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Abstract. In this research, we present fixed point theorems pertaining to nonlinear contractions, situated

within the sophisticated framework of neutrosophic fuzzy metric spaces. Furthermore, we establish several

fixed point results that are pertinent to this specific context.
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—————————————————————————————————————————-

1. Introduction

The concept of Fuzzy Sets (FSs), initially proposed by Zadeh [1], has had a profound impact

across numerous scientific disciplines since its inception. Although this framework is highly

relevant for practical applications, it has not always provided effective solutions to various chal-

lenges over time. Consequently, there has been a resurgence of interest in research aimed at ad-

dressing these issues. In this regard, Atanassov [2] introduced Intuitionistic Fuzzy Sets (IFSs)

as a means to confront such challenges. Additionally, the Neutrosophic Set (NS), developed by

Smarandache [3], represents a complex extension of conventional set theory. Other significant

generalizations include interval-valued FS [4], interval-valued IFS [5], as well as paraconsistent,

dialetheist, paradoxist, and tautological sets [6], along with Pythagorean fuzzy sets [7]. Neu-

trosophic sets exhibit a diverse range of applications across multiple domains. For instance,

Barbosa and Smarandache [8] presented the Neutrosophic One-Round Zero-Knowledge Proof

protocol (N-1-R) ZKP, which enhances the One-Round (1-R) ZKP framework by integrating
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Neutrosophic numbers. Furthermore, the authors in [10] provide a comprehensive character-

ization of efficient and optimally suitable solutions related to scalar optimization problems,

as well as outlining the Kuhn-Tucker conditions relevant to both efficiency and proper effi-

ciency. For a more thorough exploration of the applications of neutrosophic sets and their

extensive uses, it is recommended to consult the literature referenced in [9–20,23,24,48]. Our

objective is to integrate our research with novel concepts, as demonstrated in the applications

of [30,31,37,38,49,53].

The Banach fixed-point theorem [21], often referred to as the Banach contraction principle,

is a fundamental theorem in mathematics, particularly in the study of metric spaces. It

ensures the existence and uniqueness of fixed points for specific self-maps within these spaces,

thus providing a systematic method for identifying such points. The theorem serves as a

foundational element for Picard’s method of successive approximations. Introduced by Stefan

Banach in 1922, this theorem has motivated numerous mathematicians to investigate various

extensions and generalizations across a wide array of mathematical disciplines, as evidenced

by the citations in [?, ?, 22, 25–29, 34–36, 39–42, 44]. A prominent example of its application

is found in the concept of neutrosophic metric space (NMS), which was initially proposed by

Kirisci and Simsek [?]. This framework has been utilized to analyze a range of fixed point

theorems.

2. Preliminary

In this framework, the interval ]0−, 1 + [ is characterized as a non-standard unit interval.

Within this context, non-standard finite numbers are articulated as (1+) = 1 + ε, where ”1”

represents the standard component and ε denotes the non-standard element. In a similar

manner, (0−) = 0− ε, with ”0” indicating the standard component and ε as the non-standard

element. The numbers 0 and 1 can be interpreted as non-standard values that are infinitesi-

mally small yet less than 0 or infinitesimally small yet greater than 1, respectively, and these

values are encompassed within the non-standard unit interval ]0−, 1 + [.

Definition 2.1. [1]In relation to a universal set U , a fuzzy set F is defined by the notation

F = {< a, µF (ξ) >: 0 ≤ µF (ξ) ≤ 1, ξ ∈ U}. In this context, µF (ξ) represents the degree of

membership of the element ξ within the fuzzy set F .

Definition 2.2. [3] A neutrosophic set V relative to a universal set U is defined as V = {<
ξ, (TN (ξ), IN (ξ), FN (ξ)) >: ξ ∈ U, TN (ξ), IN (ξ), FN (ξ) ∈]0−, 1 + [}. In this context, TN (ξ),

IN (ξ), and FN (ξ) represent the membership degrees of truth, indeterminacy, and falsity for an

element ξ within the set V, respectively, while ]0−, 1 + [ signifies a non-standard unit interval.

