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Abstract. The notion of Neutrosophic sets first introduced by Smarandache in 1998 as a generalization of intu-

itionistic fuzzy sets. Furthermore, Al-Tahan in 2022 introduced the notion of NeutroHyperstructures. Inspired

by this research, in this study, we extend NeutroAlgebra and NeutroOrderedAlgebra by introducing two new

concepts: NeutroHyperring and NeutroOrderedHyperring. These new concepts enrich the existing framework

by incorporating neutrosophic elements, enabling the exploration of complex relationships and uncertainties

within algebraic and ordered structures. Furthermore, NeutroHyperring applications on the NeutroRing is also

introduced.
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—————————————————————————————————————————-

1. Introduction

In 1934, The notion of hyperstructures is introduced by Marty as generalizations of algebraic

structures [1]. Subsequently, Vougiouklis further extended hyperstructures into a structure

known as the Hv-structure [2]. Different types of hyperstructures, including hypergroups,

hyperrings, and hypermodules [3–5]. The study of hyperstructures involves both theoretical

research and practical applications in various fields, such as chemistry [6–8], physics [9, 10],

and biology [11–13].

In 1998, Smarandache introduced neutrosophic sets as a generalization of intuitionistic fuzzy

sets [20]. Like algebraic structures, neutrosophic sets can be defined as abstract structures

referred to as NeutroAlgebraic Structures [21]. Examples of NeutroAlgebraic Structures in-

clude NeutroGroups [22], NeutroRings [23, 33], and NeutroR-modules [24]. Moreover, the
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neutrosophic concept can be applied to hyperstructures, resulting in the creation of Neu-

troHyperstructures [25, 26], which encompass structures such as NeutroHv-semigroups [25],

NeutroHypergroups [26], and Neutro-LA Semihypergroups [27]. Additionally, the application

of the neutrosophic concept extends to ordered algebra and ordered hyperalgebra, leading

to the development of structures like NeutroOrderedSemigroups [28, 29] and NeutroOrdered-

Semihypergroups [30].

Inspired by previous research on NeutroHyperstructures [25, 26], this paper focuses on

applying the neutrosophic concept to hyperrings, introducing a new concept called Neutro-

Hyperring. Furthermore, the neutrosophic concept is also extended to OrderedHyperrings,

resulting in another new concept termed NeutroOrderedHyperring. This paper begins with

an introduction and proceeds to present the fundamental theory required for this research in

Section 2. Section 3 defines the notions of NeutroHyperring, NeutroKrasnerHyperring, and

NeutroHvRings, along with their related properties. Section 4 explores the construction of

NeutroMorphisms on NeutroHyperrings (NeutroHvRings) and analyzes properties associated

with these morphisms. In Section 5, the notion of NeutroOrderedHyperring is introduced, and

relevant properties are examined, In Section 6, given some application of NeutroHyperring in

NeutroRing. Finally, Section 7 concludes the paper by summarizing the research findings.

2. Basic Concepts

In this section, we introduce the necessary theoretical foundations for our research. We

begin with the concept of Hyperstructures and NeutroHyperstructures.

2.1. Hyperstructures and NeutroHyperstructures

Let H be a nonempty set. The mapping + : H × H → P ∗(H) is a collection nonempty

subset of H, is called a hyperoperation of H. The pair (H,+) called a hypergroupoid. Here, if

C,D ⊆ H and x ∈ H, then we denote

C+D =
⋃

c∈C,d∈D c+ d, x+ C = x+ C and D+ x = D+ x

Furthermore, a hypergroupoid (H,+) is called a semihypergroup if for every x, y, z ∈ H,

x+ (y + z) = (x+ y) + z. This is mean:⋃
c∈y+z x+ c =

⋃
d∈x+y d+ z

and (H,+) is called a quasi-hypergroup if for every x ∈ H, x + H = H + x = H. The latter

condition is called the reproduction axiom. The hypergroupoid (H,+) is called a hypergroup

if (H,+) is a semihypergroup and quasi-hypergroup [31].

Next, we recall the definition of hyperrings. There are two types of hyperring, additive

hyperrings and Krasner hyperrings, which are special case of additive hyperrings [32]. First,

we recall the definition of canonical hypergroups
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Definition 2.1 (3). Let (R,+) be a hypergroupoid. Then, R is called a canonical hypergroup

if all of the following conditions are satisfied.

(1) For every x, y, z ∈ R, x+ (y + z) = (x+ y) + z.

(2) For every x, y ∈ R, x+ y = y + x.

(3) There exists 0 ∈ R such that for every x ∈ R, 0 + x = {x}.
(4) For every x ∈ R, there exists a unique element y ∈ R such that 0 ∈ x + y (We shall

write −x for y and we called it the opposite of x).

(5) For every x, y, z ∈ R, If z ∈ x+ y, then y ∈ −x+ z and x ∈ z − y.

Definition 2.2 (3). Let R be a nonempty set. The system (R,+,⊙) is called a hyperring if

all of the following conditions are satisfied.

(1) (R,+) is a hypergroup.

(2) (R,⊙) is a semihypergroup.

(3) For every x, y, z ∈ R, x⊙ (y + z) = x⊙ y + x⊙ z and (y + z)⊙ x = y ⊙ x+ z ⊙ x

Remark 2.3. Based on Definition 2.2, The system (R,+,⊙) is called a Krasner hyperring if

(R,+) is a canonical hypergroup and (R,⊙) is a semigroup with x⊙ 0 = 0⊙ x = 0.

Definition 2.4 (3). Let (R,+,⊙) be a hyperring and S be a nonempty subset of R. The set

S is called subhyperring of R if (S,+,⊙) is itself a hyperring.

Definition 2.5 (3). Let S be a subhyperring of a hyperring R. Then, S is called left (right)

hyperideal of R if for every r ∈ R, r⊙ s ⊆ S(s⊙ r ⊆ S) for every s ∈ S. If S is left and right

hyperideal, then S is called a hyperideal of R.

Next, we recall some notion of NeutroHyperstructures.

Definition 2.6 (26). A nonempty set R with hyperoperation ”+ : R×R→ P ∗(R)” is called

a NeutroHypergroupoid if (R,+) is a NeutroHyperoperation. (R,+) is called a NeutroSemi-

hypergroup if “ + ” is NeutroAssociative but not an AntiHyperoperation. (R,+) is called a

NeutroHv-semigroup if “ + ” is NeutroWeakAssociative but not an AntiHyperoperation.

Definition 2.7 (25). Let ”+ : R×R→ P ∗(R)” be an NeutroOperation. Then, (R,+) is called

a NeutroHypergroup if (R,+) is a NeutroSemihypergroup and satisfies NeutroReproduction

Axiom.

For other notions of NeutroHyperstructures, it can be referred to [25] and [26].

Example 2.8. Let F = {α, β, γ, δ} and define an hyperoperation ”⊡” as follows.
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⊡ α β γ δ

α α {α, β} {α, γ} {α, δ}
β {α, β} β {α, δ} {β, δ}
γ {α, γ} {α, δ} γ {γ, δ}
δ {α, δ} {β, δ} {γ, δ} δ

Then, (F,⊡) is a NeutroHypergroup.

