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Abstract: The definitions of Single-Valued Neutrosophic Set (SVNS), Interval-Valued 

Neutrosophic Set (IVNS), Subset-Valued Neutrosophic Set (SVNS), and respectively 

NonStandard Neutrosophic Set [Single-Valued (NoS SVNS), Interval-Valued (NoS 

IVNS), and Subset-Valued (NoS SVNS)], are recalled together with their operators. 

Similarly for Standard and NonStandard Neutrosophic Logic. 

 

1. Introduction 

The neutrosophic set was introduced in 1995 by F. Smarandache as extension of 

Intuitionistic Fuzzy Set. The first publications were in 1998-2005 [25, 26]. 

2. Standard Neutrosophic Set and Logic 

Let 𝒰 be a universe of discourse, and 𝒮 a non-empty subset of 𝒰. Let 𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥) be 

the degrees of truth (membership), indeterminacy, and falsehood (nonmembership) respectively of 

the generic element 𝑥 with respect to the set 𝒮. 

Let 𝒮 = {𝑥(𝑡(𝑥),𝑖(𝑥),𝑓(𝑥)), for 𝑥 ∈ 𝒰}. 

2.1 Definition of Single-Valued Neutrosophic Set (SVNS) 

𝒮 is a Single-Valued Neutrosophic Set if: 

𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥): 𝒮 → [0,1] 
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(or 𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥) are single numbers in [0, 1]) such that: 

0 ≤ 𝑡(𝑥) + 𝑖(𝑥) + 𝑓(𝑥) ≤ 3 

2.2 Definition of Interval-Valued Neutrosophic Set (IVNS) 

𝒮 is an Interval-Valued Neutrosophic Set if: 

𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥): 𝒮 → 𝒫([0,1]) 

where 𝒫([0,1]) is the powerset of [0, 1], and 𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥) are intervals included in [0, 1] such 

that: 

0 ≤ 𝑖𝑛𝑓(𝑡(𝑥)) + 𝑖𝑛𝑓(𝑖(𝑥)) + 𝑖𝑛𝑓(𝑓(𝑥)) ≤ 𝑠𝑢𝑝(𝑡(𝑥)) + 𝑠𝑢𝑝(𝑖(𝑥)) + 𝑠𝑢𝑝(𝑓(𝑥)) ≤ 3 

2.3 Definition of Subset-Valued Neutrosophic Set (SVNS) 

𝒮 is a Subset-Valued Neutrosophic Set if: 

𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥): 𝒮 → 𝒫([0,1]) 

and 𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥) are subsets included in [0, 1] such that: 

0 ≤ 𝑖𝑛𝑓(𝑡(𝑥)) + 𝑖𝑛𝑓(𝑖(𝑥)) + 𝑖𝑛𝑓(𝑓(𝑥)) ≤ 𝑠𝑢𝑝(𝑡(𝑥)) + 𝑠𝑢𝑝(𝑖(𝑥)) + 𝑠𝑢𝑝(𝑓(𝑥)) ≤ 3 

3. Necessity to Introduce the NonStandard Neutrosophic Set and Logic 

In order to make distinction between Relative Truth (truth in at least one world, according 

to Leibniz) and Absolute Truth (truth in all possible words, again according to Leibniz), we 

considered the NonStandard Analysis: 

𝑡(𝑥) = 1, meaning relative truth (membership), 

and 𝑡(𝑥) = 1+, meaning absolute truth (membership).  

Similarly, for Relative Indeterminacy and Absolute Indeterminacy respectively: 

𝑖(𝑥) = 1, for relative indeterminacy, 

and 𝑖(𝑥) = 1+, for absolute indeterminacy. 

And for Relative Falsehood (NonMembership), and Absolute Falsehood 

(NonMembership): 

𝑓(𝑥) = 1, for relative falsehood (nonmembership), 
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and 𝑓(𝑥) = 1+, for absolute falsehood (nonmembership). 