Definition 2.3. [50] A neutrosophic fuzzy set B within a universal set U is characterized as

follows: B = {< x, (µB(ξ), TB(ξ, µ), IB(ξ, µ), F (ξ, µ)) >: ξ ∈ U, µB(ξ) ∈ [0, 1],
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TB(ξ, µ), IB(ξ, µ), F (ξ, µ) ∈]0−, 1 + [ } In this framework, the membership degree µB(ξ) is

represented by three distinct components: the truth membership grade TB(ξ, µ), the indeter-

minacy membership grade IB(ξ, µ), and the falsity membership grade F (ξ, µ). The notation

]0−, 1 + [ signifies a nonstandard unit interval.

Triangular norms (shortly TN), initially introduced by Menger [51], are a fundamental

concept in mathematical analysis. Menger’s innovative approach involved using probability

distributions to assess the distance between two elements within a specific space, moving

beyond the traditional reliance on numerical values. This technique facilitates the extension

of the triangle inequality in metric spaces through the application of triangular norms. In

contrast, triangular conorms (shortly CN) serve as the dual counterparts to t-norms. Both

TN and CN are essential in fuzzy operations, especially concerning intersections and unions.

In this manuscript, we denote R+ as the interval (0,∞) and I as the interval [0, 1].

Definition 2.4. Consider an operation � : I×I → I. This operation is classified as continuous

TN (CTN) if it meets the following criteria: for any elements σ, σ′, t, t′ ∈ I.

(1) σ � 1 = σ,

(2) If σ ≤ σ′ and t ≤ t′, than σ � t ≤ σ′ � t′,
(3) � is continuous,

(4) � is commutative and associate.

Definition 2.5. Consider an operation • : I×I → I. This operation is classified as continuous

TN (CTN) if it meets the following criteria: for all elements σ, σ′, t, t′ ∈ I.

(1) σ • 0 = σ,

(2) If σ ≤ σ′ and t ≤ t′, than σ • t ≤ σ′ • t′,
(3) • is continuous,

(4) • is commutative and associate.

Definition 2.6. [?] A 6-tuple (X ,A, C,D, �, •) is referred to as a Neutrophic Metric Space

(NMS) if the set X is a non-empty arbitrary collection, � signifies a continuous t-norm, •
indicates a continuous t-conorm, and the elements A, C, and D are three fuzzy sets established

on the Cartesian product X 2 × (0,∞). These components must satisfy the following specific

conditions for all elements ξ, ω, c ∈ X and for all positive real numbers λ, ρ.

(1) 0 ≤ A(ξ, ω, λ) ≤ 1, 0 ≤ C(ξ, ω, λ) ≤ 1, 0 ≤ D(ξ, ω, λ) ≤ 1,

(2) 0 ≤ A(ξ, ω, λ) + C(ξ, ω, λ) +D(ξ, ω, λ) ≤ 3,

(3) A(ξ, ω, λ) = 1, for λ > 0 iff ξ = ω

(4) A(ξ, ω, λ) = H(ω, ξ, λ), for λ > 0
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(5) A(ξ, ω, λ) � A(ω, c, ρ) ≤ A(ξ, c, λ+ ρ)

(6) A(ξ, ω, ·) : R+ → I is continuous

(7) lim
λ→∞

A(ξ, ω, λ) = 1

(8) C(ξ, ω, λ) = 0 iff ξ = ω

(9) C(ξ, ω, λ) = C(ω, ξ, λ),

(10) C(ξ, ω, λ) • C(ω, c, ρ) ≥ C(ξ, c, λ+ ρ),

(11) C(ξ, ω, ·) : R+ → I is continuous

(12) lim
λ→∞

C(ξ, ω, λ) = 0

(13) D(ξ, ω, λ) = 0, for λ > 0 iff ξ = ω

(14) D(ξ, ω, λ) = D(ω, ξ, λ),

(15) D(ξ, ω, λ) • D(ω, c, ρ) ≥ S(ξ, c, λ+ ρ),

(16) D(ξ, ω, ·) : R+ → I is continuous

(17) lim
λ→∞

D(ξ, ω, λ) = 0

(18) If λ ≤ 0, then A(ξ, ω, λ) = 0, C(ξ, ω, λ) = D(ξ, ω, λ) = 1

The functions A(ξ, ω, λ), C(ξ, ω, λ), and D(ξ, ω, λ) represent the degrees of nearness, neu-

tralness, and non-nearness between the elements ξ and ω in relation to the parameter λ,

respectively.

