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Abstract. Graph theory, a branch of mathematics, studies relationships among entities through vertices and
edges. To capture the inherent uncertainties in real-world networks, Uncertain Graph Theory has evolved
within this field. Soft Expert Graphs combine conventional graph theory with expert assessments, using fuzzy
sets for vertices and edges, while allowing expert opinions to shape the uncertainties and relationships within
the graph. Hypersoft Graphs extend this concept further by incorporating multi-attribute nodes that represent
multiple distinct attribute values, enabling the modeling of more complex, multi-dimensional relationships.

In this paper, we define the Hypersoft Expert Graph and explore its connections to other classes of graphs.
We also consider the SuperHypersoft Graph, TreeSoft Graph, and IndetermSoft Graph.
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1. Introduction

1.1. Uncertain Graph Classes

Graph theory, a foundational area of mathematics, models relationships within network
structures through vertices (or nodes) and edges. Graphs serve as versatile tools for repre-
senting connections and interactions between various elements, often referred to as concepts
or sets. These foundational concepts were first introduced in the 1700s, and since then, they
have been extensively studied and developed up to the present day [26,30,44,119,129,181].

Mathematical concepts capable of handling real-world uncertainties, such as Fuzzy Sets [179]
and Neutrosophic Sets [152,153], have been proposed to address various ambiguous scenarios.
This paper investigates multiple models of uncertain graphs, which expand classical graph
theory by adding layers of uncertainty, enhancing the representation of complex, ambiguous
relationships. These uncertain graph models have proven highly applicable across real-world
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domains, leading to the development of numerous related graph classes [47–60, 62, 63, 63–72].
These uncertain graphs are especially useful in decision-making applications [3,10,33–35,107,
108,150,158,180].

Given the extensive research and applications in this field, uncertain graphs have become
a vital area of study. For additional context and recent advancements, readers may refer to
recent survey papers [61,65,66].

1.2. Soft Expert Graphs and Hypersoft Graphs

The concept of Soft Expert Sets extends into the domain of uncertain graphs, exploring their
connections with other graph classes. A Soft Expert Graph integrates classical graph theory
with expert evaluations, associating fuzzy sets with vertices and edges while using expert
opinions to define uncertainties and relationships. This approach aligns with the principles of
Soft Set Theory [15,16,110,113,177] and Soft Graph Theory [8, 88].

The framework includes models like Fuzzy Soft Expert Graphs [146], Intuitionistic Fuzzy
Soft Expert Graphs [171], and Neutrosophic Soft Expert Graphs [173], each of which has
proven effective in multi-criteria decision-making [21,45,136,167,170]. Extensive research has
already been conducted on Soft Expert Sets and their applications [13,14,17,18,130,145].

A Hypersoft Graph further extends traditional graphs by incorporating multi-attribute
nodes, allowing each node to represent several distinct attribute values, which supports more
complex, multi-dimensional relationships [132, 140, 142–144]. In essence, it can be viewed as
the graph-based concept of Hypersoft Sets [1,39,111,116,117,133,149,154,178]. Additionally,
Hypersoft Expert Sets have been introduced as extensions of Hypersoft Sets [2, 95–102].

1.3. Our Contribution in This Paper

As noted above, while research on Soft Expert Graphs and related areas is progressing,
studies on Hypersoft Expert Graphs remain limited. In this paper, we define the Hypersoft
Expert Graph and analyze its connections with other graph classes. Additionally, in the
concluding section, we examine the SuperHypersoft Graph, TreeSoft Graph, and IndetermSoft
Graph. These are graph concepts based on extensions of the Soft Set framework, specifically
the SuperHypersoft Set [75,112,159,163], TreeSoft Set [41,122,160,161,164], and IndetermSoft
Set [160,161].

2. Preliminaries and Definitions

This section offers an overview of the fundamental definitions and notations used throughout
the paper. Additionally, some foundational concepts from set theory are applied in parts of
this work. For further details, please consult relevant references as needed [46,87,90,104,109].
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2.1. Basic Graph Concepts

This section provides a concise overview of essential concepts in graph theory. For a more
detailed study and additional notational conventions, see [42–44,82,175].

Definition 2.1 (Graph). [44] A graph G is a mathematical structure used to model pairwise
relations between objects. It is composed of a set of vertices V (G) and a set of edges E(G),
where each edge represents a connection between two vertices. Formally, a graph is denoted
by G = (V,E), with V as the set of vertices and E as the set of edges.

