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Abstract. This paper investigates the properties of tree-width and related graph width parameters for n-
SuperHyperGraphs, a broader generalization of hypergraphs. By exploring concepts such as SuperHyperTree-
width and Hypertree-width, we aim to understand how these structures resemble tree-like formations. We
also analyze the relevance of these width parameters in computational contexts, following extensive research in
graph theory and hypergraph applications.
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1. Introduction

1.1. Graph theory

Graph theory, a fundamental branch of mathematics, focuses on the study of networks made
up of nodes and edges, examining their paths, structures, and properties [22]. Many concepts
in the world can be modeled using graphs [19, 55]. While graphs are highly useful tools, in
algorithm development and problem-solving, they are often utilized after determining whether
specific structures, such as tree or path structures, are present [14,22]. Alternatively, they are
used in cases where constraints are imposed by particular structures. A graph parameter is a
numerical value assigned to a graph that describes certain structural properties, such as size
or connectivity [80].

1.2. Supergraph and Hypergraph

A supergraph is a graph G that contains another graph H, where V (G) ⊇ V (H) and
E(G) ⊇ E(H). Several studies have been conducted from the perspective of efficient algorithm
development.
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And a hypergraph is a generalization of a conventional graph, abstracting and extending
concepts from graph theory [15, 46, 51, 52, 56]. Hypergraphs have broad applications in fields
such as machine learning and network analysis [16,44,65,69].

1.3. SuperHyperGraph

The concept of the SuperHyperGraph was introduced by Florentin Smarandache in 2019 [81]
as a broad extension of both hypergraphs and supergraphs. This framework has since generated
significant research interest, akin to the study of hypergraphs. Recently, an advanced structure
called the n-SuperHyperGraph was introduced, where vertices and edges are defined using n-
power sets [81]. Both SuperHyperGraphs and n-SuperHyperGraphs have become key areas of
exploration [47,57–59,81,82,84,86,89], with each of these structures based on the n-th power
set of a set H, reflecting the complexity of real-world systems.

Alongside SuperHyperGraph, related structures have been defined, such as the SuperHy-
perStructure and Neutrosophic SuperHyperStructure, including specific instances like Super-
HyperAlgebra [89,91]. Furthermore, concepts like SuperHyperSoft Set [87], SuperHyperFunc-
tion [85], and SuperHyperTopology [88] have been proposed. These structures, like SuperHy-
perGraph, provide abstract frameworks for modeling functions, algebra, and topology.

Tree graphs have been widely applied across various fields. Similarly, in the context of
SuperHyperGraphs, the concept of a Tree graph has been defined, and more recently, the
notion of SuperHyperTree-width has been introduced [32, 38, 43]. The explanation of width
parameters and Tree-width will follow. Additionally, related width parameters have also been
established in the literature [43].

1.4. Graph Width Parameter

A ”Graph width parameter” measures the maximum width across all cuts or layers within
a hierarchical decomposition of a graph [1, 5–7, 21, 23–25, 29–33, 36–38, 41–43, 45, 74, 77–79].
This parameter is essential for analyzing the complexity and structure of a graph, playing a
pivotal role in transforming computationally challenging graph problems into more tractable
ones, particularly when the graph class has bounded width.

Tree-width is one of the most prominent graph width parameters [7–13,68,77–79]. It mea-
sures how closely a graph resembles a tree by determining the minimum width of a tree
decomposition, thus reflecting the graph’s degree of tree-likeness.

This has spurred extensive research on Hypertree-width [3, 50, 52, 70, 96] and Hyperpath-
width [2, 72, 73], which quantify how much a hypergraph approximates a tree or a path.
Hypertree-width, in particular, has found significant applications in fields like database sys-
tems [17,27,28,46,49,51–54,93].
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1.5. Our Contribution

Building on the historical development of various graph classes, the concept of
superhypertree-width has been recently introduced [38]. However, its concrete characteristics
remain largely unexplored, presenting ample opportunities for further research. Additionally,
the study of even more abstract structures, such as n-superhypergraphs, has emerged, yet the
corresponding notions of tree-width for these structures have not been fully defined [82].

In this paper, we investigate the characteristics of tree-width and related graph width pa-
rameters in the context of supergraphs and n-superhypergraphs. Through this exploration,
we aim to stimulate more active research in the areas of graph width parameters and super-
hypergraphs, thereby advancing the field of graph theory.

2. Preliminaries and definitions

In this section, we briefly explain the definitions and notations used in this paper.

2.1. Basic Graph Concepts

A graph G is a mathematical structure consisting of nodes (vertices) connected by edges,
representing relationships or connections. In a graph G, V (G) denotes the set of vertices, and
E(G) denotes the set of edges. The notation G = (V,E) indicates that the graph G is defined
by the pair of sets V (vertices) and E (edges).

Definition 2.1. A subgraph is formed by selecting specific vertices and edges from a graph.

Definition 2.2. A path is a walk with no repeated vertices, a cycle is a closed path, and a
tree is a connected acyclic graph.

Example 2.3. Consider the following graphs:

• Path: A path graph P4 consists of 4 vertices: v1, v2, v3, v4, and 3 edges:

{v1, v2}, {v2, v3}, {v3, v4}.

This is a walk with no repeated vertices.
• Cycle: A cycle graph C4 consists of 4 vertices: v1, v2, v3, v4, and 4 edges:

{v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}.