Recently, Ghosh et al. [52] presented the notion of neutrosophic fuzzy metric spaces and

examined various topological characteristics associated with this concept.

Definition 2.7. [52] A 7-tuple (X ,A,B, C,D, �, •) is known as a Neutrophic Fuzzy Metric

Space (NFMS) if X is an arbitary set, � is a continuous t-norm, • is a continuous t-conorm,

and A,B, C, and D are fuzzy sets on X 2 × (0,∞) satisfying the following conditions for all

ξ, ω, c,∈ X and λ, ρ > 0.

(1) 0 ≤ A(ξ, ω, λ) ≤ 1, 0 ≤ B(ξ, ω, λ) ≤ 1, 0 ≤ C(ξ, ω, λ) ≤ 1, 0 ≤ D(ξ, ω, λ) ≤ 1,

(2) 0 ≤ A(ξ, ω, λ) + B(ξ, ω, λ) + C(ξ, ω, λ) +D(ξ, ω, λ) ≤ 4,

(3) A(ξ, ω, λ) = 1, iff ξ = ω

(4) A(ξ, ω, λ) = H(ω, ξ, λ),

(5) A(ξ, ω, λ) � A(ω, c, ρ) ≤ A(ξ, c, λ+ ρ), for ρ, λ > 0

(6) A(ξ, ω, ·) : R+ → I is continuous

(7) lim
λ→∞

A(ξ, ω, λ) = 1

(8) B(ξ, ω, λ) = 1, iff ξ = ω

(9) B(ξ, ω, λ) = B(ω, ξ, λ), for λ > 0

(10) B(ξ, ω, λ) � B(ω, c, ρ) ≤ B(ξ, c, λ+ ρ),

(11) B(ξ, ω, ·) : R+ → I is continuous

A. A Hazaymeh, A. Bataihah, Neutrosophic fuzzy metric spaces and Fixed points for contractions of 
nonlinear  type

Neutrosophic Sets and Systems, Vol. 77, 2024            99



(12) lim
λ→∞

B(ξ, ω, λ) = 1

(13) C(ξ, ω, λ) = 0, iff ξ = ω

(14) C(ξ, ω, λ) = C(ω, ξ, λ),

(15) C(ξ, ω, λ) • C(ω, c, ρ) ≥ C(ξ, c, λ+ ρ),

(16) C(ξ, ω, ·) : R+ → I is continuous

(17) lim
λ→∞

C(ξ, ω, λ) = 0

(18) D(ξ, ω, λ) = 0, iff ξ = ω

(19) D(ξ, ω, λ) = D(ω, ξ, λ),

(20) D(ξ, ω, λ) • D(ω, c, ρ) ≥ S(ξ, c, λ+ ρ),

(21) D(ξ, ω, ·) : R+ → I is continuous

(22) lim
λ→∞

D(ξ, ω, λ) = 0

(23) If λ ≤ 0, then A(ξ, ω, λ) = B(ξ, ω, λ) = 0, C(ξ, ω, λ) = D(ξ, ω, λ) = 1

In this context, A(ξ, ω, λ) represents the certainity that distance between ξ and ω is less than λ,

B(ξ, ω, λ) represents the degree of nearness, C(ξ, ω, λ) stadns for the degree of neutralness, and

D(ξ, ω, λ) denotes the degree of non-nearness between ξ and ω with respect to λ, respectively.

The convergence, Cauchyness, completeness are given as follows.

Definition 2.8. [52] Let (ξn) be a sequence in a NFMS (X ,A,B, C,D, �, •). Then

(1) (ξn) converges to ξ ∈ X iff for a given ε ∈ (0, 1), λ > 0 there is n0 ∈ N such that for

each n ≥ n0

A(ξn, ξ, λ) > 1− ε, C(ξn, ξ, λ) < ε, D(ξn, ξ, λ) < ε

i.e.,

lim
n→∞

A(ξn, ξ, λ) = 1, lim
n→∞

B(ξn, ξ, λ) = 1, lim
n→∞

C(ξn, ξ, λ) = 0, lim
n→∞

D(ξn, ξ, λ) = 0

(2) (ξn) is called Cauchy iff for a given ε ∈ (0, 1), λ > 0 there is n0 ∈ N such that for each