4. Introduction to NonStandard Analysis 

Abraham Robinson in 1960s has developed the non-standard analysis [15, 16, 27, 28], by 

rigurously defining the infinitesimals and infinite numbers. 

An infinitesimal number (ε) is a number ε such that its absolute value |ε| <
1

𝑛
, for any non-

null positive integer n. An infinitesimal is close to zero, and so small that it cannot be measured. 

The infinitesimal is a number smaller, in absolute value, than anything positive nonzero. 

Infinitesimals are used in calculus, but interpreted as tiny real numbers. 

An infinite number (ω) is a number greater than anything: 

1 + 1 + 1 + ⋯ + 1 (for any finite number terms). 

The infinites are reciprocals of infinitesimals. 

The set of hyperreals (non-standard reals), denoted as 𝑅∗, is the extension of set of the real 

numbers, denoted as 𝑅, and it comprises the infinitesimals and the infinites, that may be 

represented on the hyperreal number line 

1

ε
=

ω

1
 

The set of hyperreals satisfies the transfer principle, which states that the statements of 

first order in R are valid in 𝑅∗ as well [according to the classical NonStandard Analysis]. 

A monad (halo) of an element 𝑎 ∈ 𝑅∗, denoted by µ(𝑎), is a subset of numbers 

infinitesimally close to a. 

Let’s denote by 𝑅+
∗  the set of positive nonzero hyperreal numbers. 

Left Monad and Right Monad were defined as follows: 

Left Monad {that we denote, for simplicity, by (−𝑎)}, is defined as: 

𝜇(−𝑎) = (−𝑎) = {𝑎 − 𝑥, 𝑥 ∈ 𝑅+
∗ |𝑥 is infinitesimal} 

Right Monad {that we denote, for simplicity, by (𝑎+)}, is defined as: 

𝜇(𝑎+) = (𝑎+) = {𝑎 + 𝑥, 𝑥 ∈ 𝑅+
∗ |𝑥 is infinitesimal} 



Neutrosophic Sets and Systems, Vol. 77, 2025                                                                                                          398                                      

________________________________________________________________________________________________ 
 

 
Florentin Smarandache, Short Introduction to Standard and NonStandard Neutrosophic Set and Logic (review paper) 

5. Extensions of NonStandard Analysis 

In 1998, Smarandache [25] introduced the Pierced Binad. 

5.1. Pierced Binad {that we denote, for simplicity, by (−𝑎+)} is defined as: 

𝜇(−𝑎+) = (−𝑎+) = 

=  {𝑎 − 𝑥, 𝑥 ∈ 𝑅+
∗ |𝑥 is a positive infinitesimal} ∪ {𝑎 + 𝑥, 𝑥 ∈ 𝑅+

∗ |𝑥 is a positive infinitesimal} 

=  {𝑎 − 𝑥, 𝑥 ∈ 𝑅∗|𝑥 is a positive or negative infinitesimal}. 

Later on, in 2019, Smarandache [23] also introduced the Left Monad Closed to the Right, 

The Right Monad closed to the Left, and the Unpierced Binad (all defined as below) in order to 

have the Nonstandard Real Monad/Binad Set closed under arithmetic operations. 

5.2. Left Monad Closed to the Right 

𝜇 (
−0
𝑎

) = (
−0
𝑎

) = {𝑎 − 𝑥|𝑥 = 0, or 𝑥 ∈ R

+
, and 𝑥 is infinitesimal} 

= 𝜇(−𝑎) ∪ {𝑎} 

By notation, 
0 0 0

a a a a
   

= = =   
   

. 

And by 𝑥 =
0

a
−

 we understand the hyperreal 𝑥 = 𝑎 − 𝜀, or 𝑥 = 𝑎, where 𝜀 is a positive 

infinitesimal. So, 𝑥 is not clearly known, 𝑥 ∈ {𝑎 − 𝜀, 𝑎}. 