2.2. NeutroOrderedHyperstructures

In this section, we recall some notion of NeutroOrderedHyperstructures.

Definition 2.9. Let (R,+) be a NeutroSemihypergroup and define a partial order ”≤” on R.

Then (R,+,≤) is a NeutroOrderedSemihypergroup if some (or all) of following conditions are

satisfied for (T, I, F ) /∈ {(1, 0, 0), (0, 0, 1)}.

(1) There exist α ≤ β ∈ R with α ̸= β such that w + α ≤ w + β and α + w ≤ β + w for

every w ∈ R. (Degree of truth, ”T”).

(2) There exist α ≤ β ∈ R such that w + α ≰ w + β or α + w ≰ w + β for each w ∈ R.

(Degree of falsify, ”F”).

(3) There exist α ≤ β ∈ R such that w + α, w + β, α+w, or β +w are indeterminate, or

the relation between w+α and w+ β or α+w and β +w are indeterminate. (Degree

of indeterminacy, ”I”).

Example 2.10 (30). Let R = {θ, ζ, ω} and + is a hyperoperation on R. Define (R,+) as

follows.

+ θ ζ ω

θ θ θ θ

ζ θ {θ, ζ} ω

ω θ ω ω

Based on [30], (R,+) is a NeutroSemihypegroup. Define an order ≤1 as follows:

≤1= {(ζ, θ), (ζ, ω), (θ, θ), (ζ, ζ), (ω, θ), (ω, ω)}

It is clear that ω ≤1 θ and for every w ∈ R, ω + w = w + ω ≤1 θ + w = w + θ. It is also clear

that ζ ≤1 ω but ζ + ζ = {θ, ζ} ≤1 ω + ζ = ζ does not hold.

3. NeutroHyperring

In this part, we introduce new notions on NeutroHyperstructures called NeutroHyperrings.

Definition 3.1. Let R be a nonempty set and + and ⊙ be hyperoperations on R. Then,

R is said to be a NeutroHyperring if the following axioms is satisfied with (T, I, F ) ̸=
{(1, 0, 0), (0, 0, 1)}.
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(1) (R,+) is a NeutroHypergroup

(2) (R,⊙) is a NeutroSemihypergroup

(3) There exists x, y, z, a, b, c, d, e, f ∈ R such that some (or all) following conditions are

satisfied.

• x⊙ (y + z) = x⊙ y + x⊙ z and (y + z)⊙ x = y ⊙ x+ z ⊙ y

• a⊙ (b+ c) ̸= a⊙ b+ a⊙ c or (b+ c)⊙ a ̸= b⊙ a+ c⊙ a

• d ⊙ (e + f) is indeterminate or d ⊙ e + d ⊙ f is indeterminate or (e + f) ⊙ d is

indeterminate or e⊙ d+ f ⊙ d is indeterminate.

This condition is called NeutroDistributive Axiom.

If (R,⊙) is a NeutroCommutative, then (R,+,⊙) is said to be NeutroCommutative Hyper-

ring.

Example 3.2. Let R = {f, a, k}. Define hyperoperations + and ⊙ as follows:

+ f a k

f f f f

a f {f, a} k

k f a k

⊙ f a k

f a a a

a k k k

k f f f

Then (R,+) and (R,⊙)respectively are NeutroHypergroup and NeutroSemigroup respectively.

For every f, a, k ∈ R, f ⊙ (f + f) = f ⊙ f + f ⊙ f , (f + f) ⊙ f = f ⊙ f + f ⊙ f and

a⊙ (a+ k) ̸= a⊙ a+ a⊙ k. Thus, (R,+,⊙) is a NeutroHyperring.

Next, we define the Krasner NeutroHyperring.

Definition 3.3. (R,+,⊙) is said to be Krasner NeutroHyperring if the following conditions

are satisfied with (T, I, F ) ̸= (1, 0, 0), (0, 0, 1).

(1) (R,+) is canonical NeutroHypergroup. That is

(a) (R,+) is a NeutroAssociative

(b) (R,+) is a NeutroCommutative

(c) There exists x, y, z ∈ R such that the some (or all) following condition is satisfied.

• 0 + x = {x} (Degree of truth ”T”)

• 0 + y ̸= {y} (Degree of Falsify ”F”)

• 0 + z is indeterminate (Degree of Indetermination ”I”)

(d) There exists at least one condition such that 0 ∈ x+ x′ for each x, x′ ∈ R

(e) There exists at least one condition such that if z ∈ x + y, then y ∈ −x + z and

x ∈ z − y for each x, y, z ∈ R

(2) (R,⊙) is a NeutroSemigroup

(3) (R,+,⊙) is a NeutroDistributive

Example 3.4. let R = {0, 1, 2, 3, 4}. Define hyperoperations + and ⊙ as follows:
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+ 0 1 2 3 4

0 0 1 2 4 3

1 R {1, 2} 3 4 4

2 2 R {2, 3, 4} 4 4

3 1 4 2 3 2

4 0 0 1 0 1

⊙ 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 2 3 4

3 0 1 2 3 4

4 0 2 3 4 1

(1) (R,+) is a NeutroAssociative

(2) (R,+) is a NeutroCommutative

(3) There exists 0 ∈ R such that 0 + 0 = 0 and there exists 3 ∈ R such that 0 + 3 = 4 ̸= 3

(4) There exists 0 ∈ R such that 0 ∈ 0 + 0 = 0

(5) If 0 ∈ 0 + 0, then 0 ∈ 0− 0 and 0 ∈ 0− 0 for 0 ∈ R

Then, (R,+) is a canonical NeutroHypergroup. Next, for every 0 ∈ R, 0⊙(0⊙0) = (0⊙0)⊙0 =

0 and for every 4 ∈ R, (4 ⊙ 4) ⊙ 4 ̸= 4 ⊙ (4 ⊙ 4). Then, (R,⊙) is a NeutroSemihypergroup.

Next, for every 0 ∈ R, 0 ⊙ (0 + 0) = 0 ⊙ 0 + 0 ⊙ 0 = (0 + 0) ⊙ 0 and for every 1, 2 ∈ R,

(1 + 2) ⊙ 1 ̸= 1 ⊙ 1 + 2 ⊙ 1. Then, (R,+,⊙) is a NeutroDistibution. Thus, (R,+,⊙) is a

Krasner NeutroHyperring.

In this research, we only use NeutroHyperring. The definition of Krasner NeutroHyperring

is just introduced.

Definition 3.5. Let R be a NeutroHyperring. Then, R is said to be a Krasner NeutroHyper-

field if (R− {0},⊙) is a NeutroGroup.

Theorem 3.6. Let (R,+,⊙) is a NeutroHyperring. Define hyperoperations ” ⊕ ” and ” ⊡ ”

respectively as x ⊕ y = y + x and x ⊡ y = y ⊙ x for every x, y ∈ R. Then, (R,⊕,⊡) is a

NeutroHyperring.

Proof. The proof is straighforward.

Definition 3.7. Let (R,+,⊙) be a NeutroHyperring and S be a nonempty subset of S. Then,

S is said to be a NeutroSubHyperring of R if (S,+,⊙) is itself a NeutroHyperring.