n,m ≥ n0

A(ξn, ξm, λ) > 1− ε, B(ξn, ξm, λ) > 1− ε, C(ξn, ξm, λ) < ε, D(ξn, ξm, λ) < ε

i.e.,

lim
n.m→∞

A(ξn, ξm, λ) = 1, lim
n.m→∞

B(ξn, ξm, λ) = 1, lim
n,m→∞

C(ξn, ξm, λ) = 0, lim
n,m→∞

D(ξn, ξm, λ) = 0

(3) (X ,A,B, C,D, �, •) is called complete if each Cauchy sequence is convergent to an

element in X .
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3. Main Result

Definition 3.1. In this context, we define a real-valued function of three variables on X 2 ×
(0,∞) where X is any non-empty set, denoted as G to possess the property (UC) if for any

sequences (ξn) and (ωn) in X , the following equality holds:

lim
λ→λ0

lim
n→∞

G(ξn, ωn, λ) = lim
n→∞

lim
λ→λ0

G(ξn, ωn, λ).

whenever the two limits are exist.

Throughout the remainder of this study, we will assume that each of the fuzzy sets A,B, C,D
exhibits the UC property.

We will commence with several pertinent lemmas.

Lemma 3.2. Let (X ,A,B, C,D, �, •) be a NFMS. Then

(1) A(ξ, ω, ·) : R+ → R+ is non-decreasing

(2) B(ξ, ω, ·) : R+ → R+ is non-decreasing

(3) C(ξ, ω, ·) : R+ → R+ is non-increasing

(4) D(ξ, ω, ·) : R+ → R+ is non-increasing

Proof. (1) Let λ1, λ2 > 0, with λ1 > λ2. Then, there is δ > 0 such that λ1 = λ2 + δ.

From (5), we get

A(ξ, ω, λ1) = A(ξ, ω, λ2 + δ)

≥ A(ξ, ω, λ2) � A(ω, ω, δ)

= A(ξ, ω, λ2).

The proofs for (2),(3) and (4) are identical to that of (1).

Lemma 3.3. Let (X ,A,B, C,D, �, •) be a NFMS, and let (ξn) be a sequence such that for

λ > 0
A(ξp, ξq, λ) ≥ A(ξp−1, ξq−1, λ)

B(ξp, ξq, λ) ≥ B(ξp−1, ξq−1, λ)

C(ξp, ξq, λ) ≤ C(ξp−1, ξq−1, λ)

D(ξp, ξq, λ) ≤ D(ξp−1, ξq−1, λ)

(1)

and

lim
n→∞

A(ξn, ξn+1, λ) = 1,

lim
n→∞

B(ξn, ξn+1, λ) = 1,

lim
n→∞

C(ξn, ξn+1, λ) = 0,

lim
n→∞

D(ξn, ξn+1, λ) = 0.

(2)
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If (ξn) is not Cauchy, then there exist an 1 > ε > 0 and λ > 0 along with two subsequences

(ξnk
) and (ξmk

) derived from (ξn), where (mk) such that one at least of the following holds.

lim
k→∞

A(ξnk
, ξmk

, λ) = 1− ε,

lim
k→∞

B(ξnk
, ξmk

, λ) = 1− ε,

lim
k→∞

C(ξnk
, ξmk

, λ) = ε,

lim
k→∞

D(ξnk
, ξmk

, λ) = ε.

Proof. If (ξn) is not Cauchy, then for each λ > 0

lim
n,m→∞

A(ξn, ξm, λ) 6= 1,

lim
n,m→∞

B(ξn, ξm, λ) 6= 1,

lim
n,m→∞

C(ξn, ξm, λ) 6= 0,

or

lim
n,m→∞

D(ξn, ξm, λ) 6= 0.

Case 1: If lim
n,m→∞

A(ξn, ξm, λ) 6= 1, then there are λ > 0, and ε > 0 along with two

subsequences (ξnk
) and (ξmk

) derived from (ξn), where (mk) is selected as the smallest index

satisfying the condition.