This forms a closed loop.
• Tree: A tree graph with 5 vertices: v1, v2, v3, v4, v5, and 4 edges:

{v1, v2}, {v1, v3}, {v2, v4}, {v3, v5}.

This graph is connected and acyclic, satisfying the conditions of a tree.
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Definition 2.4. A star in a graph is a tree consisting of one central vertex, called the center,
and a set of leaves, which are vertices that are connected directly to the center by edges.
Formally, a star with n leaves is a tree with n+1 vertices, where one vertex has degree n (the
center) and the remaining n vertices have degree 1 (the leaves).

Example 2.5. Consider a star graph S4, where n = 4. The graph consists of a
central vertex v1 and four leaves v2, v3, v4, v5, each connected directly to v1 by edges.
The set of vertices is V (S4) = {v1, v2, v3, v4, v5}, and the set of edges is E(S4) =

{{v1, v2}, {v1, v3}, {v1, v4}, {v1, v5}}. The degree of the central vertex v1 is 4, and each leaf
vertex v2, v3, v4, v5 has a degree of 1.

Definition 2.6. [61] An empty graph is a graph with a set of vertices but no edges, meaning
no connections between any vertices. A null graph (order-zero graph) is a graph that contains
no edges. It can have zero or more vertices, but none of its vertex pairs are connected by an
edge.

For additional basic graph notation and concepts, please refer to [22,55,55,95].

2.2. Tree-width of basic graph

In graph theory, there is a concept known as graph minor theory. A graph minor is created
by performing operations such as deleting edges, deleting vertices, or contracting edges from
a larger graph. Tree-width is a measure of how close a graph is to resembling a tree, by
representing it with a tree-like structure that has minimal width [7–9,66,78,79,79]. Below are
the formal definitions of Tree-width.

Definition 2.7. [79] A tree-decomposition of an undirected graph G is a pair (T,W ), where
T is a tree, and W = (Wt | t ∈ V (T )) is a family of subsets that associates with every node t

of T a subset Wt of vertices of G such that:

(T1)
⋃

t∈V (T )Wt = V (G),
(T2) For each edge (u, v) ∈ E(G), there exists some node t of T such that {u, v} ⊆ Wt, and
(T3) For all nodes r, s, t in T , if s is on the unique path from r to t then Wr ∩Wt ⊆ Ws.

The width of a tree-decomposition (T,W ) is the maximum of |Wt|− 1 over all nodes t of T .
The tree-width of G is the minimum width over all tree-decompositions of G.

Additionally, path-width [20,67,92] and cycle-width [63,94] are the path and cycle versions
of tree-width, respectively.

Example 2.8. Consider the following graph G:

V (G) = {v1, v2, v3, v4}
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E(G) = {(v1, v2), (v1, v3), (v2, v4), (v3, v4)}

We aim to construct a tree-decomposition for this graph G. Let T be a tree with three
nodes t1, t2, t3. The corresponding bags Wt are defined as:

Wt1 = {v1, v2, v3}, Wt2 = {v2, v3, v4}, Wt3 = {v4}

• (T1): The union of all the bags covers the entire vertex set of G:

Wt1 ∪Wt2 ∪Wt3 = {v1, v2, v3, v4} = V (G)

• (T2): For each edge (u, v) ∈ E(G), there exists a bag that contains both u and v:
– (v1, v2) is in Wt1 ,
– (v1, v3) is in Wt1 ,
– (v2, v4) is in Wt2 ,
– (v3, v4) is in Wt2 .

• (T3): For all nodes r, s, t in T , if s lies on the unique path from r to t, then:

Wr ∩Wt ⊆ Ws

This holds, as Wt1 ∩Wt3 = {v4} ⊆ Wt2 .

The size of each bag is:

|Wt1 | = 3, |Wt2 | = 3, |Wt3 | = 1

Thus, the width of this tree-decomposition is the maximum bag size minus 1:

width = max(3− 1, 3− 1, 1− 1) = 2

For information on tree-width, there are numerous surveys and lecture notes available.
Please refer to those as needed [7, 9, 62].

2.3. Hypergraph Concepts

A hypergraph is a generalization of a graph where edges, called hyperedges, can connect any
number of vertices, not just two. This structure is useful for modeling complex relationships
in various fields like computer science and biology [15, 26, 48, 75]. The definition is provided
below.

Definition 2.9. [4] A hypergraph is a pair H = (V (H), E(H)), consisting of a nonempty
set V (H) of vertices and a set E(H) of subsets of V (H), called the hyperedges of H. In this
paper, we consider only finite hypergraphs.
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Example 2.10. Consider the hypergraph H = (V (H), E(H)), where:

V (H) = {1, 2, 3, 4, 5}

The hyperedges are subsets of V (H), defined as:

E(H) = {{1, 2, 3}, {2, 4}, {3, 5}}

In this case, V (H) consists of 5 vertices, and E(H) consists of 3 hyperedges, where each
hyperedge is a subset of V (H). For instance, the first hyperedge {1, 2, 3} connects the vertices
1, 2, and 3, while the second hyperedge {2, 4} connects vertices 2 and 4.

Definition 2.11. [15] For a hypergraph H and a subset X ⊆ V (H), the subhypergraph
induced by X is defined as H[X] = (X, {e ∩ X | e ∈ E(H)}). We denote the hypergraph
obtained by removing X from H as H \X := H[V (H) \X].