Definition 2.2 (Vertex Degree). [44] For a graph G = (V,E), the degree of a vertex v ∈ V ,
denoted deg(v), is defined as the number of edges incident to v. For an undirected graph, this
is expressed as:

deg(v) = |{e ∈ E | v ∈ e}|.

This measure reflects the connectivity of v within the graph.

2.2. Uncertain Graph

Approximately half a century has passed since the introduction of the Fuzzy Set, leading to
the development of various graph concepts designed to handle uncertainty. Here, we provide
definitions for frameworks including Fuzzy, Intuitionistic Fuzzy, Neutrosophic, Vague, and
Single-Valued Pentapartitioned Neutrosophic.

Definition 2.3 (Unified Uncertain Graphs Framework). (cf. [65]) Let G = (V,E) be a classical
graph with a set of vertices V and a set of edges E. Depending on the type of graph, each
vertex v ∈ V and edge e ∈ E is assigned membership values to represent various degrees of
truth, indeterminacy, falsity, and other nuanced measures of uncertainty.

(1) Fuzzy Graph [25,73,76,106,114,120,137,138,166,174]:
• Each vertex v ∈ V is assigned a membership degree σ(v) ∈ [0, 1].
• Each edge e = (u, v) ∈ E is assigned a membership degree µ(u, v) ∈ [0, 1].

(2) Intuitionistic Fuzzy Graph (IFG) [4,24,37,103,115,168,172,182]:
• Each vertex v ∈ V is assigned two values: µA(v) ∈ [0, 1] (degree of membership)

and νA(v) ∈ [0, 1] (degree of non-membership), such that µA(v) + νA(v) ≤ 1.
• Each edge e = (u, v) ∈ E is assigned two values: µB(u, v) ∈ [0, 1] and νB(u, v) ∈
[0, 1], with µB(u, v) + νB(u, v) ≤ 1.

(3) Neutrosophic Graph [7,11,32,61,67,83,91,105,147,156,165]:
• Each vertex v ∈ V is assigned a triplet σ(v) = (σT (v), σI(v), σF (v)), where
σT (v), σI(v), σF (v) ∈ [0, 1] and σT (v) + σI(v) + σF (v) ≤ 3.

• Each edge e = (u, v) ∈ E is assigned a triplet µ(e) = (µT (e), µI(e), µF (e)).
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(4) Vague Graph [5,6,27–29,134,135,148]:
• Each vertex v ∈ V is assigned a pair (τ(v), φ(v)), where τ(v) ∈ [0, 1] is the degree

of truth-membership and φ(v) ∈ [0, 1] is the degree of false-membership, with
τ(v) + φ(v) ≤ 1.

• The grade of membership is characterized by the interval [τ(v), 1− φ(v)].
• Each edge e = (u, v) ∈ E is assigned a pair (τ(e), φ(e)), satisfying:

τ(e) ≤ min{τ(u), τ(v)}, φ(e) ≥ max{φ(u), φ(v)}.

(5) Hesitant Fuzzy Graph [23,77,121,123,176]:
• Each vertex v ∈ V is assigned a hesitant fuzzy set σ(v), represented by a finite

subset of [0, 1], denoted σ(v) ⊆ [0, 1].
• Each edge e = (u, v) ∈ E is assigned a hesitant fuzzy set µ(e) ⊆ [0, 1].
• Operations on hesitant fuzzy sets (e.g., intersection, union) are defined to handle

the hesitation in membership degrees.
(6) Single-Valued Pentapartitioned Neutrosophic Graph [38,93,94,131]:

• Each vertex v ∈ V is assigned a quintuple σ(v) = (T (v), C(v), R(v), U(v), F (v)),
where:

– T (v) ∈ [0, 1] is the truth-membership degree.
– C(v) ∈ [0, 1] is the contradiction-membership degree.
– R(v) ∈ [0, 1] is the ignorance-membership degree.
– U(v) ∈ [0, 1] is the unknown-membership degree.
– F (v) ∈ [0, 1] is the false-membership degree.
– T (v) + C(v) +R(v) + U(v) + F (v) ≤ 5.