A(ξnk
, ξmk

, λ) ≤ 1− ε, mk > nk > k. (3)

This implies that

A(ξnk
, ξmk−1, λ) > 1− ε. (4)

chose δ > 0. Then

A(ξnk
, ξmk

, λ+ δ) ≥ A(ξnk
, ξmk−1, λ) � A(ξmk−1, ξmk

, δ)

> (1− ε) � A(ξmk−1, ξmk
, δ)

Using Equation 2, we get

lim inf
k→∞

A(ξnk
, ξmk

, λ+ δ) ≥ (1− ε).

Also,
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(1− ε) ≤ lim
δ→0+

lim inf
k→∞

A(ξnk
, ξmk

, λ+ δ)

= lim inf
k→∞

lim
δ→0+

A(ξnk
, ξmk

, λ+ δ)

= lim inf
k→∞

A(ξnk
, ξmk

, λ).

Also, from 3, it follows

lim sup
k→∞

A(ξnk
, ξmk

, λ) ≤ (1− ε).

So, we get

lim
k→∞

A(ξnk
, ξmk

, λ) = (1− ε).

Again, we have

A(ξnk−1, ξmk−1, λ+ δ) ≥ A(ξnk−1, ξnk
, δ) � A(ξnk

, ξmk−1, λ)

> A(ξnk−1, ξnk
, δ) � (1− ε).

Using Equation 2, we get lim inf
k→∞

A(ξnk−1, ξmk−1, λ+ δ) ≥ (1− ε).
Also,

(1− ε) ≤ lim
δ→0+

lim inf
k→∞

A(ξnk−1, ξmk−1, λ+ δ)

= lim inf
k→∞

lim
δ→0+

A(ξnk−1, ξmk−1, λ+ δ)

= lim inf
k→∞

A(ξnk−1, ξmk−1, λ).

From Eq 3, we get

A(ξnk−1, ξmk−1, λ) ≤ A(ξnk
, ξmk

, λ) ≤ (1− ε).

So,

lim sup
k→∞

A(ξnk−1, ξmk−1, λ) ≤ (1− ε).

Hence,

lim
k→∞

A(ξnk−1, ξmk−1, λ) = (1− ε).

The demonstration for the remaining cases is Similar to that of Case (1).

In order to support our primary conclusion, we require the subsequent category of functions

as delineated by Geraghty in [56].
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Definition 3.4. [56] Let S represent the set of all functions α : R+ → [0, 1) that fulfill the

following condition:

α(tn)→ 1 =⇒ tn → 0.

Definition 3.5. Let (X ,A,B, C,D, �, •) be a NFMS, α ∈ S. A mapping f : X → X is called

α-neutrosophic fuzzy contraction if for each ξ, ω ∈ X and each λ > 0, we have

1

A(fξ, fω, λ)
− 1 ≤ α

(
1

A(ξ, ω, λ)
− 1

)(
1

A(ξ, ω, λ)
− 1

)
,

1

B(fξ, fω, λ)
− 1 ≤ α

(
1

B(ξ, ω, λ)
− 1

)(
1

B(ξ, ω, λ)
− 1

)
,

C(fξ, fω, λ) ≤ α(C(ξ, ω, λ))(C(ξ, ω, λ)),

and

D(fξ, fω, λ) ≤ α(D(ξ, ω, λ))(D(ξ, ω, λ)).

Theorem 3.6. Let (X ,A,B, C,D, �, •) be a complete NFMS, Suppose that there is α ∈ S such

that f : X → X is α-neutrosophic fuzzy contraction. Consequently, the function f possesses a

unique fixed point.

Proof. Let ξ0 ∈ X represents an arbitrary point. We examine the Picard sequence (ξn) char-

acterized by the relation ξn+1 = f(ξn) for all n ≥ 0. By Definition 3.5 we have

1

A(ξn, ξn+1, λ)
− 1 ≤ α

(
1

A(ξn−1, ξn, λ)
− 1

)(
1

A(ξn−1, ξn, λ)
− 1

)
,

1

B(ξn, ξn+1, λ)
− 1 ≤ α

(
1

B(ξn−1, ξn, λ)
− 1

)(
1

B(ξn−1, ξn, λ)
− 1

)
,

C(ξn, ξn+1, λ) ≤ α(C(ξn−1, ξn, λ))(C(ξn−1, ξn, λ)),

and

D(ξn, ξn+1, λ) ≤ α(D(ξn−1, ξn, λ))(D(ξn−1, ξn, λ)).