Example 2.12. Consider the hypergraph H = (V (H), E(H)) where:

V (H) = {1, 2, 3, 4, 5}

The hyperedges are:

E(H) = {{1, 2, 3}, {2, 4}, {3, 5}}

Now, let X = {2, 3, 4} be a subset of V (H). The subhypergraph induced by X is:

H[X] = ({2, 3, 4}, {{2, 3}, {2, 4}})

This subhypergraph contains only the vertices in X and the hyperedges that connect these
vertices. The first hyperedge {1, 2, 3} from the original hypergraph becomes {2, 3} after in-
tersecting with X, and the hyperedge {2, 4} remains unchanged as it is already a subset of
X.

For more basic hypergraph notation and concepts, please refer to [15,18].

2.4. Hypertree decomposition

Hypertree-width measures how well a hypergraph can be decomposed into a tree-like struc-
ture, minimizing the maximum size of edge subsets (guards) at each node. Hypertree-width
has a wide range of applications and is extensively studied in various fields [28,53].
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Definition 2.13. [3] A generalized hypertree decomposition of H is a triple (T,B,C), where
(T,B) is a tree-decomposition of H and C = (Ct)t∈V (T ) is a family of subsets of E(H) such that
for every t ∈ V (T ) we have Bt ⊆

⋃
Ct. Here

⋃
Ct denotes the union of the sets (hyperedges)

in Ct, that is, the set {v ∈ V (H) | ∃e ∈ Ct : v ∈ e}. The sets Ct are called the guards of
the decomposition. The width of the decomposition (T,B,C) is max{|Ct| | t ∈ V (T )}. The
generalized hypertree width of H, denoted by ghw(H), is the minimum of the widths of the
generalized hypertree decompositions of H.

A hypertree decomposition of H is a generalized hypertree decomposition (T,B,C) that
satisfies the following special condition: (

⋃
Ct) ∩

⋃
u∈V (Tt)

Bu ⊆ Bt for all t ∈ V (T ). Recall
that Tt denotes the subtree of the T with root t. The hypertree width of H, denoted by hw(H),
is the minimum of the widths of all hypertree decompositions of H.

Definition 2.14. (cf. [71]) A hypertree T is a connected hypergraph in which the removal of
any hyperedge from T results in a disconnected hypergraph. Specifically:

• For any hyperedge e ∈ E(T ), if e is removed, the resulting subhypergraph is no longer
connected.

• A hypertree can contain cycles, as long as removing any hyperedge disconnects the
hypergraph.

2.5. Supergraph

A supergraph is a graph G that contains another graph H, where V (G) ⊇ V (H) and
E(G) ⊇ E(H). The following provides the definition and an example of a supergraph [60,76].

Definition 2.15. (cf. [60, 76]) Given two graphs G and H:

• G is a supergraph of H if V (G) ⊇ V (H) and E(G) ⊇ E(H), meaning that the vertex
set and edge set of G contain those of H.

• G is an induced supergraph of H if G is a supergraph of H and E(G) = E(H)∩(V (G)×
V (G)). This means G includes all edges of H that exist between vertices in V (G).

Example 2.16. Let H be a graph with vertex set V (H) = {1, 2, 3} and edge set E(H) =

{{1, 2}, {2, 3}}.
Now, consider a graph G with vertex set V (G) = {1, 2, 3, 4} and edge set E(G) =

{{1, 2}, {2, 3}, {3, 4}, {1, 4}}.
In this case:

• G is a supergraph of H because V (G) ⊇ V (H) and E(G) ⊇ E(H).
• However, G is not an induced supergraph of H because it contains additional edges,

such as {1, 4} and {3, 4}, which do not exist in H.
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Alternatively, if we define a new graph G′ with V (G′) = {1, 2, 3} and E(G′) =

{{1, 2}, {2, 3}}, then G′ is an induced supergraph of H, as the vertices and edges of H are
preserved without any additional edges.

Definition 2.17. (cf. [76]) A supergraph that is a forest or tree is called a superforest or
supertree, respectively.

Example 2.18. Consider the graph H which is a tree with vertices V (H) = {1, 2, 3} and
edges E(H) = {{1, 2}, {2, 3}}.

Now, let G be a supergraph of H with vertex set V (G) = {1, 2, 3, 4} and edge set E(G) =

{{1, 2}, {2, 3}, {3, 4}}.
In this case:

• G is a supertree of H because G is a supergraph of H and both G and H are trees.
• If G had multiple trees (i.e., was a forest), it would be called a superforest of H.

2.6. SuperHyperGraph

A SuperHyperGraph is an advanced structure extending hypergraphs and supergraphs by
allowing vertices and edges to be sets. The concept of the SuperHyperGraph was introduced
by Florentin Smarandache in 2019 in [81]. The definition is provided below [81].

Definition 2.19. [81] A SuperHyperGraph (SHG) is an ordered pair SHG = (G ⊆ P (V ), E ⊆
P (V )), where:

(1) V = {V1, V2, . . . , Vm} is a finite set of m ≥ 0 vertices, or an infinite set.
(2) P (V ) is the power set of V (all subsets of V ). Therefore, an SHG-vertex may be a

single (classical) vertex, a super-vertex (a subset of many vertices) that represents a
group (organization), or even an indeterminate-vertex (unclear, unknown vertex); ∅
represents the null-vertex (a vertex that has no element).