• Each edge e = (u, v) ∈ E is assigned a quintuple µ(e) =

(T (e), C(e), R(e), U(e), F (e)), satisfying:

T (e) ≤ min{T (u), T (v)},

C(e) ≤ min{C(u), C(v)},

R(e) ≥ max{R(u), R(v)},

U(e) ≥ max{U(u), U(v)},

F (e) ≥ max{F (u), F (v)}.

2.3. Hypersoft Graph

A HyperSoft Graph represents multi-attribute nodes where each node can hold distinct
attribute values, enabling complex, multi-dimensional relationships. The definition of a Hy-
persoft Graph is provided as follows [132,140,142–144].
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Definition 2.4 (Hypersoft Set). [154] Let X be a non-empty finite universe, and let
T1, T2, . . . , Tn be n-distinct attributes with corresponding disjoint sets J1, J2, . . . , Jn. A pair
(F, J) is called a hypersoft set over the universal set X, where F is a mapping defined by

F : J → P(X),

with J = J1 × J2 × · · · × Jn.

Definition 2.5 (Hypersoft Graph). Let G = (V,E) be a simple connected graph, where V

is the set of vertices and E is the set of edges. Consider J = J1 × J2 × · · · × Jn, where each
Ji ⊆ V and Ji∩Jj = ∅ for i 6= j. A Hypersoft Graph (HS-Graph) of G is defined as a hypersoft
set (F, J) over V such that for each x ∈ J , F (x) induces a connected subgraph of G. The set
of all HS-Graphs of G is denoted by HsG(G).

2.4. Fuzzy Soft Graph and Fuzzy Hypersoft Graph

A Fuzzy Soft Graph assigns fuzzy membership values to vertices and edges based on pa-
rameters, representing uncertainty in relationships [9, 12, 19, 20, 22, 34, 92, 151]. And a Fuzzy
Hypersoft Graph extends fuzzy soft graphs by using multi-parameter combinations to assign
fuzzy membership, capturing complex multi-attribute relationships. The definitions of Fuzzy
Soft Graph and Fuzzy Hypersoft Graph are presented as follows.

Definition 2.6 (Fuzzy Soft Graph). [9,12] Let X = {x1, x2, x3, . . . , xn} be a non-empty set,
and let A ⊆ E, where E is a set of parameters. A fuzzy soft graph is defined by two mappings:

• ρ : A → F (X), where F (X) is the collection of all fuzzy subsets in X. For each
parameter e ∈ A,

ρ(e) : X → [0, 1]

assigns a membership degree ρe(xi) to each element xi ∈ X. The pair (A, ρ) represents
the fuzzy soft vertices.

• β : A → F (X ×X), where F (X ×X) is the collection of all fuzzy subsets in X ×X.
For each parameter e ∈ A,

β(e) : X ×X → [0, 1]

assigns a membership degree βe(xi, xj) to each pair (xi, xj) ∈ X ×X. The pair (A, β)

represents the fuzzy soft edges.

The structure ((A, ρ), (A, β)) is called a fuzzy soft graph if

βe(xi, xj) ≤ ρe(xi) ∧ ρe(xj)

for all e ∈ A and for all i, j = 1, 2, . . . , n. This graph is denoted as ĜA,X .
Takaaki Fujita, A Comprehensive Discussion on Fuzzy Hypersoft Expert, Superhypersoft,
and IndetermSoft Graphs

Neutrosophic Sets and Systems, Vol. 77, 2025                                                                               245



Definition 2.7 (Fuzzy Hypersoft Graph). [139,141] Let X = {x1, x2, x3, . . . , xn} be a universe
of discourse, and let E be a set of parameters with subsets Ki ⊆ E for i = 1, 2, . . . , n. Define
M = K1 ×K2 × · · · ×Kn, representing combinations of parameter values. A fuzzy hypersoft
graph is defined by:

• ρ : M → F (X), where F (X) is the collection of all fuzzy subsets in X. For each
e = (k1, k2, . . . , kn) ∈ M ,

ρ(e) : X → [0, 1]

assigns a membership degree ρe(xi) to each element xi ∈ X. The pair (M,ρ) represents
the fuzzy hypersoft vertices.

• β : M → F (X ×X), where F (X ×X) is the collection of all fuzzy subsets in X ×X.
For each e = (k1, k2, . . . , kn) ∈ M ,

β(e) : X ×X → [0, 1]

assigns a membership degree βe(xi, xj) to each pair (xi, xj) ∈ X ×X. The pair (M,β)

represents the fuzzy hypersoft edges.