5.3. Right Monad Closed to the Left 

0 0

a a
+ +   
= =   

   
{𝑎 + 𝑥|𝑥 = 0, or 𝑥 ∈ 𝑅+

∗ , and 𝑥 is infinitesimal}
 

= 𝜇(𝑎+) ∪ {𝑎} 

And by 𝑥 =
0

a
+

  we understand the hyperreal 𝑥 = 𝑎 + 𝜀, or 𝑥 = 𝑎, where 𝜀 is a positive 

infinitesimal. So, 𝑥 is not clearly known, 𝑥 ∈ {𝑎, 𝑎 + 𝜀}. 
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5.4. Unpierced Binad 

0 0

a a
− + − +   

= =   
   

{𝑎 + 𝑥|𝑥 = 0, or 𝑥 ∈ 𝑅∗, and 𝑥 is positive or negative infinitesimal}
 

= 𝜇(−𝑎) ∪ (𝑎+)⋃{𝑎} = (−𝑎) ∪ (𝑎+)⋃{𝑎} 

And by 𝑥 =
0

a
− +

we understand the hyperreal 𝑥 = 𝑎 − 𝜀, or 𝑥 = 𝑎, or 𝑥 = 𝑎 + 𝜀, where 𝜀 

is a positive infinitesimal. So, 𝑥 is not clearly known, 𝑥 ∈ {𝑎 − 𝜀, 𝑎, 𝑎 + 𝜀}. 

The left monad, left monad closed to the right, right monad, right monad closed to the left, 

the pierced binad, and the unpierced binad are subsets of 𝑅∗, while the above hyperreals are 

numbers from 𝑅∗. 

6. NonStandard Neutrosophic Set and Logic 

Let 𝒰 be a universe of discourse, and 𝒮 a non-empty subset of 𝒰.  

Let 𝒮 = {𝑥(𝑡(𝑥),𝑖(𝑥),𝑓(𝑥)), for 𝑥 ∈ 𝒰}. 

6.1 Definition of Single-Valued NonStandard Neutrosophic Set and Logic 

𝒮 is an Single-Valued NonStandard Neutrosophic Set and Logic, if: 

𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥): 𝒮 → ]−0, 1+[  

where ]−0, 1+[ is the nonstandard unit interval, which is a set that contains, besides the ordinary 

real numbers between 0 and 1, also: 

Left Monads, Right Monads; 

As well as the newly introduced by Smarandache [23, 25] in 1998-2019: 

Left Monads closed to the Right, 

Right Monads closed to the Left, 

Pierced Binads, 

and Unpierced Binads. 

Of course, [0, 1] ⊂ ]−0, 1+[ . 

Also, 
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—0 ≤ 𝑖𝑛𝑓(𝑡(𝑥)) + 𝑖𝑛𝑓(𝑖(𝑥)) + 𝑖𝑛𝑓(𝑓(𝑥)) ≤ 𝑠𝑢𝑝(𝑡(𝑥)) + 𝑠𝑢𝑝(𝑖(𝑥)) + 𝑠𝑢𝑝(𝑓(𝑥)) ≤ 3+ 

6.2 Definition of Interval-Valued NonStandard Neutrosophic Set and Logic 

𝒮 is an Interval-Valued NonStandard Neutrosophic Set and Logic, if: 

𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥): 𝒮 → 𝒫( ]−0, 1+[ ) 

where 𝒫( ]−0, 1+[ ) is the powerset of all standard and nonstandard subset of ]−0, 1+[ 

with 𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥) being nonstandard intervals of the form: 

]
∗
𝑎

 ,
∗
𝑏

[ 

where 0 ≤ 𝑎 ≤ 𝑏 ≤ 1, and 
∗
𝑎

<  
#
𝑏

, 

where 
* 0 0 0 0

{ , , , , , , }a a a a a a a a
− + − −+ + − +

  

similarly 
# 0 0 0 0

{ , , , , , , }b b b b b b b b
− + − −+ + − +

 . 