Thus,
1

A(ξn,ξn+1,λ)
− 1(

1
A(ξn−1,ξn,λ)

− 1
) ≤ α(

1

A(ξn−1, ξn, λ)
− 1

)
, (5)

1
B(ξn,ξn+1,λ)

− 1(
1

B(ξn−1,ξn,λ)
− 1

) ≤ α(
1

B(ξn−1, ξn, λ)
− 1

)
, (6)

C(ξn, ξn+1, λ)

(C(ξn−1, ξn, λ))
≤ α(C(ξn−1, ξn, λ)), (7)

D(ξn, ξn+1, λ)

(D(ξn−1, ξn, λ))
≤ α(D(ξn−1, ξn, λ)). (8)
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And also, we get

1

A(ξn, ξn+1, λ)
− 1 <

1

A(ξn−1, ξn, λ)
− 1,

1

B(ξn, ξn+1, λ)
− 1 <

1

B(ξn−1, ξn, λ)
− 1,

C(ξn, ξn+1, λ) < (C(ξn−1, ξn, λ)),

and

D(ξn, ξn+1, λ) < (D(ξn−1, ξn, λ)).

So, we have

(1) the sequence (A(ξn, ξn+1, λ) : n ∈ N) is nondecreasing in [0,1], and hence, there is rA ≤
1 such that rA is the limit of this sequence.

(2) the sequence (B(ξn, ξn+1, λ) : n ∈ N) is nondecreasing in [0,1], and hence, there is rB ≤
1 such that rB is the limit of this sequence.

(3) the sequence (C(ξn, ξn+1, λ) : n ∈ N) is nonincreasing in [0,1], and hence, there is rC ≥ 0

such that rC is the limit of this sequence.

and

(4) the sequence (D(ξn, ξn+1, λ) : n ∈ N) is nonincreasing in [0,1], and hence, there is rD ≥
0 such that rD is the limit of this sequence..

Case 1: If rA < 1, by taking the limit in Eq 5, we get

lim
n→∞

α

(
1

A(ξn−1, ξn, λ)
− 1

)
= 1

which implies that

lim
n→∞

1

A(ξn, ξn+1, λ)
− 1 = 0,

a contradiction. So rA = 1. By the same way we conclude that rB = 1, rC = 0 and rD = 0.

Now, we claim that (ξn) i Cauchy. If not then by Lemma 3.3, then there exist an ε > 0 and

λ > 0 along with two subsequences (ξnk
) and (ξmk

) derived from (ξn), where (mk) such that

one of the following holds

lim
k→∞

A(ξn, ξm, λ) = 1− ε,

lim
k→∞

B(ξn, ξm, λ) = 1− ε,

lim
k→∞

C(ξn, ξm, λ) = ε,

lim
k→∞

D(ξn, ξm, λ) = ε.

Using Definition 3.5, we deduce that one of the following holds
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1

A(ξnk
, ξmk

, λ)
− 1 ≤ α

(
1

A(ξnk−1, ξmk−1, λ)
− 1

)(
1

A(ξnk−1, ξmk−1, λ)
− 1

)
,

1

B(ξnk
, ξmk

, λ)
− 1 ≤ α

(
1

B(ξnk−1, ξmk−1, λ)
− 1

)(
1

B(ξnk−1, ξmk−1, λ)
− 1

)
,

C(ξnk
, ξmk

, λ) ≤ α(C(ξnk−1, ξmk−1, λ))(C(ξnk−1, ξmk−1, λ)),

or

D(ξnk
, ξmk

, λ) ≤ α(D(ξnk−1, ξmk−1, λ))(D(ξnk−1, ξmk−1, λ))

So,

1
A(ξnk

,ξmk
,λ) − 1(

1
A(ξnk−1,ξmk−1,λ)

− 1
) ≤ α(

1

A(ξnk−1, ξmk−1, λ)
− 1

)
,

1
B(ξnk

,ξmk
,λ) − 1(

1
B(ξnk−1,ξmk−1,λ)

− 1
) ≤ α(

1

B(ξnk−1, ξmk−1, λ)
− 1

)
,

C(ξnk
, ξmk

, λ)

(C(ξnk−1, ξmk−1, λ))
≤ α(C(ξnk−1, ξmk−1, λ)),

or
D(ξnk

, ξmk
, λ)

(D(ξnk−1, ξmk−1, λ))
≤ α(D(ξnk−1, ξmk−1, λ)).

