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Abstract 

A new area of study called "neutrosophic graph theory" uses neutrosophic logic to expand on 

traditional graph theory to include ambiguous, indeterminate, and uncertain information. This paper 

gives a thorough introduction to neutrosophic graphs, including their definition, components, uses, 

and difficulties. Neutrosophic graphs let you show and analyze relationships that aren't clear-cut 

because they give vertices and edges different levels of truth, indeterminacy, and falsity. Image 

processing, social network analysis, pattern recognition, and decision-making in the face of uncertainty 

all use neutrosophic graphs. However, we still need to resolve issues like interpretability and 

computational complexity. All things considered, neutrosophic graphs provide a viable framework for 

representing and evaluating ambiguous information in graph structures, with potential applications 

in a variety of fields. 
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1. Introduction 

Modern mathematics and applied sciences have shown significant interest in the study of graphs. The 

reason for this is that graphs possess a broad spectrum of applications across diverse disciplines such 

as engineering, biology, computer science, and social sciences. Conventional graph theory sometimes 

faces limitations when addressing the uncertainty and imprecision that is present in many real-world 

problems. Several proposals have suggested expanding and altering graph theory to address these 

limitations. Neutrosophic graphs have emerged as a very resilient and adaptable architecture. 

Cantor originally introduced traditional set theory, the foundation of classical graph theory, to 

represent accurate and predictable relationships. Because graphs are insufficient for modeling 

uncertain optimization issues due to the inherent uncertainty and complexity of Real-Life Events, To 

Address This Disparity, Zadeh [1] Introduced The concept of Fuzzy Sets (FSs) which expand upon 
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traditional sets by permitting a range of membership degrees ranging from 0 to 1. FSs offer a method 

for representing incomplete truths and managing uncertainty to a limited degree. Although they are 

useful, numerous real-world situations involve data that is not just imprecise but also uncertain and 

contradictory. In many fields such as decision-making, the information at hand may exhibit gaps, 

ambiguities, or contradicting evidence. Neutrosophic sets provide a more inclusive method for 

representing and analyzing situations by explicitly considering the various elements of uncertainty 

involved. Neutrosophic sets can better capture the intricacies of uncertain knowledge by incorporating 

three distinct elements: truth, indeterminacy, and falsity. Mathematicians Florentin Smarandache [2] 

proposed the use of Neutrosophic Set (NS) to enhance the ability to model and analyze data with more 

complexity and ambiguity than fuzzy sets alone can handle. This development facilitates more precise 

and dependable decision-making and problem-solving in domains where uncertainty plays a crucial 

role. 

The concept of Single-Valued NS (SVNS) was introduced by Wang et al. [3]. These sets are an extension 

of intuitionistic FSs [4]. These entities are distinguished by the inclusion of three separate membership 

functions: truth, indeterminacy, and falsehood. Each membership function in this set has values that 

range from [0, 1]. This technology's development makes it possible to depict uncertainty in a more 

sophisticated manner. Overview of SVNS was presented by Pramanik [5]. Broumi et al. [6] came up 

with the concept of single-valued neutrosophic graphs, which they presented. In order to simulate 

complicated interactions in data that contain not only fuzziness but also indeterminacy and 

inconsistency, these graphs extend the principles of S-VNS to graph theory. This makes it possible to 

model these relationships. By utilizing this framework, one is able to more effectively examine and 

express the complexities of situations that happen in the real world. 

Majumdar and Samanta [7] looked into the similarity and entropy of SVNSs to learn more about their 

structure and how to measure uncertainty. Yang et al. [8] advanced the field even further by discussing 

single-valued neutrosophic linkages and investigating their interconnections and comparisons. Ye [9] 

used these theoretical ideas in Multi Attribute Decision-Making (MADM) problems and showed 

correlation coefficients for SVNSs, building on these foundations to show that they are useful in real 

life. Ye [10] later proposed a) method using aggregation operators to streamline the application of 

SVNSs in complex MADM situations. Biswas et al. [11, 12, 13] presented the TOPSIS strategy in the 

Single Valued Neutrosophic Number (SVNN) environment. Pramanik et al. [14] presented the cross 

entropy-based Multi Attribute Group Decision Making (MAGDM) under SVNN environment.  

Pramanik et al.  [15], presented the Best-Worst Method (BWM) TOPSIS strategy, under the SVNN 

environment. These approaches simplified and expedited the evaluation of several criteria in the 

presence of ambiguity, making it more suitable for real-world use. In sum, these developments 

demonstrate how neutrosophic set theory is constantly developing and how useful it is for dealing 

with complicated, ambiguous, indeterminate, and inconsistent problems in the real world. These 

scholars' combined efforts have greatly enhanced the discipline, producing strong methodologies and 

tools for better decision-making across different domains. 

