_image = "immagini/j_puntini.jpg"
7 image = NSmorph.load(path_image)
8 ns_image = NSmorph(image, 4)

10 path_kernel = "immagini/kernel_croce.jpg"
11 kernel = NSmorph.load(path_kernel)
12 ns_kernel = NSmorph(kernel, 1)

14 nsdil_image = ns_image.dilation(ns_kernel)

16 plt.suptitle("Neutrosophic dilation (M=membership, I=indeterminacy, NM=non-
membership)")

18 plt.subplot(4,3,1)
19 plt.imshow(ns_image.getOrig(), cmap=’gray’)
20 plt.xticks([])
21 plt.yticks([])
22 plt.title("Original")

24 ...

26 plt.subplot(4,3,11)
27 plt.imshow(nsdil_image.getRepresentation(), cmap=’gray’)
28 plt.xticks([])
29 plt.yticks([])
30 plt.title("dilation")

32 plt.subplot(4,3,12)
33 plt.imshow(nsdil_image.getRepresentation(binary=True, limit_value=0.04), cmap=

’gray’)
34 plt.xticks([])
35 plt.yticks([])
36 plt.title("binarized dilation")

38 plt.show()

In lines 1 to 4, we import necessary modules and libraries, including NSmorph, OpenCV-

Python, NumPy, and pyplot from Matplotlib. Lines 6 to 8 generate the neutrosophic image

from the specified path using the static method load(img path). Similarly, lines 10 to 12

initialize the kernel. Line 14 performs neutrosophic dilation on the image with the kernel,

storing the result in nsdil image. From lines 18 to 36, the images are plotted, showing the

original, the dilated, and the binarized dilated images.

Figures 1, 2, 3, and 4 present the results of applying NS-dilation, NS-erosion, NS-opening,

and NS-closing respectively. Each figure includes grayscale images of the membership, inde-

terminacy, and non-membership components, as well as the interpolated neutrosophic image

and a binarized version obtained through thresholding.

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 513

Figure 1. Example of the neutrosophic dilation of a neutrosophic image with
image radius = 4 and kernel radius = 1

In Figure 1, we observe that the NS-dilation operator effectively smooths the shape of

the image while filling in small holes. Notably, the indeterminacy component (I) retains the

presence of noise, indicating areas where the operator’s action is limited by the uncertainty

inherent in the noisy regions.

Figure 2 shows the application of the NS-erosion operator, which reduces protrusions and

expands holes. Similar to dilation, erosion captures noise effects, particularly in the mem-

bership (M) and non-membership (NM) components. This retention of noise highlights how

neutrosophic operators can provide information on uncertainty while performing morphological

transformations.

In Figure 3, the NS-opening operator, a sequence of erosion followed by dilation, preserves

the indeterminacy and non-membership values in noisy areas but still manages to remove

minor structures without disturbing the primary shape of the image. This operator is effective

in refining shapes by reducing small-scale noise, emphasizing indeterminacy in regions with

higher pixel variability.

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 514

Figure 2. Example of the neutrosophic erosion of a neutrosophic image with
image radius = 4 and kernel radius = 1

Finally, Figure 4 shows the NS-closing operation, which first applies dilation and then ero-

sion. This operation fills small gaps and connects nearby features, with noise remaining visible

in the indeterminacy component. The ability of NS-closing to smooth object boundaries with-

out completely erasing uncertainty demonstrates its utility in applications where preserving

ambiguous regions is important.

These examples illustrate the unique advantages of neutrosophic morphological operators,

which maintain noise information through indeterminacy while effectively processing image

structures. This dual capability of modification and noise retention makes neutrosophic mor-

phology suitable for complex image processing tasks where uncertainty plays a significant role.

4. Conclusions

In this paper, we introduced NSmorph, a Python class designed for the manipulation of

neutrosophic digital images through morphological operators specifically tailored to handle

uncertainty and ambiguity. This class implements key neutrosophic operators, including NS-

dilation, NS-erosion, NS-opening, and NS-closing, each serving as an extension of classical

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 515

Figure 3. Example of the neutrosophic opening of a neutrosophic image with
image radius = 4 and kernel radius = 1

morphology in a way that retains the core actions of these transformations while addressing

noise and indeterminacy. The design of NSmorph includes a flexible constructor and a suite

of methods that allow users to access, modify, and visualize the membership, indeterminacy,

and non-membership components of an image, adding a layer of control that is essential for

applications where uncertain data is prevalent.

The examples provided illustrate how neutrosophic operators differ from traditional mor-

phology, showcasing their capacity to improve image processing outcomes in noisy environ-

ments. In particular, the neutrosophic dilation and erosion operations demonstrated a unique

capability to maintain information on uncertainty in the indeterminacy component while per-

forming standard morphological tasks, such as smoothing shapes and filling or reducing holes.

This dual function of transforming image structures while retaining noise information in the

indeterminacy channel provides a substantial advantage for applications that require both en-

hancement and detailed uncertainty analysis, such as medical imaging, remote sensing, and

security surveillance.