Definition 3.8. Let (R,+,⊙) be a NeutroHyperring and S ⊆ R be a NeutroSubHyperring.

(1) If there exists x ∈ S such that r ⊙ x ⊆ S for every r ∈ R, then S is a NeutroLeftHy-

perideal of R.

(2) If there exists x ∈ S such that x⊙ r ⊆ S for every r ∈ R, then S is a NeutroRightHy-

perideal of S.

(3) If S is NeutroLeftHyperideal and NeutroRightHyperideal, then S is a NeutroHyper-

ideal of R.
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Example 3.9. Let A = {1, 2, 3}. Define hyperoperations ” + ” and ”⊙ ” as follows:

+ 1 2 3

1 1 1 3

2 {1, 2} 1 3

3 1 2 3

⊙ 1 2 3

1 1 {1, 2} 3

2 2 1 3

3 1 2 3

It can be checked that (A,+) is a NeutroHyperring. Then, the possible of NeutroSubHyperring

are {1}, {2}, {3}, {1, 2}, {1, 3}, and {2, 3}. ({1},+,⊙), (3,+,⊙), and ({1, 3},+,⊙) are Total

Hyperrings or Classical Hyperrings, ({2},+,⊙) and ({2, 3},+,⊙) are AntiHypergroupoids,

and ({1, 2},+,⊙) is a NeutroSubHyperring.

Example 3.10. Since ({1, 2},+,⊙) is a NeutroSubHyperring, then they are possible to

be NeutroHyperideals. There exists 1 ∈ {1, 2} such that {1, 2, 3} ⊙ 1 = {1, 2} ⊆ {1, 2}.
Then,({1, 2},+,⊙) is a NeutroLeftHyperideal of R.

Furthermore, motivated by the notion of k-hyperideal which was defined by Ameri and

Hedayati [33], we define k-NeutroHyperideal of NeutroHyperring.

Definition 3.11. Let (R,+,⊙) be a NeutroHyperring. Then, a NeutroLeftHyperideal S is

called k-NeutroLeftHyperideal if there exists c ∈ S such that if (c+x)∩S ̸= ∅ or (x+c)∩S ̸= ∅
for every x ∈ R, then x ∈ S . For right k-NeutroRightHyperideal, it is defined similarly. If S is

k-NeutroLeftHyperideal and k-NeutroRightHyperideal, then S is called k-NeutroHyperideal.

Remark 3.12. Every k-NeutroHyperideal is clearly a NeutroHyperideal. But the converse is

not always true.

Example 3.13. Let R = {1, 2, 3}. Define hyperoperations ” + ” and ”⊙ ” as follows.

+ 1 2 3

1 1 1 {1, 3}
2 2 1 3

3 1 1 1

⊙ 1 2 3

1 1 2 1

2 1 1 1

3 {1, 3} 3 1

Then (R,+,⊙) is an NeutroHyperring. It can be easily proved that {1, 3} is a NeutroHy-

perideal of R. We get (1 + 2) ∩ {1, 3} ≠ ∅ but 2 /∈ {1, 3} for 2 ∈ R. Thus, {1, 3} is not a

k-NeutroHyperideal of R.

Proposition 3.14. Let {Sk}k∈K be a family of k-NeutroHyperideal of a NeutroHyperring with

K being a nonempty index set. Then, ∩k∈KSk is a k-NeutroHyperideal of R.

Proof. Let r ∈ R and s ∈ ∩k∈KSk. Since {Sk}k∈K is a family of k-NeutroHyperideal, then

(r+s)∩(∩k∈KSk) and implies that r+s ∈ Sk for every k ∈ K. Since Sk is a NeutroHyperideal

of R, we can attest that ∩k∈KSk is k-NeutroHyperideal of R.
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Now, we define the notion of NeutroHvring.

Definition 3.15. Let R be a non-emptyset and define hyperoperations ” + ” and ”⊙ ” on R.

Then, a multi-value system (R,+,⊙) is said to be a NeutroHvRing if the following condition

are satisfied.

(1) (R,+) is a NeutroHvGroup

(2) (R,⊙) is a NeutroHvSemigroup

(3) (R,+,⊙) is a NeutroWeakDistribution, i.e. for every x, y, z, a, b, c, d, e, f ∈ R some (or

all) of the following conditions are satisfied.

(a) x⊙ (y+ z)∩ [(x⊙ y)∩ (x⊙ z)] ̸= ∅ and (x+ y)⊙ z∩ [(x⊙ z)+ (y⊙ z)] ̸= ∅ (Degree

of Truth ”T”)

(b) a⊙ (b+ c) ∩ [(a⊙ b) ∩ (a⊙ c)] = ∅ or (a+ b)⊙ c ∩ [(a⊙ c) + (b⊙ c)] = ∅ (Degree

of Falsify ”F”)

(c) (d+ e)⊙ f is indeterminate or (d⊙ f + e⊙ f) is indeterminate or d⊙ (e+ f) is

indeterminate or (d⊙ e+ d⊙ f) is indeterminate.

If (R,+) and (R,⊙)

are commutative, then (R,+,⊙) is said to be NeutroCommutativeHvRings. Now, we give

a dual definition of NeutroHvRings.

Definition 3.16. A NeutroHvRing (R,+,⊙) is said to be a dual NeutroHvRing if (R,⊙,+)

is an NeutroHvRing.

Example 3.17. Let K = {u, n, j}, and define hyperoperations ” + ” and ⊙ as follows:

+ u n j

u n n j

n {u, n} u j

j j j j

⊙ u n j

u u {u, n} n

n n n n

j j j n

Now, we want to show that (R,+,⊙) is a NeutroHvRing.

(1) (K,+) is a NeutroHvGroup

(2) (K,⊙) is a NeutroHvSemigroup

(3) For every u, n ∈ R, u⊙ (n+ n) ∩ [(u⊙ n) + (u⊙ n)] = n ∩ {u, n} ≠ ∅. Next, for every
u ∈ R, (u+ u)⊙ u ∩ [(u⊙ u) + u⊙ u] = n ∩ u = ∅.

Thus, (R,+,⊙) is a NeutroHvRing.

Next we have proposition related to dual NeutroHvRing.

Proposition 3.18. Let (T,⊙) is an NeutroHvGroup. Then, for every NeutroHyperoperation ⊞

such that {a, b} ⊆ a⊞b and ({c, d} ⊈ c⊞d or e⊞f is indeterminate) for every a, b, c, d, e, f ∈ T ,

the NeutroHyperstructures (T,⊙,⊞) is a dual NeutroHvRing.
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Proof. First, we want to show that (T,⊙,⊞) is a NeutroHvRing.

(1) (T,⊙) be a NeutroHvGroup by hypothesis.