Broumi et al. [16] presented the Neutrosophic Graph (NG) in 2016.  Akram and Shahzadi [17] 

developed the SVNS based graphs. Akram, and Sitara [18] presented the SVNS set based graph 

structures and made a big step forward in the field by applying the ideas of SVNSs to graph theory. 

This innovation facilitated more precise modelling of uncertainty in graphs. Subsequent research has 

explored several new concepts related to neutrosophic graphs and their applications, expanding the 

utility and applicability of these graphs in various domains. In addition, the studies [19, 20] discussed 

newly formulated concepts about NGs and hypergraphs. Subsequently, Raut et al. determined the 

shortest concise route within a network by utilizing the neutrosophic number [21, 22, 23,24]. 
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The most significant contributions for this work are as follows: 

1) This article covers different types of operations of NGs, such as Cartesian product, lexicographic 

product, union, composition and join, as well as their properties. 

2) This study investigates the importance of a novel class of graphs and their application in MADM 

scenarios. 

The remaining parts of the paper organize their contents in the following manner: This paper's Section-

2 focuses on elucidating the purpose behind the research and outlining its significant contributions. 

Section -3 provides a concise overview of several definitions. Section -4 presents an overview of the 

many categories of neutrosophic graphs. Section-5 elucidates the various functions and activities 

performed by neutrosophic graphs. Section-6 presents a specific numerical example that demonstrates 

the use of SVNNs in the process of decision-making. Section-7 summarizes the article's conclusions. 

 2. Motivation 

NGs simulate real-world scenarios in which the attributes of vertices or relationships between them 

may be ambiguous, imprecise, or unpredictable. Neutrosophic graphs provide a more versatile and 

all-encompassing approach to representing and analysing complex systems and networks by 

introducing the indeterminacy component. The relationships between them may be ambiguous, 

imprecise, or unpredictable. Neutrosophic graphs provide a more versatile and all-encompassing 

approach to representing and analyzing complex systems and networks by introducing the 

indeterminacy component. 

Some important motivations and applications for neutrosophic graphs are as follows:  

1. NGs can model uncertain or incomplete information, providing a more realistic representation of real-

world scenarios. 

2. NGs improve decision-making in uncertain situations, allowing for more informed and robust 

decisions. 

3. NGs can represent uncertain or indeterminate relationships between individuals. 

4. NGs are useful for analysing computer networks and communication systems with uncertain or 

indeterminate links or nodes.  

5. You can use NGs for image processing and pattern recognition with imprecise or indeterminate pixel 

values or feature representations. 

 3. Preliminary: 

3.1 Neutrosophic set (N-Set)  

A NS is an extension of the intuitionistic fuzzy sets, which includes the concept of indeterminacy. The 

system is characterized by three separate membership functions i.e. truth, indeterminacy, and falsity.  

Consider U as the set of all possible elements under consideration. A NS A in the universal set U is 

defined as: 

=  {〈𝑥, 𝑇𝐴 (𝑥), 𝐼𝐴 (𝑥), 𝐹𝐴(𝑥)〉| 𝑥 ∈  𝑋}  

where: 

The function 𝑇𝐴 (𝑥): 𝑈 → [0,1]   represents the degree of truth to which x belongs to the set A. 
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The function 𝐼𝐴 (𝑥): 𝑈 → [0,1]  represents the degree of indeterminacy of x belonging to A. 

The function  𝐹𝐴(𝑥): 𝑈 → [0,1] represents the degree of falsity of x in A. 

 

 

3.2 Interval valued NSs [25]  

An Inter valued NS A on a universe of discourse X is a structure having the form as 𝐴 =
 {〈𝑥, 𝑇𝐴 (𝑥), 𝐼𝐴 (𝑥), 𝐹𝐴(𝑥)〉| 𝑥 ∈  𝑋} where  

𝑇𝐴 (𝑥) = [𝑇𝐴
− (𝑥), 𝑇𝐴

+ (𝑥)], 𝐼𝐴 (𝑥) = [𝐼𝐴
− (𝑥), 𝐼𝐴

+ (𝑥)], and 

 𝐹𝐴 (𝑥) = [𝐹𝐴
− (𝑥), 𝐹𝐴

+ (𝑥)] indicate the truth, indeterminacy and falsity membership degree. 