The structure ((M,ρ), (M,β)) is called a fuzzy hypersoft graph if

βe(xi, xj) ≤ ρe(xi) ∧ ρe(xj)

for all e ∈ M and for all i, j = 1, 2, . . . , n. This graph is denoted as ĜM,X .

2.5. Fuzzy Soft Expert Graph

A Fuzzy Soft Expert Graph combines fuzzy memberships for vertices and edges with expert
opinions, defining relationships with parameters and expert evaluations. The definition of a
Fuzzy Soft Expert Graph is provided as follows.

Definition 2.8 (Fuzzy Soft Expert Graph). [146] Let V be a universe of discourse, Y a
set of parameters, X a set of experts (agents), and S = {1, 0} a set of opinions, where 1

represents agreement and 0 represents disagreement. Define M = Y ×X × S as the space of
all parameter-expert-opinion combinations, and let E ⊆ M ×M represent the set of edges in
the graph.

A fuzzy soft expert graph (FSEG) is defined as a 4-tuple G = (G∗, Y, ρ, β), where:

• G∗ = (V,E) is a simple graph.
• ρ : Y → F (V ) is a fuzzy soft expert vertex function, where for each y ∈ Y ,

ρ(y) = 〈x, ρy(x)〉 : x ∈ V

defines the membership degree ρy(x) for each vertex x ∈ V .
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• β : Y → F (V ×V ) is a fuzzy soft expert edge function, where for each y ∈ Y and edge
(x, x′) ∈ V × V ,

β(y) = 〈(x, x′), βy(x, x′)〉 : (x, x′) ∈ V × V

assigns a membership degree βy(x, x
′) for each edge.

The conditions required for G to be a fuzzy soft expert graph are:

βy(x, x
′) ≤ min{ρy(x), ρy(x′)},

for all (x, x′) ∈ V × V and y ∈ Y .
We can also represent a FSEG by G = (G∗, Y, ρ, β) = {G(y) : y ∈ Y }, where each G(y) is a

parameterized fuzzy graph in V .

2.6. Fuzzy Hypersoft Expert Graph

The definition of the proposed Fuzzy Hypersoft Expert Graph in this paper is presented
below. It extends the concept of the Fuzzy Hypersoft Expert Set into a graph framework and,
as will be shown in the following theorem, is also an extension of the Fuzzy Soft Expert Graph.

Definition 2.9 (Fuzzy Hypersoft Expert Set). [95] Let A = {A1, A2, . . . , An} be a col-
lection of non-overlapping subsets of parameters corresponding to different attributes ai for
i = 1, 2, . . . , n. Define the fuzzy parameterized fuzzy hypersoft expert set (FPFHSE-set) over
a universal set U as a pair (f, S), where:

• Q = A1 ×A2 × · · · ×An is the Cartesian product of parameter sets.
• P = Q× I × U where I is a set of experts (agents), and U = {0, 1} denotes the set of

opinions, with 1 representing agreement and 0 disagreement.
• S ⊆ H = {(ζ(q)/q, x, u) | (q, x, u) ∈ P, ζ(q) ∈ [0, 1]} is the fuzzy hypersoft expert

subset of possible evaluations.
• f : S → FP(U) is an approximate function mapping elements of S to fuzzy subsets of
U .

Thus, the FPFHSE-set (f, S) can be represented as:

(f, S) = {((ζ(q)/q, x, u), f((ζ(q)/q, x, u))) | (ζ(q)/q, x, u) ∈ S} .

Definition 2.10 (Fuzzy Hypersoft Expert Graph). Let V be a finite set of vertices, and E a
set of edges such that E ⊆ V ×V . Let A = {A1, A2, . . . , An} be a collection of non-overlapping
parameter subsets corresponding to different attributes ai, where each Ai is associated with
attribute ai for i = 1, 2, . . . , n. Define the parameter space Q = A1 ×A2 × · · · ×An.