(2) For every x, y, z, a, b, c ∈ T , using Truth condition, it is clear that {x, y, z} ⊆ [(x⊞ (y⊞

z)] ∩ [(x ⊞ y) ⊙ z] and using False condition, it is clear that {a, b, c} ⊈ [a ⊞ (b ⊞ c)] ∩
[(a⊞ b)⊞ c] = ∅. Then, (T,⊞) is a NeutroHvSemigroup

(3) for every a, b, c, d, e, f ∈ T , using the truth condition, we get

• {a} ∪ (b⊙ c) ⊆ a⊞ (b⊙ c)

• (a⊙ a) ∪ (a⊙ c) ∪ (b⊙ a) ∪ (b⊙ c) = {a, b} ⊙ {a, c} ⊆ (a⊞ b)⊙ (a⊞ c)

Then, b⊙ c ⊆ [a⊞ (b⊙ c)] ∩ [(a⊞ b)⊙ (a⊞ c)] ̸= ∅. Next, using the false condition, in

the same way as the truth condition, we get e⊙ f ⊈ [(d⊙ e)⊞ f ] ∩ [d⊞ (e⊞ f)] = ∅

Then, (T,⊙,⊞) is a NeutroHvRing. Furthermore, we want to show that (T,⊞,⊙) is a

NeutroHvRing.

(1) Based on the proof of (T,⊙,⊞), we already proved that (T,⊞) is a NeutroHvSemigroup.

Using the truth condition, for every a ∈ T , T ⊆ {a, T} ⊆ a⊞T and T ⊆ {T, a} ⊆ T⊞a.

Since {a, T} = {T, a}, we get a ⊞ T = T ⊞ a = T . Next, using the false condition, in

the same way as the truth condition, for every b ∈ T , we get b⊞H ̸= H ⊞ b.

(2) Since (T,⊙) is a NeutroHvGroup by hypothesis, then it is obvious that (T,⊙) is a

NeutroHvSemigroup.

(3) Same with the proof of NeutroWeakDistribution for (T,⊙,⊞).

Thus, (T,⊙,⊞) is a dual NeutroHvRing.

Based on Theorem 3.4, we have Theorem 3.12 related to NeutroHvRings.

Theorem 3.19. Let (R,+,⊙) be a NeutroHvRing. Define hyperoperations ”⊕” and ”⊡”

respectively as x⊕ y = y + x and x⊡ y = y ⊙ x. Then, (R,⊕,⊡) is a NeutroHvRing.

Proof. We only prove for NeutroWeakDistribution axiom. The remaining axioms is easy to

prove. For the truth condition, for every x, y, z ∈ R, we have x⊡ (y ⊕ z) ∩ [(x⊡ y) ∩ (x⊡ z)].

Using the hypothesis, we get x⊡(y⊕z)∩ [(x⊡y)∩(x⊡z)] = (z+y)⊙x∩ [(y⊙x)∩(z⊙x)] ̸= ∅
because (R,+,⊙) is a NeutroWeakDistribution. For the false condition, for every a, b, c ∈ R,

we get a⊡ (b⊕ c) ∩ [(a⊡ b) ∩ (a⊡ c)] = ∅. Thus, (R,⊕,⊡) is a NeutroHvRing

Next, we have a property of NeutroHyperring related to production of NeutroHyperring.

Theorem 3.20. Let (R1,+1,⊙1) and (R2,+2,⊙2) are hypergroupoids. Then (R1×R2,+1,⊙1)

is a NeutroHyperring (NeutroHvRing) if and only if either (R1,+,⊙) is a NeutroHyperring
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(NeutroHvRing) or (R2,+2,⊙2) is a NeutroHyperring (NeutroHvRing) or both are NeutroHy-

perring (NeutroHvRing). In here, for every (e, f), (g, h) ∈ R1×R2, (e, f)+ (g, h) = {(i, j), i ∈
e+ g, j ∈ f + h} and (e, f)⊙ (g, h) = {(i, j), i ∈ e⊙ g, j ∈ f ⊙ h}.

Proof. The proof is straightforward.

4. NeutroHomomorphism of NeutroHyperrings (NeutroHvRings)

Motivated by the notion of Neutromorphisms of NeutroSemihypergroup on Al-Tahan, et al.

[26], we define NeutroMorphisms of NeutroHyperrings and NeutroHvRings as follows.

Definition 4.1. Let (R1,+,⊙) and (R2,⊕,⊡) be NeutroHyperrings (NeutroHvRings) and

γ : R1 → R2 is a function. Then,

(1) If γ(x + y) = γ(x) ⊕ γ(y) and γ(x ⊙ y) = γ(x) ⊡ γ(y) for some x, y ∈ R1, then γ is

called a NeutroHomomorphism.

(2) If γ is bijective NeutroHomomorphism, then γ is called a NeutroIsomorphism

(3) If for every x, y ∈ R1, some (or all) of following conditions are satisfied.

• γ(x+ y) = γ(x)⊕ γ(y) and γ(x⊙ y) = γ(x)⊡ γ(y) if x+ y ⊆ R1 and x⊙ y ⊆ R1

(Degree of truth ”T”)

• γ(x + y) ̸= γ(x) ⊕ γ(y) or γ(x ⊙ y) ̸= γ(x) ⊡ γ(y) if x + y ⊈ R1 or x ⊙ y ⊈ R1

(Degree of falsity ”F”)

• γ(x) ⊕ γ(y) is indeterminate when x + y indeterminate and γ(x) ⊡ γ(y) is inde-

terminate when x⊙ y indeterminate.

then, γ is called a NeutroStrongHomomorphism

(4) if γ is a bijective NeutroStrongIsomorphism, then γ is called a NeutroStrongIsomor-

phism. Here, we denote (R1,+,⊙) ∼=SI (R2,⊕,⊡)

Definition 4.2. Let (R1,+,⊙) and (R2,⊕,⊡) be NeutroHvRings and ψ : R1 → R2 is a

function. Then, ψ is called a NeutroWeakHomomorphism if ψ(x+ y) ∩ (ψ(x)⊕ ψ(y)) ̸= ∅ for

some x, y ∈ R1.

Example 4.3. Let (R,+,⊙) is defined on Example 8. We construct (R,⊕,⊡) using Theorem

4, we get the following table.

⊕ u n j

u u {u, n} j

n n u j

j j j j

⊡ u n j

u u n j

n {u, n} n j

j n n n

Then, based on Theorem 3.12, (R,⊕,⊡) is a NeutroHvRing. Now, define a function ψ :

(R,+,⊙) → (R,⊕,⊡) with ψ(u) = u, ψ(n) = j, and ψ(j) = n. Then, it is easy to see that ψ

is a NeutroStrongIsomorphism.
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Example 4.4. Based on Example 9, there exist u, n ∈ R such that ψ(u+n)∩(ψ(u)⊕ψ(n)) ̸= ∅.
So, ψ is a NeutroWeakHomomorphism.

Furthermore, inspired by Theorem 2 on [26], we have the following theorem.

Theorem 4.5. If R1 and R2 be NeutroHyperrings (NeutroHvRings), then R1
∼=SI R2 is an

equivalence relation.

Proof. The proof follows from Theorem 2 on [26].

Lemma 4.6. Let (R1,+1,⊙1) and (R2,+2,⊙2) be NeutroHyperrings (NeutroHvRings) and

γ : R1 → R2 be an injective StrongHomomorphism. If S1 ⊆ R1 is a NeutroSubhyperring

(NeutroSubHvRing) of R1, then γ(S1) is a NeutroSubhyperring (NeutroSubHvRing) of R2

Proof. The proof is similar to the Lemma 3 in [26].