6.3 Definition of Subset-Valued NonStandard Neutrosophic Set and Logic 

𝒮 is a Subset-Valued NonStandard Neutrosophic Set and Logic, if: 

𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥): 𝒮 → 𝒫( ]−0, 1+[ ) 

with 𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥) being nonstandard subsets of the nonstandard interval ]−0, 1+[. 

7. Standard and NonStandard Neutroosphic Operators 

Firstly we need to recall the t-norm and t-conorm from the fuzzy set and logic: 

7.1. A t-norm [29] is a function t: [0, 1] × [0, 1] → [0, 1] that satisfies the following 

properties: 

• Commutativity: t(a, b) = t(b, a) 

• Monotonicity: t(a, b) ≤ t(c, d) if a ≤ c and b ≤ d 

• Associativity: t(a, t(b, c)) = t(t(a, b), c) 

• The number 1 acts as identity element: t(a, 1) = a 

A common notation in fuzzy set and logic is t(a, b) = a /\F b, meaning intersection 

respectively conjunction. 

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Commutativity
https://en.wikipedia.org/wiki/Monotonicity
https://en.wikipedia.org/wiki/Associativity
https://en.wikipedia.org/wiki/Identity_element
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A t-conorm [29] is a function ⊥: [0, 1] × [0, 1] → [0, 1] that satisfies the following 

properties: 

• Commutativity: ⊥(a, b) = ⊥(b, a) 

• Monotonicity: ⊥(a, b) ≤ ⊥(c, d) if a ≤ c and b ≤ d 

• Associativity: ⊥(a, ⊥(b, c)) = ⊥(⊥(a, b), c) 

• Identity element: ⊥(a, 0) = a 

A common notation in fuzzy set and logic is t(a, b) = a \/F b, meaning union respectively 

disjunction. 

All the above types of Neutroosphic Standard and NonStandard Operators are based on the 

fuzzy t-norm ( /\F ) and fuzzy t-conorm ( \/F ). 

Let x(T, I, F) 

7.2. Neutroosphic Standard and NonStandard Intersection/Conjunction ( N ) 

1 1 1 2 2 2 1 2 1 2 1 2( , , ) ( , , ) ( , , )N F F Fx T I F x T I F x T T I I F F =     

7.3. Neutroosphic Standard and NonStandard Union/Disjunction ( N ) 

1 1 1 2 2 2 1 2 1 2 1 2( , , ) ( , , ) ( , , )N F F Fx T I F x T I F x T T I I F F =     

7.4. Neutroosphic Standard and NonStandard Complement/Negation ( N ) 

( , , ) ( ,1N x T I F x F
−

 = ,I T− )  

7.5. Neutrosophic Standard and NonStandard Implication ( N→ ) 

1 1 1 1 2 2 2 2( , , ) ( , , )NA T I F A T I F→   

is neutrosophically equivalent with   

1 1 1 1 2 2 2 2( , , ) ( , , )N NA T I F A T I F   

7.6. Neutrosophic Standard and NonStandard Equivalence ( N ) 

1 1 1 1 2 2 2 2( , , ) ( , , )NA T I F A T I F  

is neutrosophically equivalent with   

https://en.wikipedia.org/wiki/Function_(mathematics)
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1 1 1 1 2 2 2 2( , , ) ( , , )NA T I F A T I F→  and 2 2 2 2 1 1 1 1( , , ) ( , , )NA T I F A T I F→ . 

Conclusion 

In this paper we reviewed the various types of standard and nonstandard neutrosophic sets 

and logics, used for about three decades of scientific research and applications. 

With the help of the fuzzy t-norm and fuzzy t-conorm we recalled the definitions of the 

neutrosophic standard and nonstandard operators. 
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