Let X be a set of experts, and let U = {0, 1} be a set of opinions, where 1 represents
agreement and 0 represents disagreement. Define the set M = Q × X × U , representing all
combinations of parameters, experts, and opinions.
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Define two mappings:

• The fuzzy hypersoft expert vertex function ρ : M → F (V ), where F (V ) denotes the set
of all fuzzy subsets of V . For each m = (q, x, u) ∈ M , the function ρm : V → [0, 1]

assigns a membership degree ρm(v) to each vertex v ∈ V .
• The fuzzy hypersoft expert edge function β : M → F (V ×V ), where F (V ×V ) denotes

the set of all fuzzy subsets of V × V . For each m = (q, x, u) ∈ M , the function
βm : V ×V → [0, 1] assigns a membership degree βm(u, v) to each edge (u, v) ∈ V ×V .

The structure G = ((M,ρ), (M,β)) is called a fuzzy hypersoft expert graph if for all m ∈ M

and for all u, v ∈ V , the following condition holds:

βm(u, v) ≤ ρm(u) ∧ ρm(v),

where ∧ denotes the minimum operator.

3. Result:Fuzzy Hypersoft Expert Graph

The relationship between the Fuzzy Hypersoft Expert Graph and other classes of graphs is
described as follows.

Theorem 3.1. The fuzzy hypersoft expert graph G = ((M,ρ), (M,β)) can be transformed into
a fuzzy soft expert graph, a fuzzy hypersoft graph, and a fuzzy graph by appropriate reductions
of parameters, experts, and opinions.

Proof. We will show the transformations step by step.
Transformation to Fuzzy Soft Expert Graph. Let us consider the fuzzy hypersoft expert graph
G = ((M,ρ), (M,β)). To obtain a fuzzy soft expert graph, we proceed as follows:

• Fix the parameters by selecting a specific tuple q ∈ Q.
• The set M reduces to M ′ = {(q, x, u) | x ∈ X,u ∈ U}.
• The mappings ρ and β become functions over M ′.
• The fuzzy hypersoft expert graph reduces to G′ = ((M ′, ρ), (M ′, β)), which corresponds

to a fuzzy soft expert graph where the parameters are fixed.

Transformation to Fuzzy Hypersoft Graph. To transform G into a fuzzy hypersoft graph, we
proceed by aggregating over experts and opinions:

• Consider the set M ′′ = Q, eliminating the expert set X and opinion set U .
• Define aggregated vertex and edge functions ρ′ : Q → F (V ) and β′ : Q → F (V × V )

by combining the contributions from all experts and opinions.
• For each q ∈ Q, define:

ρ′q(v) = max
(x,u)∈X×U

ρ(q,x,u)(v),
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β′
q(u, v) = max

(x,u′)∈X×U
β(q,x,u′)(u, v).

• The structure G′′ = ((Q, ρ′), (Q, β′)) is a fuzzy hypersoft graph.

Transformation to Fuzzy Graph. To reduce G to a fuzzy graph, we fix both the parameters
and the experts, and consider the agreed opinions:

• Fix a specific parameter tuple q ∈ Q and a specific expert x ∈ X.
• Consider the set M ′′′ = {(q, x, 1)}, where u = 1 represents agreement.
• The vertex and edge functions become ρ(q,x,1) and β(q,x,1).
• The fuzzy graph is then G′′′ = (ρ(q,x,1), β(q,x,1)).

This proof is completed.

4. Future direction of this research

In this section, we briefly discuss the future direction of this research.

4.1. Future tasks: Hypergraphs and Superhypergraphs

As a future direction for this research, we are considering extending Soft Expert Graphs and
Hypersoft Expert Graphs to hypergraphs [31,78–80,80,128] (creating Soft Expert Hypergraphs
and Hypersoft Expert Hypergraphs) and superhypergraphs [74, 84–86, 155–158, 162] (leading
to Soft Expert Superhypergraphs and Hypersoft Expert Superhypergraphs).

In the future, we hope to extend the concepts of Soft Expert Graphs and Hypersoft Expert
Graphs by incorporating the framework of Rough Graphs. Note that a Rough Set [81,124–127]
(or Rough Graph [36, 40, 89, 118, 169]) is a mathematical model that approximates uncertain
or imprecise data using lower and upper approximations to capture data boundaries. We also
intend to explore extensions of Hypersoft Expert Graphs into Neutrosophic Graphs and similar
frameworks.

We also plan to explore real-world applications and mathematical properties of Soft Expert
Graphs and Hypersoft Expert Graphs in greater detail in the future.