Lemma 4.7. Let (R1,+1,⊙1) and (R2,+2,⊙2) be NeutroHyperrings (NeutroHvRings) and

γ : R1 → R2 be a NeutroStrongIsomorphism. If S2 ⊆ R2 is a NeutroSubhyperring

(NeutroSubHvRing), then γ
−1(S2) is a NeutroSubhyperring (NeutroSubHvRing).

Proof. The proof is similar to the Lemma 4 in [26].

Theorem 4.8. Let (R1,+1,⊙1) and (R2,+2,⊙2) be NeutroHyperrings (NeutroHvRings) and

γ : R1 → R2 be a NeutroStrongIsomorphism. Then, T ⊆ R1 is a NeutroSubhyperring

(NeutroHvRing) of R1 if and only if γ(T ) is a NeutroSubhyperring (NeutroHvRing).

Proof. Here, we only prove for cases where R1 and R2 are NeutroHyperrings. The proof of

cases where R1 and R2 are NeutroHvRings is done similarly.

(⇒) It follows from Lemma 1

(⇐) Let γ(T ) be a NeutroSubhyperring. We want to show that T is NeutroSubhyperring.

Since γ(T ) is a NeutroSubhyperring, then (γ(T ),+2) is a NeutroHypergroup, (γ(T ),⊙2) is a

NeutroSemigroup, and (γ(T ),+2,⊙2) is a NeutroHyperring. Next, since γ is a NeutroStrongI-

somorphism and ∼=SI is an equivalence relation, then using property of symmetry, we have

γ : R2 → R1 is a NeutroStrongIsomorphism i.e. (T = γ−1(W ),+1,⊙1) is a NeutroSubhyper-

ring with W ⊆ R2. Thus, T ⊆ R1 is a NeutroSubhyperring.

Next, we present lemmas and theorem of NeutroMorphisms related to NeutroIdeals. These

lemmas and theorem are inspired from [19].
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Lemma 4.9. Let (R1,+1,⊙1) and (R2,+2,⊙2) be NeutroHyperrings (NeutroHvRings) and

γ : R1 → R2 be a NeutroStrongIsomorphism. If S1 ⊆ R1 is a NeutroLeftHyperideal (NeutroR-

ightHyperideal or NeutroHyperideal) of R1, then γ(S1) is a NeutroLeftHyperideal (NeutroR-

ightHyperideal or NeutroLeftHyperideal) of R2.

Proof. The proof is similar to the Lemma 5 in [26].

Lemma 4.10. Let (R1,+1,⊙1) and (R2,+2,⊙2) be NeutroHyperrings (NeutroHvRings) and

γ : R1 → R2 be a NeutroStrongIsomorphism. If S2 ⊆ R2 is a NeutroLeftHyperideal (NeutroR-

ightHyperideal or NeutroHyperideal) of R2, then γ
−1(S2) is a NeutroLeftHyperideal (NeutroR-

ightHyperideal or NeutroHyperideal) of H.

Proof. The proof is similar to the Lemma 6 in [26].

Theorem 4.11. Let (R1,+1,⊙1) and (R2,+2,⊙2) be NeutroHyperrings (NeutroHvRings) and

γ : R1 → R2 be a NeutroStrongIsomorphism. Then, S1 ⊆ R1 is a NeutroLeftHyperideal (Neu-

troRightHyperideal or NeutroHyperideal) of R1 if and only if γ(M) is a NeutroLeftHyperideal

(NeutroRightHyperideal or NeutroHyperideal) of R2.

Proof. The proof is similar to the Theorem 4 in [26].

5. NeutroOrderedHyperring

First, we define the notion of NeutroOrderedHyperring.

Definition 5.1. Let (R,+,⊙) be a NeutroHyperring and ” ≤ ” be a partial order on R.

Then, the system (R,+,⊙,≤) is a NeutroOrderedHyperring if some(or all) of the following

conditions are satisfied with (T, I, F ) ̸= {(1, 0, 0), (0, 0, 1)}.

(1) There exists x ≤ y ∈ R and for every z ∈ R such that z + x ≤ z + y, x + z ≤ y + z,

z ⊙ x ≤ z ⊙ y, and x⊙ z ≤ y ⊙ z (Degree of Truth ”T”).

(2) There exists x ≤ y ∈ R and for some z ∈ R such that z + x ≰ z + y or x+ z ≰ y + z

or z ⊙ x ≰ z ⊙ y or x⊙ z ≰ y ⊙ z (Degree of Falsify ”F”).

(3) There exists x ≤ y ∈ R with z+x or z+y or x+ z or y+ z or z⊙x or z⊙y or x⊙ z or

y⊙ z are indeterminate or the relation between z+x and z+y or the relation between

x+ z and y + z or the relation between z ⊙ x and z ⊙ y or the relation between x⊙ z

and y ⊙ z are indeterminate (Degree of Indeterminacy ”I”)

Definition 5.2. Let (R,+,⊙,≤) be a NeutroHyperring. If the relation ≤ is a total order on

R, then R is called Neutro Total OrderedHypering
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Example 5.3. Let R = {a, b, c, d}. Define hyperoperations ” + ” and ”⊙ ” as follows.

+ a b c d

a a {a, b} {a, c} a

b {a, b} {a, b, c} {a, c} d

c {a, c} {a, c} c d

d a d {c, d} d

⊙ a b c d

a a {a, b} {a, c} a

b {a, b} {a, b, c} {a, c} d

c {a, c} {a, c} c d

d a d {c, d} c

Then, (R,+,⊙) is a NeutroHyperring. Now, define a partial order as follows.

≤1= {(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (a, d), (b, a), (b, c), (b, d), (c, a), (c, d)}

For some a, b ∈ R, we get a+ x ≤1 b+ x, x+ a ≤1 x+ b, x⊙ a ≤1 x⊙ b, and a⊙ x ≤1 b⊙ x

for every a, b ∈ R. Next, for some b, c ∈ R, we get c + b ≰1 b + b for some b ∈ R. Thus,

(R,+,⊙,≤1) is a NeutroOrderedHyperring.

Next, we define the notion of Neutro OrderedSubhyperring.

Definition 5.4. Let (R,+,⊙,≤) be a NeutroOrderedHyperring and S ⊆ R is a nonempty

set. S is said to be a NeutroOrderedSubhyperring if (S,+,⊙,≤) is a NeutroOrderedHyperring

and there exists s ∈ S such that (s] = {r ∈ R, r ≤ s} ⊆ S.

Definition 5.5. Let (R,+,⊙,≤) be an NeutroOrderedHyperring, and S ⊆ R be a nonempty

set. If S is a Neutro OrderedSubhyperring of R, then S is a:

(1) Neutro OrderedLeftHyperideal of R if there exists s ∈ S such that r ⊙ s ⊆ S for all

r ∈ R.

(2) Neutro OrderedRightHyperideal of R if there exists s ∈ S such that s ⊙ r ⊆ S for all

r ∈ R.

(3) Neutro OrderedHyperideal of R if S are Neutro OrderedLeftHyperideal and Neutro

OrderedRightHyperideal.

Example 5.6. Let R = {1, 2, 3}. Define hyperoperations + and ⊙ as follows.