0 ≤  (𝑇𝐴 (𝑥))3   + (𝐹𝐴(𝑥)) 3  ≤ 1 and 0 ≤  (𝐼𝐴 (𝑥))3   ≤ 1 

0 ≤  (𝑇𝐴 (𝑥))3   + (𝐹𝐴(𝑥))
3

 + (𝐼𝐴 (𝑥))
3

 ≤ 2 , ∀ 𝑥 ∈  𝑋 

Means   

0 ≤  (𝑇𝐴
+ (𝑥))3   + (𝐹𝐴

+(𝑥))
3

 + (𝐼𝐴
+  (𝑥))

3

 ≤ 2 , ∀ 𝑥 ∈  𝑋 

3.3 NGs 

In NG theory, a NG is defined as follows: 

Consider a set V that consists of vertices (nodes) and a set E that consists of edges (arcs) connecting these vertices. 

Both V and E are non-empty. A NG G = (V, E) is represented by each of these three mappings: 

 

1. A membership function that represents truth: T: V → [0, 1] 

2. A membership function that represents indeterminacy: I: V → [0, 1] 

3. A membership function that represents falsity: F: V → [0, 1] 

such that 0 ≤ T(v) + I(v) + F(v) ≤ 3 for all v ∈ V. 

The functions T, I, and F are used to assign membership values to each vertex v ∈ V, representing the truth, 

indeterminacy, and falsity degrees, respectively, of the proposition "v is a member of the graph G." 

Similarly, the membership values of an edge (u, v) ∈ E are defined by the following three mappings: 

1. A membership function that represents truth: T: E → [0, 1] 

2. A membership function that represents indeterminacy: I: E → [0, 1] 

3. A membership function that represents falsity: F: E → [0, 1] 

such that 0 ≤ T(u, v) + I(u, v) + F(u, v) ≤ 3 for all (u, v) ∈ E. 

These membership functions represent the truth, indeterminacy, and falsity degrees, respectively, of the 

proposition "the edge (u, v) is a member of the graph G." 

4. Operations on NGs 

In NG theory, various operations can be performed on NGs to obtain new graphs or analyze the properties of 

existing ones. Here are some common operations on NGs and illustrative examples.  

4.1 Cartesian Product of NGs 

The Cartesian product of two NGs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) is a new NG 𝐺 = 𝐺1 × 𝐺2, where the vertex 

set is the Cartesian product of the vertex sets of 𝐺1 and 𝐺2, and the edge set is defined by specific rules involving 

the edges of 𝐺1 and 𝐺2.i.e  𝐺1  × 𝐺2 = (𝑉1 × 𝑉2 , 𝐸1  ×  𝐸2 ) 

 

�̂�𝑉1× 𝑉2
(𝑣1, 𝑣2) =  𝑚𝑖𝑛{�̂�𝑉1

(𝑣1), �̂�𝑉2
(𝑣2)} 

𝐼𝑉1× 𝑉2
(𝑣1, 𝑣2) =  𝑚𝑎𝑥{𝐼𝑉1

(𝑣1), 𝐼𝑉2
(𝑣2)} 
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�̂�𝑉1× 𝑉2
(𝑣1, 𝑣2) =  𝑚𝑎𝑥{�̂�𝑉1

(𝑣1), �̂�𝑉2
(𝑣2)} 

∀ (𝑣1, 𝑣2) ∈ (𝑉1, 𝑉2) 

The membership value of the edges in 𝐺1  × 𝐺2 can be computed as 

�̂�𝐸1× 𝐸2
((𝑣, 𝑒1), (𝑣, 𝑒2)) =  𝑚𝑖𝑛{�̂�𝑉1

(𝑣), �̂�𝐸2
(𝑒1, 𝑒2)} 

𝐼𝐸1× 𝐸2
((𝑣, 𝑒1), (𝑣, 𝑒2)) =  𝑚𝑎𝑥{𝐼𝑉1

(𝑣), 𝐼𝐸2
(𝑒1, 𝑒2)} 

�̂�𝐸1× 𝐸2
((𝑣, 𝑒1), (𝑣, 𝑒2)) =  𝑚𝑎𝑥{�̂�𝑉1

(𝑣), �̂�𝐸2
(𝑒1, 𝑒2)} 

∀ 𝑣 ∈ 𝑉1, (𝑒1, 𝑒2) ∈  𝐸2 

�̂�𝐸1× 𝐸2
((𝑒1

′, 𝛼), (𝑒2
′, 𝛼)) =  𝑚𝑖𝑛{�̂�𝐸1

(𝑒1
′, 𝑒2

′), �̂�𝑉2
(𝛼)} 

𝐼𝐸1× 𝐸2
((𝑒1

′, 𝛼), (𝑒2
′, 𝛼)) =  𝑚𝑎𝑥{𝐼𝐸1

(𝑒1
′, 𝑒2

′), 𝐼𝑉2
(𝛼)} 

�̂�𝐸1× 𝐸2
((𝑒1

′, 𝛼), (𝑒2
′, 𝛼)) =  𝑚𝑎𝑥{�̂�𝐸1

(𝑒1
′, 𝑒2

′), �̂�𝑉2
(𝛼)} 

 