4.2. Discussion: IndetermSoft Graphs, superhypersoft Graphs, and TreeSoft Graphs

Various derived forms of soft sets have been proposed, considering their potential applica-
tions and mathematical significance. We aim to investigate the superhypersoft graph as an
extension of superhypersoft sets [75,112,159,163]. Superhypersoft sets generalize the concepts
of both hypersoft sets and soft sets. Additionally, we will explore IndetermSoft Sets [160,161],
IndetermHyperSoft Sets [160,161], and TreeSoft Sets [41,122,160,161,164].

The IndetermSoft Set is a Soft Set in which attribute values or subsets may contain in-
determinate or uncertain elements within their mappings. The IndetermHyperSoft Set is a
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HyperSoft Set that allows indeterminacy in attributes, attribute values, or subset mappings,
thus accommodating uncertainty. The TreeSoft Set is a hierarchical Soft Set with multi-level
attributes organized in a tree structure, facilitating mappings of complex attribute relation-
ships.

As an example, we consider the IndetermSoft Graph and TreeSoft Graph, which are graph-
ical representations of IndetermSoft Sets and TreeSoft Sets, respectively. Although these con-
cepts are still in the preliminary stages, we present their definitions here and plan to explore
their potential applications and mathematical properties in the future. Additionally, we aim
to define concepts that incorporate the ideas of Soft Expert Graphs and HyperSoft Expert
Graphs. We intend to investigate their applications, mathematical properties, and related
algorithms.

Definition 4.1 (IndetermSoft Set). [161] Let U be a universe of discourse, H a non-empty
subset of U , and P (H) the powerset of H. Let A be a set of attribute values associated with
a specific attribute a. A function F : A → P (H) is defined as an IndetermSoft Set if any of
the following conditions hold:

(1) The set A possesses some level of indeterminacy.
(2) The powerset P (H) exhibits some indeterminacy.
(3) There exists at least one attribute value v ∈ A such that F (v) is indeterminate, meaning

unclear, uncertain, or not unique.
(4) Any combination of the above conditions holds.

The IndetermSoft Set (F,H) has a certain degree of indeterminacy, and thus represents a
specific case of a NeutroFunction, which allows for a mix of determinate, indeterminate, and
false components.

Definition 4.2 (IndetermSoft Graph). Let U be a universe of discourse, and let H be a non-
empty subset of U , representing the possible vertices of a graph. Let P (H) denote the power
set of H. Let A be a set of attribute values associated with a specific attribute a.

An IndetermSoft Graph is defined as a pair G = ((FV ,H), (FE ,H ×H)), where:

(1) IndetermSoft Vertex Function FV : A → P (H):
• FV maps each attribute value v ∈ A to a subset FV (v) ⊆ H of vertices.
• The function FV may exhibit indeterminacy according to the definition of an

IndetermSoft Set; that is, for some v ∈ A, FV (v) may be indeterminate (unclear,
uncertain, or not unique).

(2) IndetermSoft Edge Function FE : A → P (H ×H):
• FE maps each attribute value v ∈ A to a subset FE(v) ⊆ H ×H of edges.
• Similar to FV , the function FE may also exhibit indeterminacy.
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The IndetermSoft Graph G = ((FV ,H), (FE ,H ×H)) incorporates indeterminacy in both
its vertex and edge sets, allowing for the representation of uncertain or ambiguous relationships
within the graph.

Definition 4.3 (IndetermHyperSoft Set). [161] Let U be a universe of discourse, H a non-
empty subset of U , and P (H) the power set of H.

Let a1, a2, . . . , an for n ≥ 1 be n distinct attributes, whose corresponding attribute values
are respectively the sets A1, A2, . . . , An, with Ai ∩Aj = ∅ for i 6= j, and i, j ∈ {1, 2, . . . , n}.

Then, the pair (F,A1 ×A2 × · · · ×An), where F : A1 ×A2 × · · · ×An → P (H), is called an
IndetermHyperSoft Set over U if at least one of the following conditions occurs:

(1) At least one of the sets A1, A2, . . . , An possesses some indeterminacy.
(2) The set H or the power set P (H) possesses some indeterminacy.
(3) There exists at least one n-tuple (e1, e2, . . . , en) ∈ A1 × A2 × · · · × An such that

F (e1, e2, . . . , en) is indeterminate (unclear, uncertain, conflicting, or not unique).

Thus, an IndetermHyperSoft Set is an extension of the HyperSoft Set when there is inde-
terminate data, or indeterminate functions, or indeterminate sets.