+ 1 2 3

1 {1, 2} 2 1

2 2 {2, 3} 1

3 1 1 1

⊙ 1 2 3

1 {1, 2} 2 1

2 2 {2, 3} 1

3 1 2 2

It can be shown that (R,+,⊙) is a NeutroHyperring. Now, define a partial order as follows.

≤1= {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}.

Then, (R,+,⊙,≤1) is a NeutroOrderedHyperring. Now, suppose that S = {1, 2} ⊆ R. Then,

{1, 2} is a Neutro OrderedSubhyperring.

Example 5.7. Based on Example 12, there exist 1 ∈ {1, 2} such that 1 ⊙ {1, 2} ⊆ R and

{1, 2} ⊙ 1 ⊆ R. Thus, {1, 2} is a Neutro OrderedHyperideal of R.

Agusfrianto, et al., On NeutroHyperrings and NeutroOrderedHyperrings

Neutrosophic Sets and Systems, Vol. 77, 2025                                                                                  13



Proposition 5.8. Let (R,+,⊙,≤) be a NeutroOrderedHyperring. Then, S is a NeutroLeftHy-

perideal of (R,+,⊙,≤) if and only if (R.+,⊙,≤) is a NeutroRightHyperideal of (R,+,⊡,≤)

with x⊡ y = y ⊙ x for some x, y ∈ R.

Proof. The proof is similar to the Proposition 3.8 in [19].

Next, motivated by [28], we define a NeutroMorphism of NeutroOrderedHyperring.

Definition 5.9. Let (R1,+1,⊙1,≤1) and (R2,+2,⊙2,≤2) be NeutroOrderedHyperrings and

define a function ψ : R1 → R2. Then,

(1) ψ is a NeutroOrderedHomomorphism if there exist x, y ∈ R such that ψ(x +1 y) =

ψ(x) +2 ψ(y), ψ(x⊙1 y) = ψ(x)⊙2 ψ(y), and ψ(x) ≤2 ψ(y) if x ≤1 y.

(2) ψ is a NeutroOrderedIsomorphism if ψ is a bijective NeutroHomomorphism.

(3) ψ is called a NeutroOrderedStrongHomomorphism if ψ(x +1 y) = ψ(x) +2 ψ(y) for

every x, y ∈ R1 and x ≤1 y ∈ R1 is equivalent to ψ(x) ≤2 ψ(y) ∈ R2.

(4) ψ is called a NeutroOrderedStrongIsomorphism if ψ is a bijective NeutroOrdered-

StrongHomomorphism.

Example 5.10. Let (R,+,⊙,≤) be a NeutroOrderedHyperring and define an identity map-

ping ψ : R1 → R1. Then, ψ is a NeutroOrderedStrongIsomorphism.

Theorem 5.11. Let (R1,+1,⊙1,≤1) and (R2,+2,⊙2,≤2) be NeutroOrderedHyperrings and

ψ : R1 → R2 be a NeutroOrderedStrongIsomorphism. If S1 ⊆ R1 is a NeutroOrderedSubhyper-

ring of S1, then ψ(S1) is a NeutroOrderedSubhyperring of R2.

Proof. First, we prove that {ψ(S1),+2} is a NeutroHypergroup. Since (S1,+1) is a NeutroHy-

pergroup, then (S1,+1) is either NeutroOperation or NeutroAssociative and (S,+1) is satisfies

NeutroReproduction Axiom.

(1) If (S1,+1) is a NeutroOperation, there exist x, y, a, b, c, d ∈ S1 such that x +1

y ∈ S1 and a +1 b /∈ S1 or a +1 b is indeterminate. Then, we get for some

ψ(x), ψ(y), ψ(a), ψ(b), ψ(c), ψ(d) ∈ ψ(S1), ψ(x) +2 ψ(y) = ψ(x +1 y) ∈ ψ(S1) and

ψ(a) +2 ψ(b) = ψ(a+1 b) /∈ ψ(S1) or ψ(x) +2 ψ(y) = ψ(x+1 y) is indeterminate.

(2) If (S1,+1) is a NeutroAssociative, there exist x, y, z, a, b, c ∈ S1 such that (x+1y)+1z =

x+1 (y+1 z) and (x+1 y) +1 z ̸= x+1 (y+1 z). Since ψ is one-to-one, we get for some

ψ(x), ψ(y), ψ(z), ψ(a), ψ(b), ψ(c) ∈ ψ(S1), (ψ(x) +2 ψ(y)) +2 ψ(z) = ψ(x) +2 (ψ(y) +2

ψ(z)) and (ψ(a) +2 ψ(b)) +2 ψ(c) ̸= ψ(a) +2 (ψ(b) +2 ψ(c)).

(3) If (S1,+1) satisfies the NeutroReproduction Axiom, there exist a, b ∈ S1 such that

a +1 S1 = S1+a = S1 and b + S1 ̸= S1 + b ̸= S1. Since ψ is one-to-one, we get
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for some ψ(a), ψ(b), ψ(S1) ∈ ψ(S1), ψ(a) +2 ψ(S1) = ψ(S1) + ψ(a) = ψ(S1) and

ψ(b) +2 ψ(S1) = ψ(S1) + ψ(b) = ψ(S1).

Then, (ψ(S1),+2) is a NeutroHypergroup. To prove that (ψ,⊙2) is a NeutroSemihypergroup,

the proof is similar to that proof of NeutroOperation and NeutroAssociative of (ψ(S1),+2).

Now, we prove that (ψ(S1),+2,⊙2) is a NeutroDistributive. Since (R1,+,⊙1) is a NeutroDis-

tributive, then there exists x, y, z, a, b, c ∈ R1 such that x ⊙1 (y +1 z) = x ⊙1 y +1 x ⊙1 z,

(y +1 z) ⊙1 x = y ⊙1 x +1 z ⊙1 x, and a ⊙1 (b +1 c) ̸= a ⊙1 b +1 c ⊙1 a. We get for some

ψ(x), ψ(y), ψ(z), ψ(a), ψ(b), ψ(c) ∈ ψ(S1), ψ(x)⊙2(ψ(y)+2ψ(z)) = ψ(x)⊙2ψ(y)+2ψ(x)⊙2ψ(z),

(ψ(y) +2 ψ(z)) ⊙2 ψ(x) = ψ(y) ⊙2 ψ(x) +2 ψ(z) ⊙2 ψ(x), and ψ(a) ⊙2 (ψ(b) +2 ψ(c)) ̸=
ψ(a)⊙2 ψ(b) +2 ψ(a)⊙2 ψ(c) Thus, (ψ(S1),+1,⊙) is a NeutroSubhyperring of R2.

Since S1 is a NeutroOrderedSubhyperring of R1, then there exists a ∈ S1 such that (a] ⊆ S1.

It is clear that [ψ(a)] ⊆ ψ(S1) and for every j ∈ R2, there exists k ∈ R1 such that j = ψ(k).

For ψ(k) ≤2 ψ(a), we have k ≤1 a and it implies that k ∈ S1 and hence j ∈ ψ(S1). The

proof of the NeutroOrdered relation is similar to the Lemma 3.28 in [28]. Therefore, ψ(S1) is

a NeutroOrderedSubhyperring of R2.