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 516

Figure 4. Example of the neutrosophic closing of a neutrosophic image with
image radius = 4 and kernel radius = 1

Similarly, the neutrosophic opening and closing operations highlighted the class’s capability

to refine image structures. The NS-opening operator proved effective in reducing small-scale

noise while sharpening key features, thus avoiding the loss of critical information. On the other

hand, the NS-closing operator showed effectiveness in filling small gaps and connecting nearby

structures without compromising the representation of ambiguous areas. These observations

underscore how NSmorph enables users to adapt morphological operations to complex image

processing needs, where standard morphological operators would typically smooth or discard

valuable uncertain information.

Overall, the development of NSmorph contributes to the field of digital image processing by

providing a robust tool for managing indeterminate data, preserving ambiguity, and enhancing

the interpretability of images under uncertain conditions. The demonstrated effectiveness of

neutrosophic morphological operators in retaining and processing noise information establishes

NSmorph as a valuable asset for researchers and practitioners who require enhanced flexibil-

ity and control over image data affected by noise or uncertainty. Future work may explore

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 517

additional neutrosophic operators or adaptations of existing ones to further expand the class’s

utility across diverse image processing applications.

Acknowledgment

This research was supported by Gruppo Nazionale per le Strutture Algebriche, Geometriche

e le loro Applicazioni (G.N.S.A.G.A.) of Istituto Nazionale di Alta Matematica (INdAM)

”F. Severi”, Italy.

References

1. Atanassov K.T. Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 20 (1), pp. 87-96, 1986.

2. Dougherty E.R. An Introduction to Morphological Image Processing. SPIE Optical Engineering Press,

Bellingham, Washington (USA), 1992.

3. Dougherty E.R., Lotufo R.A. Hands-on Morphological Image Processing. SPIE Press, Bellingham, Wash-

ington (USA), 2003.

4. Broumi S., Talea M., Bakali A., Smarandache F. Single valued neutrosophic graphs. Journal of New theory

10, pp. 86-101, 2016.

5. El-Ghareeb H.A. Novel Open Source Python Neutrosophic Package. Neutrosophic Sets and Systems 25, pp.

136-160, 2019.

6. Mehmood A., Nadeem F., Nordo G., Zamir M., Park C.,Kalsoom H., Jabeen S., Khan M.Y. Generalized

neutrosophic separation axioms in neutrosophic soft topological spaces. Neutrosophic Sets and Systems 32

(1), pp. 38–51, 2020.

7. Mehmood A., Nadeem F., Park C., Nordo G., Kalsoom H., Rahim Khan M., Abbas N. Neutrosophic soft

alpha-open set in neutrosophic soft topological spaces. Journal of Algorithms and Computation 52, pp.

37–66, 2020.

8. Nordo G., Mehmood A., Broumi S. Single Valued Neutrosophic Filters. International Journal of Neutro-

sophic Science 6, pp. 8-21, 2020.

9. Nordo G., Jafari S., Mehmood A., Basumatary B. A Python Framework for Neutrosophic Sets and Map-

pings. Neutrosophic Sets and Systems 65, pp. 199-236, 2024.

10. Salama A., El-Ghareeb H.A.. Manie A.M., Smarandache F. Introduction to develop some software programs

for dealing with neutrosophic sets. Neutrosophic Sets and Systems 3, pp. 51-52, 2019.

11. Salama A., Abd el-Fattah M., El-Ghareeb H.A.. Manie A.M. Design and Implementation of Neutrosophic

Data Operations Using Object Oriented Programming. International Journal of Computer Application 4

(5), pp. 163-175, 2014.

12. Salama A.A., El-Hafeez S.A., El-Nakeeb A., El-Hassanein Eman M. Neutrosophic Approach for Mathemat-

ical Morphology. Master’s thesis, Port Said University, 2018.

13. Serra J. Image Analysis and Mathematical Morphology. Academic Press, London (UK), 1982.

14. Serra J., Soille P. (Eds.) Mathematical Morphology and Its Applications to Image and Signal Processing.

Kluwer Academic Publishers, Dordrecht (Netherlands), 1994.

15. Shih F.Y. Image processing and Mathematical Morphology: Fundamentals and Applications. CRC Press,

New York (USA), 2009.

16. Sleem A., Abdel-Baset M., El-henawy I. PyIVNS: A python based tool for Interval-valued neutrosophic

operations and normalization. SoftwareX 12, pp. 1-7, 2020.

17. Smarandache F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic. Re-

hoboth: American Research Press, 1999.

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 518

18. Wang H., Smarandache F., Zhang Y.Q., Sunderraman R. Single Valued Neutrosophic Sets. Technical Sci-

ences and Applied Mathematics, pp. 10-14, 2012.

19. Wilson J.N, Ritter G.X. Handbook of Computer Vision Algorithms in Image Algebra (2nd edition). CRC

Press, New York (USA), 2000.

20. Zadeh L.A. Fuzzy Sets, Information and Control 8 (3), pp. 338-353, 1965.

Affè L., Nordo G., Smarandache F., A Python Class for Neutrosophic Morphology

Neutrosophic Sets and Systems, Vol. 76, 2025 519

Received: July 26, 2024. Accepted: Oct 25, 2024

	1. Introduction
	2. The NSmorph class
	2.1. Neutrosophic dilation
	2.2. Neutrosophic erosion
	2.3. Neutrosophic opening and closing

	3. Examples and Observations
	4. Conclusions
	Acknowledgment
	References