Definition 4.4 (IndetermHyperSoft Graph). Let G = (V,E) be a graph, where V is the set
of vertices and E is the set of edges.

Let U be a universe of discourse, and let H be a non-empty subset of U , where H ⊆ V ∪E,
representing possible vertices and edges.

Let a1, a2, . . . , an for n ≥ 1 be n distinct attributes, whose corresponding attribute values
are respectively the sets A1, A2, . . . , An, with Ai ∩Aj = ∅ for i 6= j, and i, j ∈ {1, 2, . . . , n}.

Then, the pair (F,A1 ×A2 × · · · ×An), where F : A1 ×A2 × · · · ×An → P (H), is called an
IndetermHyperSoft Graph over G if at least one of the following conditions occurs:

(1) At least one of the sets A1, A2, . . . , An possesses some indeterminacy.
(2) The set H or the power set P (H) possesses some indeterminacy.
(3) There exists at least one n-tuple (e1, e2, . . . , en) ∈ A1 × A2 × · · · × An such that

F (e1, e2, . . . , en) is indeterminate (unclear, uncertain, conflicting, or not unique).

In this context, F maps combinations of attribute values to subsets of H (which could be
vertices or edges), incorporating indeterminacy in the attributes, the attribute values, the
mapping F , or the set H.

Theorem 4.5. Every IndetermHyperSoft Graph can be transformed into an IndetermSoft
Graph.

Proof. Let G = (V,E) be a graph, and let (F,A1 × A2 × · · · × An) be an IndetermHyperSoft
Graph over G, where F : A1 ×A2 × · · · ×An → P (H), and H ⊆ V ∪ E.
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We can transform the IndetermHyperSoft Graph into an IndetermSoft Graph by combining
the multiple attributes into a single composite attribute.

Define a new attribute set A as the Cartesian product:

A = A1 ×A2 × · · · ×An.

Consider the function F as a mapping F ′ : A → P (H), where for each a = (e1, e2, . . . , en) ∈
A, we have F ′(a) = F (e1, e2, . . . , en).

Now, (F ′, A) can be viewed as an IndetermSoft Graph, where:

• A is the set of composite attribute values (each n-tuple is treated as a single attribute
value).

• F ′ maps attribute values a ∈ A to subsets of H (vertices or edges), possibly with
indeterminacy.

Since the conditions of indeterminacy in the IndetermHyperSoft Graph (indeterminacy in
Ai, H, or F ) are preserved in the IndetermSoft Graph (indeterminacy in A, H, or F ′), the
transformation is valid.

Thus, every IndetermHyperSoft Graph can be transformed into an IndetermSoft Graph.

Definition 4.6 (TreeSoft Set). [161] Let U be a universe of discourse, and H a non-empty
subset of U , with P (H) representing the power set of H. Let A = {A1, A2, . . . , An} be a set
of attributes, where n ≥ 1 is an integer and each Ai represents a first-level attribute. Each
attribute Ai can be further subdivided as follows:

A1 = {A1,1, A1,2, . . . }

A2 = {A2,1, A2,2, . . . }
...

An = {An,1, An,2, . . . }

where each Ai,j represents a second-level sub-attribute. This hierarchical structure can
continue further, forming sub-sub-attributes, such as Ai,j,k, and so forth, up to the m-th level,
denoted as Ai1,i2,...,im . This structure forms a graph-tree, denoted as Tree(A), rooted at A

(considered as level zero) and extending to nodes at levels 1 through m.
A TreeSoft Set is a mapping defined as:

F : P (Tree(A)) → P (H)

where Tree(A) is the set of all nodes and leaves (from level 1 to level m) of the graph-tree,
and P (Tree(A)) is the power set of Tree(A).
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The node sets of the TreeSoft Set of level m are:

Tree(A) = {Ai1 | i1 = 1, 2, . . . }

If the graph-tree has only two levels (i.e., m = 2), then the TreeSoft Set reduces to a
MultiSoft Set.

Definition 4.7 (TreeSoft Graph). Let U be a universe of discourse, and let H be a non-empty
subset of U , representing the possible vertices of a graph. Let P (H) denote the power set of
H.