Theorem 5.12. Let (R1,+1,⊙1,≤1) and (R2,+2,⊙2,≤2) be NeutroOrderedHyperrings and

ψ : R1 → R2 be a NeutroOrderedStrongIsomorphism. If S1 ⊆ R1 is a NeutroOrderedLeft-

Hyperideal (NeutroOrderedRightHyperideal or NeutroOrderedHyperideal) of S1, then ψ(S1) is

a NeutroOrderedLeftHyperideal (NeutroOrderedRightHyperideal or NeutroOrderdedHyperideal)

of R2.

Proof. The proof is similar to Lemma 3.29 in [28].

Example 5.13. Based on Example 12, define hyperoperations on R2 as +1 = +2, ⊙1 = ⊙2

and define a partial order ≤2 is same as ≤1. Let ψ : R1 → R2 be a mapping defined by

ψ(1) = 1, ψ(2) = 3 and ψ(3) = 2. Then, (R2,+2,⊙2,≤2) is a NeutroOrderedIsomorphism.

Next, based on Theorem 4.9, we have a theorem related to the productional on Neutro-

OrderedHyperring.

Theorem 5.14. Let (R1,+1,⊙1,≤2) and (R2,+2,⊙2,≤2) be NeutroOrderedHyperrings.

Then, (R1 × R2,⊙,+,≤) is an NeutroOrderedHyperring. Here, (a, b) ≤ (c, d) is equivalent

to a ≤1 c and b ≤2 d.

Proof. Based on Theorem 4.9, (R1×R2,+,⊙) is a NeutroHyperring. Now, we only show that

it satisfies the NeutroOrdered axiom. Having (R1,+1,⊙1,≤1) and (R2,+2,⊙2,≤2) Neutro-

OrderedHyperrings. Then, we get
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(1) There exists a ≤ b ∈ R1 with a ̸= b such that c +1 a ≤ c +1 b and a + c1 ≤ b +1 c for

every c ∈ R1. (Degree of truth, ”T”).

(2) There exists a ≤ b ∈ R1 such that c +1 a ≰ c +1 b and a +1 c ≰ b +1 c. (Degree of

Falsify, ”F”).

(3) There exists a ≤ b ∈ R1 such that c+1 a or c+1 b or a+1 c or b+1 c are indeterminate,

or the relation between c+1a and c+1 b or a+1 c and b+1 c are indeterminate. (Degree

of indeterminacy, ”I”).

(4) There exists a′ ≤ b′ ∈ R2 with a′ ≤ b′ such that c′ +2 a
′ ≤ c′ +2 b

′ and a+ c2 ≤ b+2 c

for every c ∈ R1. (Degree of truth, ”T”).

(5) There exists a′ ≤ b′ ∈ R2 with a′ ≰ b′ such that c′ +2 a
′ ≤ c′ +2 b

′ and a+ c2 ≤ b+2 c

for every c ∈ R1. (Degree of truth, ”T”).

(6) There exists a′ ≤ b′ ∈ R2 such that c′ +1 a
′ or c′ +1 b

′ or a′ +1 c
′ or b′ +1 c

′ are

indeterminate, or the relation between c′ +1 a
′ and c′ +1 b

′ or a′ +1 c
′ and b′ +1 c

′ are

indeterminate. (Degree of indeterminacy, ”I”).

For (R,⊙1) and (R,⊙2), we just replace +k with ⊙k. If (R1×R2,+,⊙,≤) is satisfied Condition

3 or Condition 6, then (R1 × R2,+,⊙,≤) is a NeutroOrderedHyperring. Now, suppose that

Conditions 1,2,4, and 5 are satisfied. Then, without loss of generality, we get

(1) There exist (a, a′) ≤ (b, b′) ∈ R1 × R2 with (a, a′) ̸= (b, b′) such that (c, c′) + (a, a′) ≤
(c, c′) + (b, b′), (a, a′) + (c, c′) ≤ (b, b′) + (c, c′), (c, c′) ⊙ (a, a′) ≤ (c, c′) ⊙ (b, b′), and

(a, a′)⊙ (c, c′) ≤ (b, b′)⊙ (c, c′). (Degree of truth ”T”).

(2) There exist (a, a′) ≤ (b, b′) ∈ R1 × R2 such that (c, c′) + (a, a′) ≰ (c, c′) + (b, b′) or

(a, a′) + (c, c′) ≰ (b, b′) + (c, c′) or (c, c′) ⊙ (a, a′) ≰ (c, c′) ⊙ (b, b′) or (a, a′) ⊙ (c, c′) ≰
(b, b′)⊙ (c, c′). (Degree of falsify ”F”).

Then, (R1 ×R2,+,⊙,≤) is a NeutroOrderedHyperring.

Theorem 5.15. Let (R1,+1,⊙1,≤1) and (R2,+2,⊙2,≤2) be NeutroOrderedHyperring and

S1 and S2 are NeutroOrderedSubhyperring respectively for R1 and R2. Then S1 × S2 is a

NeutroOrderedHyperring of R1 ×R2.

Proof. Based on Theorem 4.9, we have (S1×S2,+,⊙,≤) is a NeutroOrderedHyperring. Based

on hypothesis, S1 and S2 are NeutroOrderedHyperrings of R1 and R2, then there exist s1 ∈ S1,

s2 ∈ S2 such that (s1] ⊆ S1 and (s2] ⊆ S2. We get, ((s1 × s2)] = (s1]× (s2] ⊆ S1 × S2. Thus,

S1 × S2 is a NeutroOrderedSubhyperring of R1 ×R2.
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6. Application of NeutroHyperring On NeutroRing

The notion of NeutroRing first introduced by Agboola in 2020 [23]. We have following

relation between NeutroHyperring and NeutroRing.

Theorem 6.1. Every NeutroRing is a NeutroHyperring.

Proof. Since every ring is a hyperring, then it is obvious that every NeutroRing is a Neutro-

Hyperring.

Theorem 6.2. Let R =
⋂n

i=1Ri be a NeutroRing. Then, it is also a NeutroHyperring.

Proof. Since every NeutroRing is a NeutroHyperring, then it is clear that if R =
⋂n

i=1Ri is a

NeutroRing, then it is also a NeutroHyperring.

Theorem 6.3. Let
∏n

i=1Ri be a NeutroRing. Then, it is also a NeutroHyperring.

Proof. The proof is straightforward.

Theorem 6.4. Let (R,+,⊙) be a NeutroRing and {Ti} with i = 1, 2, ..., n be a family of

NeutroSubring of R. T =
⋂n

i=1 Si and T =
∏n

i=1Ri is NeutroSubrings. Then, it also Neutro-

SubHyperrings.

Proof. The proof is straightforward.

Theorem 6.5. Let (R,+,⊙) be a NeutroRing and {Ii} with i = 1, 2, ..., n be a family of Neu-

troIdeal of R. I =
⋂n

i=1 Ii and I =
∑n

i=1 Ii is NeutroIdeals. Then, it also NeutroHyperideals.

Proof. The proof is straightforward.

7. Conclusion

Based on explanation above, we already define the new notions on NeutroHyperstructures

and NeutroOrderedHyperstructures, that is NeutroHyperrings and NeutroOrderedHyperrings.