(3) E = {E1, E2, . . . , Em}, for m ≥ 1, is a family of subsets of V , and each Ej is an
SHG-edge, Ei ∈ P (V ). An SHG-edge may be a (classical) edge, a super-edge (an
edge between super-vertices) that represents connections between two groups (organi-
zations), a hyper-super-edge that represents connections between three or more groups
(organizations), a multi-edge, or even an indeterminate-edge (unclear, unknown edge);
∅ represents the null-edge (an edge that means there is no connection between the
given vertices).

Example 2.20. We define a finite set of vertices:

V = {v1, v2, v3, v4, v5}
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In a SuperHypergraph, vertices can be single vertices, super-vertices (subsets of vertices),
or even the empty set. Here are some examples:

• Single Vertices:

V1 = {v1}

V2 = {v2}

V3 = {v3}

V4 = {v4}

V5 = {v5}

• Super-Vertices (Subset Vertices):

SV1,2 = {v1, v2}

SV3,4,5 = {v3, v4, v5}

• Null Vertex:

∅V = ∅

Edges in a SuperHypergraph can be single edges, super-edges, hyper-edges, hyper-super-
edges, or the null edge. Below are definitions of each type:

• Single Edges:
– E1,2 = {V1, V2}: An edge connecting v1 and v2

– E4,5 = {V4, V5}: An edge connecting v4 and v5

• Hyper-Edges:

HE1,3,5 = {V1, V3, V5}

An edge connecting v1, v3, and v5

• Super-Edges (Subset Edges):

SE(1,2),(3) = {SV1,2, V3}

An edge connecting super-vertex SV1,2 and vertex v3

• Hyper-Super-Edges (Hyper Subset Edges):

HSE(1,2),(3,4,5) = {SV1,2,SV3,4,5}

An edge connecting super-vertices SV1,2 and SV3,4,5

• Null Edge:

∅E = ∅

Represents the absence of a connection
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Definition 2.21. [38,43] A SuperHyperTree (SHT) is a SuperHyperGraph SHT that satisfies
the following conditions:

(1) Host Graph Condition: There exists a host graph T , which is a tree, such that:
• T has the same vertex set V as SHT.
• T has edges corresponding to the connections between vertices in V .

(2) SuperHyperTree Condition: Every hyperedge Ei in E of the SuperHyperGraph SHT
corresponds to a connected subtree of the host tree T . Specifically:

• Each hyperedge Ei can be a single edge (connecting two vertices), a super-edge
(connecting subsets of vertices, where each subset is a connected subtree in T ),
or a hyper-edge (connecting more than two vertices, with the condition that they
all form a connected subtree in T ).

• If Ei is an indeterminate edge, it must satisfy the condition that for any realization
of Ei, the vertices involved still form a connected subtree in T .

(3) Acyclic Condition: The host graph T must be acyclic, which is a fundamental prop-
erty of trees. Therefore, SHT inherits this acyclic nature through the structure of its
hyperedges.

Properties of a SuperHyperTree:

• Connectedness: A SuperHyperTree is connected, meaning that there is a path between
any two vertices through a series of hyperedges.

• No Cycles: Since T is a tree, SHT does not contain any SuperHypercycles.
• Generalization of Trees: A SuperHyperTree generalizes the concept of a tree by al-

lowing super-vertices and super-edges while maintaining the acyclic and connected
properties of a tree.

2.7. SuperHyperTree-width

SuperHyperTree-width is an abstraction of Hypertree-width, extending the concept of Tree-
width. The definition is presented as follows [32,38,43].

Definition 2.22. [32, 38, 43] Let SHT = (V,E) be a SuperHyperGraph (SHG), where V is
the set of vertices and E is the set of SuperEdges.

A SuperHyperTree decomposition of SHT is a tuple (T,B, C) where:

• T = (VT , ET ) is a tree.
• B = {Bt | t ∈ VT } is a family of subsets of V (called bags) associated with the nodes

of the tree T , such that:
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(1) Coverage Condition for SuperEdges: For each SuperEdge e ∈ E, there exists a
node t ∈ VT such that the entire SuperEdge e is contained within the correspond-
ing bag Bt, i.e., e ⊆ Bt.

(2) Vertex Connectivity Condition: For each vertex v ∈ V , the set of nodes {t ∈ VT |
v ∈ Bt} forms a connected subtree of T .

• C = {Ct | t ∈ VT } is a family of subsets of E (called guards) associated with the nodes
of the tree T , such that:
(1) Guard Condition for SuperEdges: For each t ∈ VT , Bt ⊆

⋃
Ct, where

⋃
Ct denotes

the union of all SuperEdges in Ct, i.e.,
⋃
Ct = {v ∈ V | ∃e ∈ Ct : v ∈ e}.

(2) SuperHyperTree Condition: For each t ∈ VT , (
⋃
Ct) ∩

⋃
u∈V (Tt)

Bu ⊆ Bt, where
Tt denotes the subtree of T rooted at t.

The width of the SuperHyperTree decomposition (T,B, C) is defined as:

width(T,B, C) = max
t∈VT

|Ct|,

where |Ct| is the cardinality of the guard Ct.
The SuperHyperTree-width (SHT-width) of the SuperHyperGraph SHT, denoted by

SHT-width(SHG), is the minimum width over all possible SuperHyperTree decompositions
of SHG:

SHT-width(SHT) = min
(T,B,C)

width(T,B, C).