Let A = {A1, A2, . . . , An} be a set of attributes, where each Ai is a first-level attribute. Each
attribute Ai can be further subdivided into sub-attributes, forming a hierarchical structure:

Ai = {Ai,1, Ai,2, . . . } for i = 1, 2, . . . , n

Each sub-attribute Ai,j can be further divided into sub-sub-attributes Ai,j,k, and so on, up
to level m. This hierarchical structure forms a graph-tree, denoted as Tree(A), rooted at A

and extending to nodes at levels 1 through m.
A TreeSoft Graph is defined via two functions:

(1) Vertex Function FV : P (Tree(A)) → P (H):
• FV maps subsets of the attribute tree Tree(A) to subsets of H (vertices).

(2) Edge Function FE : P (Tree(A)) → P (H ×H):
• FE maps subsets of the attribute tree Tree(A) to subsets of H ×H (edges).

Thus, the TreeSoft Graph G = (FV , FE) represents a graph whose vertices and edges are
defined based on hierarchical attributes, capturing complex relationships in a structured man-
ner.

Definition 4.8 (SuperHyperSoft Set). [159] Let U be a universe of discourse, and let P (U)

denote the power set of U . Let a1, a2, . . . , an be n distinct attributes, where n ≥ 1. Each
attribute ai has a corresponding set of attribute values Ai, with the property that Ai∩Aj = ∅
for all i 6= j.

Let P (Ai) denote the power set of Ai for each i = 1, 2, . . . , n.
Then, the pair (F, P (A1)× P (A2)× · · · × P (An)), where

F : P (A1)× P (A2)× · · · × P (An) → P (U),

is called a SuperHyperSoft Set over U .

Definition 4.9 (SuperHyperSoft Graph). Let G = (V,E) be a graph, where V is the set of
vertices and E is the set of edges. Let U = V ∪ E, and let P (U) denote the power set of U .
Takaaki Fujita, A Comprehensive Discussion on Fuzzy Hypersoft Expert, Superhypersoft,
and IndetermSoft Graphs

Neutrosophic Sets and Systems, Vol. 77, 2025                                                                               253



Let a1, a2, . . . , an be n distinct attributes, each with a corresponding set of attribute values
Ai, such that Ai ∩Aj = ∅ for all i 6= j.

Let P (Ai) denote the power set of Ai for each i = 1, 2, . . . , n.
Define two functions:

(1) Vertex Function:

FV : P (A1)× P (A2)× · · · × P (An) → P (V ),

which maps combinations of attribute value subsets to subsets of vertices.
(2) Edge Function:

FE : P (A1)× P (A2)× · · · × P (An) → P (E),

which maps combinations of attribute value subsets to subsets of edges.

Then, the pair (FV , FE) is called a SuperHyperSoft Graph over G.

Theorem 4.10. The SuperHyperSoft Graph generalizes both the HyperSoft Graph and the
general Graph. Specifically:

(1) Every HyperSoft Graph is a special case of a SuperHyperSoft Graph.
(2) Every general Graph can be represented as a SuperHyperSoft Graph.

Proof. We will prove the two aspects stated in the theorem in sequence.

1. SuperHyperSoft Graph generalizes the HyperSoft Graph:
Recall that in a HyperSoft Graph, the attribute functions are defined over the Cartesian

product of attribute value sets A1 ×A2 × · · · ×An.
In the SuperHyperSoft Graph, the domain of the functions FV and FE is extended to the

Cartesian product of the power sets P (A1)× P (A2)× · · · × P (An).
Since each attribute value set Ai is a subset of its power set P (Ai) (specifically, Ai ⊆

P (Ai)), any function defined on A1 × A2 × · · · × An can be considered as a function defined
on P (A1)× P (A2)× P (An) by restricting the domain to singleton subsets.

Therefore, every HyperSoft Graph is a SuperHyperSoft Graph where the functions FV and
FE are defined only on singleton subsets of attribute values.

2. SuperHyperSoft Graph generalizes the general Graph:
Any graph G = (V,E) can be represented as a SuperHyperSoft Graph by defining trivial

attributes and functions.
Let us consider the simplest case with a single attribute a1 and a corresponding attribute

value set A1 = {∗}. Then, the power set P (A1) = {∅, {∗}}.
Define the functions:

• FV : P (A1) → P (V ) by:
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– FV (∅) = ∅,
– FV ({∗}) = V .

• FE : P (A1) → P (E) by:
– FE(∅) = ∅,
– FE({∗}) = E.

Thus, the SuperHyperSoft Graph (FV , FE) represents the entire graph G.
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