Besides that, we also find properties related to NeutroHyperrings and NeutroOrderedHyper-

rings also application of NeutroHyperring in NeutroRing. For future research, it is interesting

to define NeutroHypermodules, NeutroPolygroups, NeutroOrderedHypermodules, and Neutro-

OrderedPolygroups. We may find unique mathematical links and get a deeper knowledge of

these algebraic systems by examining the characteristics and structures of these new concepts.

Agusfrianto, et al., On NeutroHyperrings and NeutroOrderedHyperrings

Neutrosophic Sets and Systems, Vol. 77, 2025                                                                                  17



References

1. F. Marty, Sur une generalization de la notion de group, in Proceedings of the 8th Congress on Mathematics

Scandenaves (Stockholm, Sweden, 14–18 August 1934),pp. 45–49.

2. T. Vougiouklis, Hv-groups defined on the same set, Discrete Math. 155 (1996), 259 - 265.

3. B. Davvaz and V. Leoreanu-Fotea. Hyperring Theory and Applications, (International Academic Press,

2007).

4. P. Corsini and V. Leoreanu-Fotea. Applications of Hyperstructure Theory, (Kluwer Academic Publisher,

2004).

5. B. Davvaz and I.Cristea. Fuzzy Algebraic Hyperstructures, (Springer, 2016).

6. B. Davvaz, A.Dehghan-Nezhad, and M.Mazloum-Ardakani, Chemical Hyperalgebra : Redox Reactions,

MATCH Commun.Math.Comput.Chem. 71 (2014), 323 - 331.

7. M. Al-Tahan and B.Davvaz, Chemical Hyperstructures for Element with Four Oxidation States, Iranian

Journal of Mathematical Chemistry. 13 (2022), 85 - 97.

8. S.C. Chung, Chemical Hyperstructures for Ozone Depletion, Journal of Chungcheong Mathematical Society.

32 (2019), 491 - 508.

9. A. Dehghan-Nezhad, S.M.M. Nejad, M. Nadjafikhah, and B.Davvaz, A Physical Example of Algebraic

Hyperstructures : Leptons, Indian Journal of Physics. 86 (2012), 1027 - 1032.

10. B. Davvaz, A. Dehghan-Nezhad and S.M.M. Nejad, Algebraic Hyperstructures of Observable Elementary

Particles Including The Higgs Boson. Proc.Natl.Acad.Sci (2014).

11. M. Al-Tahan and B.Davvaz, Algebraic Hyperstructures Associated to Biological Inheritance. Mathematical

Biosciences (2017).

12. M. Al-Tahan and B. Davvaz, N-ary Hyperstructures Associated to The Genotypes of F2 - Offspring. Inter-

national Journal of Biomathematics. 10 (2017).

13. M. Al-Tahan and B. Davvaz, A New Relationship Between Fuzzy Sets and Genetics. Journal of Classifica-

tion. (2019).

14. D. Heidari and B. Davvaz, On Ordered Hyperstructures. U.P.B.Sci.Bull.Series A. 73 (2011), 85 - 96.

15. B. Davvaz and S. Omidi, Basic Notions and Properties of Ordered Semihyperrings. Categories and General

Algebraic Structures with Applications. 4 (2016), 43 - 62.

16. S. Omidi and B. Davvaz, Contribution to Study Special Kinds of Hyperideals in Ordered Semihyperrings.

J.Taibah.Univ.Sci. 11 (2017), 1083 - 1094.

17. Y. Rao, M. Gheisari and N. Abbasizadeh, On Convex Ordered Hyperrings. Symeetry. 15 (2023), 61.

18. A. Mahboob, N.M. Khan and B. Davvaz, (m,n)- Hyperideals in Ordered Semihypergroup. Categories and

General Algebraic Structures with Applications. 12 (2020), 43 - 67.

19. M. Al-Tahan and B. Davvaz, On (m,n)- Hyperideals in Semihyperrings : Applications to Semirings. Journal

of Algebra and Its Applications. 21 (2022).

20. F. Smarandache, Neutrosophy : Neutrosophic Probability, Set, and Logic : Analytic Syntesis & Synthetic

Analysis, (American Research Press, 1998).

21. F. Smarandache, Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures. Neutrosophic

Sets and System. 31 (2020), 1 - 16.

22. A.A.A. Agboola, Introduction to NeutroGroups. International Journal of Neutrosophic Sciences. 6 (2020),

41 - 47.

23. A.A.A. Agboola, Introduction to NeutroRings. International Journal of Neutrosophic Sciences. 7 (2020),

62 - 73.

24. M. Sahin and A. Kargin, Neutro-RModules, in NeutroAlgebra Theory Volume 1 (The Educational Publisher

Inc, 2021).

Agusfrianto, et al., On NeutroHyperrings and NeutroOrderedHyperrings

Neutrosophic Sets and Systems, Vol. 77, 2025                                                                                  18



25. M.A. Ibrahim and A.A.A. Agboola, Introduction to NeutroHyperGroups. Neutrosophic Sets and System.

38, 15 - 32.

26. M. Al-Tahan, B. Davvaz, F. Smarandache and O.Anis, On Some NeutroHyperstructures. Symmetry. 13

(2021), 535.

27. S. Mirvakili, A. Rezaei, O. Al-Shanqiti, F. Smarandache and B. Davvaz, On Neutro-LA-Semihypergroups

and Neutro-Hv-Semihypergroups. Soft Computing, to appear.

28. M. Al-Tahan, F. Smarandache and B. Davvaz, NeutroOrderedAlgebra : Applications to Semigroups. Neu-

trosophic Sets and System. 39 (2021), 133 - 147.

29. M. Al-Tahan, B. Davvaz, F. Smarandache and O.Anis, Properties of Productional NeutroOrderedSemi-

groups. Neutrosophic Sets and System. 42 (2021), 178 - 190.

30. M. Al-Tahan, O. Anis, A.A. Salama and R. Rojas-Gualdron. An Introduction to NeutroOrderSemihyper-

groups in Theory and Applications of NeutroAlgebras as Generalizations of Classical Algebras (IGI Global,

2022).

31. B. Davvaz and V. Leoreanu-Fotea. Hypergroup Theory, (World Scientific, 2022).

32. M. Krasner, A Class of Hyperrings and Hyperfields. Int. J. Math. Sci. 6 (1983), 307 - 312.

33. R. Ameri and H. Hedayati, On k-Hyperideals of Semihyperrings. Journal of Discrete Mathematics Sciences

& Cryptography. 10 (2007), 41 - 54.

Agusfrianto, et al., On NeutroHyperrings and NeutroOrderedHyperrings

Neutrosophic Sets and Systems, Vol. 77, 2025                                                                                  19

Received: Aug 10, 2024. Accepted: Nov 4, 2024


	1. Introduction
	2. Basic Concepts
	2.1. Hyperstructures and NeutroHyperstructures
	2.2. NeutroOrderedHyperstructures

	3. NeutroHyperring
	4. NeutroHomomorphism of NeutroHyperrings (NeutroHvRings)
	5. NeutroOrderedHyperring
	6. Application of NeutroHyperring On NeutroRing
	7. Conclusion
	References