• The SuperHyperTree-width is a measure of how close the SuperHyperGraph is to being
a SuperHyperTree.

• For a classical graph, the SuperHyperTree-width coincides with the treewidth.

A SuperHyperPath decomposition of SHG is a path version of SuperHyperTree-
decomposition.

2.8. n-SuperHyperGraph

We define the generalization of a SuperHyperGraph, called an n-SuperHyperGraph, as
follows [82,83,90].

Definition 2.23. �(cf. [82, 83, 90]) The n-SuperHyperGraph (n-SHG) is a generalization of
classical graph theory, extending to higher-order structures. Let V = {v1, v2, . . . , vm} be a set
of vertices, where 1 ≤ m ≤ ∞. The set V includes:

• Single Vertices: The classical vertices;
• Indeterminate Vertices: Vertices that are unclear, vague, or partially known;
• Null Vertices: Vertices that are totally unknown or empty.
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Let P(V ) denote the power set of V , including the empty set ∅. The n-power set Pn(V ) is
defined recursively as:

P1(V ) = P(V ), P2(V ) = P(P(V )), . . . , Pn(V ) = P(Pn−1(V )), 1 ≤ n ≤ ∞,

with the base case P0(V ) = V .
An n-SuperHyperGraph is an ordered pair:

n-SHG = (Gn, En),

where Gn ⊆ Pn(V ) and En ⊆ Pn(V ), for 1 ≤ n ≤ ∞. Here, Gn represents the set of vertices,
and En represents the set of edges.

The vertex set Gn contains the following types of vertices:

• Single Vertices: The classical vertices;
• Indeterminate Vertices: Vertices that are unclear, vague, or partially unknown;
• Null Vertices: Vertices that are totally unknown or empty;
• SuperVertex: A collection of two or more vertices (single, indeterminate, or null)

grouped together;
• n-SuperVertex: A collection of vertices, where at least one is an (n− 1)-SuperVertex,

and all other vertices are r-SuperVertices with r ≤ n− 1.

The edge set En contains the following types of edges:

• Single Edges: The classical edges;
• Indeterminate Edges: Edges that are unclear, vague, or partially unknown;
• Null Edges: Edges that are totally unknown or empty;
• HyperEdge: An edge connecting three or more single vertices;
• SuperEdge: An edge connecting two vertices, where at least one is a SuperVertex;
• n-SuperEdge: An edge connecting two vertices, where at least one is an n-SuperVertex

and the other is an r-SuperVertex, with r ≤ n;
• SuperHyperEdge: An edge connecting three or more vertices, where at least one is a

SuperVertex;
• n-SuperHyperEdge: An edge connecting three or more vertices, where at least one is

an n-SuperVertex and the others are r-SuperVertices, with r ≤ n;
• MultiEdges: Two or more edges connecting the same pair of vertices;
• Loop: An edge that connects a vertex to itself.

Additionally, an n-SuperHyperGraph may contain the following graph types:

• Directed Graph: A classical directed graph;
• Undirected Graph: A classical undirected graph;
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• Neutrosophic Directed Graph: A graph that is partially directed, partially undirected,
and has indeterminate directionality.

3. New definition and Result of this paper

The results in this paper are presented as follows.

3.1. Comparison of Graph Classes

In this subsection, we compare each graph class. The theorem is presented below.

Theorem 3.1. Let SHG = (V,E) be a SuperHyperGraph, where V is the set of vertices and
E is the set of hyperedges (subsets of V ). Then, SHG is a supergraph of the base graph
H = (V,EH), where EH ⊆ E and each hyperedge in EH is a pair of vertices from V (i.e.,
classical edges). In other words, every SuperHyperGraph is a supergraph.

Proof. Let SHG = (V,E) be a SuperHyperGraph, where V is the set of vertices, and E is the
set of hyperedges.

We define the base graph H = (V,EH) as a classical graph where:

• V (H) = V (SHG) (the vertex set of H is the same as the vertex set of SHG),
• EH ⊆ {{u, v} | u, v ∈ V (H), u 6= v} consists only of edges between pairs of vertices.

In a SuperHyperGraph, the edge set E can contain not only classical edges between two
vertices, but also hyperedges that connect multiple vertices. This means that for each edge in
EH , there may be a corresponding hyperedge in E, such that:

EH ⊆ E

Thus, SHG contains all the edges of H, and possibly more hyperedges that involve three or
more vertices. Therefore, SHG satisfies the condition that E(SHG) ⊇ E(H).

By the definition of a supergraph, SHG is a supergraph of H if:

• V (SHG) = V (H),
• E(SHG) ⊇ E(H).

Since both conditions are satisfied, SHG is a supergraph of H.

Theorem 3.2. (cf. [82]) Let n = 1. An n-SuperHyperGraph (n-SHG) is equivalent to a su-
pergraph. Specifically, for n = 1, the n-SuperHyperGraph SHG1 = (G1, E1), where G1 ⊆ P(V )

and E1 ⊆ P(V ), forms a supergraph of a base graph H, which is constructed by interpreting
each vertex in G1 as a single vertex in V and each edge in E1 as a set of edges that contain
classical edges.
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Proof. By definition, an n-SuperHyperGraph (n-SHG) for any n ≥ 1 is an ordered pair
(SHGn, En), where Gn ⊆ Pn(V ) and En ⊆ Pn(V ), allowing for vertices and edges to be
subsets of the power set Pn(V ).