Hence, by taking the limit on k →∞, we get

lim
k→∞

α

(
1

A(ξnk−1, ξmk−1, λ)
− 1

)
= 1,

lim
k→∞

α

(
1

B(ξnk−1, ξmk−1, λ)
− 1

)
= 1,

lim
k→∞

α (C(ξnk−1, ξmk−1, λ)) = 1,

or

lim
k→∞

α (D(ξnk−1, ξmk−1, λ)) = 1.

which implies that

lim
k→∞

(
1

A(ξnk−1, ξmk−1, λ)
− 1

)
= 0,

lim
k→∞

(
1

B(ξnk−1, ξmk−1, λ)
− 1

)
= 0,

lim
k→∞

(C(ξnk−1, ξmk−1, λ)) = 0,
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or

lim
k→∞

(D(ξnk−1, ξmk−1, λ)) = 0.

which leads to a contradiction in each single case.

Hence (ξn) is a Cauchy sequence, thus, there is u ∈ X such that ξn → u.

Definition 3.5 gives that

1

A(fu, ξn+1, λ)
− 1 ≤ α

(
1

A(u, ξn, λ)
− 1

)(
1

A(u, ξn, λ)
− 1

)
→ 0 as n→∞,

1

B(fu, ξn+1, λ)
− 1 ≤ α

(
1

B(u, ξn, λ)
− 1

)(
1

B(u, ξn, λ)
− 1

)
→ 0 as n→∞,

C(fu, ξn+1, λ) ≤ α(C(u, ξn, λ))(C(u, ξn, λ))→ 0 as n→∞,

and

D(fu, ξn+1, λ) ≤ α(D(u, ξn, λ))(D(u, ξn, λ))→ 0 as n→∞.

Which implies that ξn+1 converges to fu, hence u = fu.

Let v ∈ X with v = fv. If u 6= v, then from Definition 3.5, it follows that

1

A(u, v, λ)
− 1 =

1

A(fu, fv, λ)
− 1 ≤ α

(
1

A(u, v, λ)
− 1

)(
1

A(u, v, λ)
− 1

)
<

1

A(u, v, λ)
− 1,

1

B(u, v, λ)
− 1 =

1

B(fu, fv, λ)
− 1 ≤ α

(
1

B(u, v, λ)
− 1

)(
1

B(u, v, λ)
− 1

)
<

1

B(u, v, λ)
− 1,

C(u, v, λ) = C(fu, fv, λ) ≤ α(C(u, v, λ))(C(u, v, λ)) < C(u, v, λ),

and

D(u, v, λ) = D(fu, fv, λ) ≤ α(D(u, v, λ))(D(u, v, λ)) < D(u, v, λ).

which is a contradiction. So u = v.

By defining the function α(s) = q, with the constant q restricted to the interval [0, 1), we

can draw the following conclusion.

Corollary 3.7. Let (X ,A,B, C,D, �, •) be a complete NFMS, Suppose that f : X → X satisfies

the following for each ξ, ω ∈ X and each λ > 0, we have:

1

A(fξ, fω, λ)
− 1 ≤ q

(
1

A(ξ, ω, λ)
− 1

)
,

1

B(fξ, fω, λ)
− 1 ≤ q

(
1

B(ξ, ω, λ)
− 1

)
,

C(fξ, fω, λ) ≤ qC(ξ, ω, λ),

and

D(fξ, fω, λ) ≤ qD(ξ, ω, λ).

Consequently, the function f possesses a unique fixed point.
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4. Conclusion

In this research, we presented fixed point theorems related to nonlinear contractions within

the advanced framework of neutrosophic fuzzy metric spaces. Additionally, we established

several fixed point results relevant to this specific context. For future studies, these math-

ematical tools can be used effectively with other tools and techniques that can be observed

through [57]– [77]
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