For n = 1, the structure simplifies. In this case, the vertex set G1 ⊆ P(V ) consists of single
vertices and subsets of V , while the edge set E1 ⊆ P(V ) consists of subsets of these vertices.
This means G1 represents either single vertices or groups of vertices, and E1 represents edges
connecting these vertices or groups.

Now, consider a supergraph G that contains another graph H, where V (G) ⊇ V (H) and
E(G) ⊇ E(H). Since in n = 1-SuperHyperGraph, the vertices are directly from the set V

(without further power set iterations), it follows that the 1-SuperHyperGraph is a graph that
contains subsets of vertices and their corresponding edges, just like a supergraph. Thus, for
n = 1, the n-SuperHyperGraph satisfies the conditions of being a supergraph.

Theorem 3.3. Let SHT = (V,E) be a SuperHyperTree, where V is the set of vertices and E

is the set of hyperedges (subsets of V ). Then, SHT is a Hypertree.

Proof. A Hypertree is defined as a hypergraph in which every hyperedge corresponds to a
connected subtree of a host tree T .

By definition, a SuperHyperTree satisfies the following conditions:

• There exists a host tree T , with the same vertex set V as SHT, and each hyperedge
Ei ∈ E corresponds to a connected subtree of T .

• Each hyperedge Ei can be either a single edge or a hyperedge (connecting more than
two vertices), but all vertices in Ei must form a connected subtree in T .

Since every hyperedge in a SuperHyperTree corresponds to a connected subtree of the host
tree T , SHT satisfies the necessary condition to be a Hypertree. Therefore, SHT is a Hypertree.

Theorem 3.4. Let SHT = (V,E) be a SuperHyperTree. Then, SHT is a Supertree.

Proof. A Supertree is defined as a supergraph that is a tree, meaning it must satisfy the
following conditions:

• The vertex set V (G) of the supergraph G contains the vertex set V (H) of the base
tree H.

• The edge set E(G) contains the edge set E(H) of H, and the structure of G must form
a tree.

A SuperHyperTree SHT = (V,E) includes vertices and hyperedges where each hyperedge
corresponds to a connected subtree of a host tree T , and no cycles are allowed, as the host
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tree T is acyclic by definition. Moreover, the supergraph structure includes all vertices and
edges of the base tree T , and thus SHT satisfies the conditions of a Supertree.

Therefore, SHT is a Supertree.

3.2. Supertree-width

Supertree-width is an extension of the tree-width concept for supergraphs, designed to mea-
sure how closely a supergraph resembles a tree-like structure while considering the additional
vertices and edges introduced in the supergraph. It generalizes tree-width for more complex
structures, such as supergraphs and superhypergraphs, which may contain extra vertices and
edges not present in the original graph.

Definition 3.5. Let G be a supergraph of another graph H, where V (G) ⊇ V (H) and
E(G) ⊇ E(H). The supertree-width of G is defined in terms of a tree-decomposition of the
supergraph G.

A supertree-decomposition of a supergraph G is a pair (T,W ), where T is a tree, and
W = (Wt | t ∈ V (T )) is a family of subsets (called bags) of the vertices of G, satisfying the
following conditions:

(1) Vertex Coverage: The union of all bags covers all vertices of G:⋃
t∈V (T )

Wt = V (G)

(2) Edge Containment: For each edge (u, v) ∈ E(G), there exists a bag Wt such that both
u and v are in Wt:

∃t ∈ V (T ) : {u, v} ⊆ Wt

(3) Tree Structure Condition: For every three nodes r, s, t in T , if s lies on the unique path
from r to t, then:

Wr ∩Wt ⊆ Ws

The width of a supertree-decomposition is defined as the maximum size of any bag minus 1:

width(T,W ) = max
t∈V (T )

(|Wt| − 1)

The supertree-width of the supergraph G is the minimum width over all possible supertree-
decompositions of G.

Theorem 3.6. Let G be a supergraph of another graph H. The supertree-width of an empty
graph can be characterized as follows:

(1) For an empty graph G, the supertree-width is 0.
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Proof. To prove this theorem, we analyze the supertree-width of empty graphs.
An empty graph is a graph G with vertices but no edges, i.e., V (G) = {v1, v2, . . . , vn} and

E(G) = ∅. For an empty graph, a tree-decomposition can be constructed by creating a bag
for each vertex in V (G), where each bag contains only one vertex. Formally, for each vertex
vi ∈ V (G), we define a bag Wti = {vi}.

Since there are no edges to satisfy the edge containment condition, and each vertex is in its
own bag, the tree-decomposition is valid. The size of each bag is 1, and thus the width of the
supertree-decomposition is calculated as:

width = 1− 1 = 0.

Therefore, the supertree-width of an empty graph is 0.

Theorem 3.7. Let SHT = (V,E) be a SuperHyperTree. The supertree-width of a SuperHy-
perTree is equal to the tree-width of the underlying tree. Specifically, the supertree-width of a
SuperHyperTree SHT is 1 if SHT is a simple tree structure.

Proof. A SuperHyperTree (SHT) is defined as a SuperHyperGraph where each hyperedge
corresponds to a connected subtree of a host tree T .

To compute the supertree-width of SHT, we follow the definition of supertree-width, which
is an extension of the tree-width for supergraphs. A supertree-decomposition (T,W ) involves
creating a tree T and assigning bags Wt to each node of T , such that:

• Every vertex of SHT is included in at least one bag.
• For each hyperedge (or simple edge) in SHT, there is a bag containing all the vertices

of that hyperedge.
• For any vertex, the nodes containing that vertex form a connected subtree in T .

In a SuperHyperTree, the structure is inherently tree-like because it is based on a host tree
T . The hyperedges of the SuperHyperTree are subtrees of T , and the tree decomposition
reflects this structure.

Now, consider the tree-decomposition of T itself. Since T is a tree, the standard tree-width
of T is 1, because every edge in T can be placed into a bag containing the two vertices it
connects, and this satisfies the tree-decomposition conditions. Since every hyperedge in SHT
corresponds to a subtree of T , the supertree-width will also be equal to 1 for a simple tree
structure.

Thus, the supertree-width of SHT is 1, as it inherits the tree structure of T .

Theorem 3.8. Let SHT = (V,E) be a SuperHyperTree. Then, SHT is a Supertree, and the
supertree-width of SHT is 1.
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Proof. A Supertree is defined as a supergraph that is a tree. A SuperHyperTree (SHT) has
the structure of a hypergraph, but its hyperedges correspond to connected subtrees of a host
tree T , which ensures that SHT has a tree-like structure.

To verify that SHT is a Supertree, we need to check the following:

• The vertex set V (SHT) contains the vertex set of the host tree T , as each hyperedge
of SHT corresponds to a subtree of T .

• The edge set E(SHT) contains edges that form subtrees of T , so E(SHT) inherits the
tree-like structure of T , ensuring that SHT is acyclic.

Since SHT satisfies the conditions of being both a supergraph and a tree, it follows that
SHT is a Supertree.

Furthermore, the supertree-width of SHT is determined by the tree-decomposition of the
host tree T . As discussed in the first theorem, the tree-width of T is 1, and since SHT inherits
the tree structure, the supertree-width of SHT is also 1.

Thus, we conclude that SHT is a Supertree, and its supertree-width is 1.

Theorem 3.9. Let G be a supergraph of itself. The supertree-width of G is less than or equal
to the tree-width of G, i.e.,

supertree-width(G) ≤ tree-width(G).

Proof. By definition, the supertree-decomposition follows the same structure and constraints
as the tree-decomposition for a graph G, meaning the supertree-width must obey the same
conditions as tree-width. However, the concept of supertree-width applies to supergraphs,
where additional vertices and edges could exist. Since we are considering the same graph G

in both cases (i.e., G is a supergraph of itself), there are no additional vertices or edges to
account for in the supertree-decomposition.

Therefore, the supertree-decomposition for G will yield at least the same set of decompo-
sitions as the tree-decomposition. Since the supertree-width is defined over the same set of
decompositions, we have:

supertree-width(G) ≤ tree-width(G),

because every valid tree-decomposition is also a valid supertree-decomposition.

Theorem 3.10. Let G and H be the same graph, i.e., G = H. Then, the supertree-width of
H is equal to the tree-width of H:

supertree-width(H) = tree-width(H).
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Proof. Since G = H, the supertree-decomposition of G is equivalent to the tree-decomposition
of H. Both decompositions must satisfy the same three conditions:

(1) The union of all bags covers the entire vertex set:
⋃

t∈V (T )Wt = V (H),
(2) For every edge (u, v) ∈ E(H), there exists a bag Wt containing both u and v,
(3) For any three nodes r, s, t ∈ T , if s lies on the path between r and t, then Wr∩Wt ⊆ Ws.

Since the definitions and requirements for both tree-decomposition and supertree-
decomposition are identical when G = H, the supertree-width and tree-width are exactly
the same. Both are based on decompositions of the same graph H. Thus, in this case, the
inequality holds as an equality.

3.3. Definition of n-SuperHyperTree-width

The n-SuperHyperTree is defined as follows. It is a tree on an n-SuperHyperGraph and
serves as a generalization of a SuperHyperTree.

Definition 3.11. An n-SuperHyperTree (n-SHT) is a special type of n-SuperHyperGraph.
Let Gn = (Vn, En) be an n-SuperHyperGraph, where Vn ⊆ Pn(V ) is the set of vertices and
En ⊆ Pn(V ) is the set of edges. The graph Gn is called an n-SuperHyperTree if the following
conditions are satisfied:

• Gn is connected: there exists a path between any two vertices in Gn, where the path
consists of edges and vertices of Gn;

• Gn contains no n-cycles: no subset of vertices and edges in Gn forms a closed loop
of any neutrosophic, indeterminate, or n-SuperEdge structures, ensuring that Gn is
acyclic;

• Gn has at least one n-SuperVertex: at least one vertex in Gn is a collection of vertices,
where at least one is an (n− 1)-SuperVertex and the others are r-SuperVertices, with
r ≤ n− 1.

Definition 3.12. A subtree of an n-SuperHyperTree (n-SHT) is defined as follows: Let Hn =

(An, Bn) be an n-SuperHyperGraph. Hn is called a subtree if there exists a tree T with the
same vertex set Vn, and for each edge e ∈ En, the edge induces a subtree in T . That is, for
each e (which could be an n-SuperEdge or n-SuperHyperEdge), there exists a corresponding
subtree structure in T .

Based on the above definition, the n-SuperHyperTree-width on an n-SuperHyperGraph is
defined as follows.
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Definition 3.13. Let n-SHT = (Vn, En) be an n-SuperHyperGraph, where Vn ⊆ Pn(V )

is the set of vertices and En ⊆ Pn(V ) is the set of edges, including n-SuperEdges, n-
SuperHyperEdges, and other higher-order structures.

A n-SuperHyperTree decomposition of n-SHT is a tuple (T,B, C) where:

• T = (VT , ET ) is a tree.
• B = {Bt | t ∈ VT } is a family of subsets of Vn (called bags) associated with the nodes

of the tree T , such that:
(1) Vertex Coverage: For each vertex v ∈ Vn, the set of nodes {t ∈ VT | v ∈ Bt} forms

a connected subtree of T .
(2) SuperEdge Coverage: For each edge e ∈ En, there exists a node t ∈ VT such that

the entire superedge e is contained within the corresponding bag Bt, i.e., e ⊆ Bt.
• C = {Ct | t ∈ VT } is a family of subsets of En (called guards) associated with the nodes

of the tree T , such that:
(1) Guard Coverage: For each node t ∈ VT , Bt ⊆

⋃
Ct, where

⋃
Ct denotes the union

of all edges in Ct.
(2) Subtree Condition: For each t ∈ VT , the set (

⋃
Ct) ∩

⋃
u∈V (Tt)

Bu ⊆ Bt, where Tt

denotes the subtree of T rooted at t.

The width of the n-SuperHyperTree decomposition (T,B, C) is defined as:

width(T,B, C) = max
t∈VT

|Ct|,

where |Ct| is the cardinality of the guard Ct.
The n-SuperHyperTree-width (n-SHT-width) of the n-SuperHyperGraph n-SHT, denoted by

n-SHT-width(n-SHT), is the minimum width over all possible n-SuperHyperTree decomposi-
tions:

n-SHT-width(n-SHT) = min
(T,B,C)

width(T,B, C).

• The n-SuperHyperTree-width is a measure of how close the n-SuperHyperGraph is to
being a tree.

• For a classical graph, the n-SuperHyperTree-width coincides with the treewidth.

The width parameters restricted to Tree, Path, Cycle, and Star are defined as follows.

Definition 3.14. Let integer n ≥ 1.

• n-SuperHyperPath-width measures how well an n-SuperHyperTree can be decomposed
along a path-like structure.

• n-SuperHyperCycle-width measures how well an n-SuperHyperTree can be decom-
posed along a cycle-like structure.
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• n-SuperHyperStar-width measures how well an n-SuperHyperTree can be decomposed
along a star-like structure.

Next, the properties of SuperHyperTree-width are analyzed as follows. The theorem is
stated below.

Theorem 3.15. Let n-SHT = (Vn, En) be an n-SuperHyperTree. The n-SuperHyperTree-width
of n-SHT, denoted n-SHT-width(n-SHT), is 1.

Proof. We will show that for any n-SuperHyperTree n-SHT = (Vn, En), there exists an n-
SuperHyperTree decomposition (T,B, C) with width 1, thereby proving that the minimal width
over all decompositions is 1.

By definition, an n-SuperHyperTree is an acyclic and connected n-SuperHyperGraph.
Specifically:

• n-SHT is connected: there exists a path between any two vertices in n-SHT.
• n-SHT contains no cycles: no subset of vertices and edges forms a cycle.

We construct T = (VT , ET ), where each node t ∈ VT corresponds to a vertex v ∈ Vn. The
bags B = {Bt | t ∈ VT } are defined such that each bag contains a single vertex, and the guards
C = {Ct | t ∈ VT } contain only the n-SuperEdge or n-SuperHyperEdge that connects the
vertex.

The width of the decomposition is width(T,B, C) = maxt∈VT
|Ct|. Since each guard contains

only one edge, we have |Ct| = 1. Therefore, the width of the decomposition is 1.
Since we have constructed an n-SuperHyperTree decomposition with width 1, the n-

SuperHyperTree-width of n-SHT is n-SHT-width(n-SHT) = 1.

Theorem 3.16. Let n-SHT = (Vn, En) be an n-SuperHyperTree, where n ≥ 1. The n-
SuperHyperTree-width of n-SHT is less than or equal to the SuperHyperTree-width of n-SHT,
that is,

n-SHT-width(n-SHT) ≤ SHT-width(n-SHT).

Proof. We will prove this theorem by distinguishing between two cases: n = 1 and n > 1.
Case 1: n = 1

When n = 1, the n-SuperHyperTree is a classical SuperHyperTree, so the widths are equivalent:

1-SHT-width(1-SHT) = SHT-width(1-SHT).

Case 2: n > 1

When n > 1, n-SuperVertices and n-SuperEdges extend the structure. By constructing the
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SuperHyperTree decomposition from the n-SuperHyperTree decomposition (by replacing n-
SuperVertices and n-SuperEdges with their lower-order equivalents), we have:

|Ct| ≤ |Cn
t | for all t ∈ VT ,

implying that:

n-SHT-width(n-SHT) ≤ SHT-width(n-SHT).

Thus, the inequality holds in both cases.

4. Future tasks

We plan to investigate width parameters in Crisp, Fuzzy, Intuitionistic Fuzzy, Picture Fuzzy,
and Neutrosophic n-SuperHyperGraphs (cf. [34, 39, 40, 82]). Additionally, we will explore the
concepts of hypermatroids (cf. [64]) and superhypermatroids. Furthermore, we aim to examine
Directed SuperHyperGraphs and other related structures.
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