∀ 𝛼 ∈ 𝑉2, (𝑒1
′, 𝑒2

′) ∈  𝐸1 

4.2 Composition of Neutrosophic Graphs  

o The composition of two NGs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) is a new NG 𝐺 = 𝐺1 ∘ 𝐺2,defined as 

follows: 𝐺1  ∘ 𝐺2 = (𝑉1 ∘  𝑉2 , 𝐸1  ∘  𝐸2) where 

�̂�𝑉1∘ 𝑉2
(𝑣1, 𝑣2) =  𝑚𝑖𝑛{�̂�𝑉1

(𝑣1), �̂�𝑉2
(𝑣2)} 

𝐼𝑉1∘ 𝑉2
(𝑣1, 𝑣2) =  𝑚𝑎𝑥{𝐼𝑉1

(𝑣1), 𝐼𝑉2
(𝑣2)} 

�̂�𝑉1∘ 𝑉2
(𝑣1, 𝑣2) =  𝑚𝑖𝑛{�̂�𝑉1

(𝑣1), �̂�𝑉2
(𝑣2)} 

∀ (𝑣1, 𝑣2) ∈ (𝑉1, 𝑉2) 

�̂�𝐸1∘ 𝐸2
((𝛼, 𝑒1), ( 𝛼, 𝑒2)) =  𝑚𝑖𝑛{�̂�𝑉1

(𝛼), �̂�𝐸2
(𝑒1, 𝑒2)} 

𝐼𝐸1∘ 𝐸2
((𝛼, 𝑒1), ( 𝛼, 𝑒2)) =  𝑚𝑎𝑥{𝐼𝑉1

(𝛼), 𝐼𝐸2
(𝑒1, 𝑒2)} 

�̂�𝐸1∘ 𝐸2
((𝛼, 𝑒1), ( 𝛼, 𝑒2)) =  𝑚𝑎𝑥{�̂�𝑉1

(𝛼), �̂�𝐸2
(𝑒1, 𝑒2)} 

∀ 𝛼 ∈ 𝑉1, (𝑒1, 𝑒2) ∈  𝐸2 

�̂�𝑅1∘ 𝑅2
((𝑢1, 𝛾), (𝑣1, 𝛾)) =  𝑚𝑖𝑛{ �̂�𝑅1

(𝑢1, 𝑣1), �̂�𝑃2
(𝛾)} 

𝐼𝑅1∘ 𝑅2
((𝑢1, 𝛾), (𝑣1, 𝛾)) =  𝑚𝑖𝑛{ 𝐼𝑅1

(𝑢1, 𝑣1), 𝐼𝑃2
(𝛾)} 

�̂�𝑅1∘ 𝑅2
((𝑢1, 𝛾), (𝑣1, 𝛾)) =  𝑚𝑖𝑛{ �̂�𝑅1

(𝑢1, 𝑣1), �̂�𝑃2
(𝛾)} 

∀ 𝛾 ∈ 𝑉2, (𝑢1, 𝑣1) ∈  𝐸1 

�̂�𝑅1∘ 𝑅2
((𝑢1, 𝑢2), ( 𝑣1, 𝑣2)) =  𝑚𝑖𝑛{�̂�𝑃2

(𝑢2), �̂�𝑃2
(𝑣2), �̂�𝑅1

(𝑢1, 𝑣1)} 

𝐼𝑅1∘ 𝑅2
((𝑢1, 𝑢2), ( 𝑣1, 𝑣2)) =  𝑚𝑎𝑥{𝐼𝑃2

(𝑢2), 𝐼𝑃2
(𝑣2), 𝐼𝑅1

(𝑢1, 𝑣1)} 

�̂�𝑅1∘ 𝑅2
((𝑢1, 𝑢2), ( 𝑣1, 𝑣2)) =  𝑚𝑎𝑥 {�̂�𝑃2

(𝑢2), �̂�𝑃2
(𝑣2), �̂�𝑅1

(𝑢1, 𝑣1)} 

∀ (𝑢1, 𝑢2), ( 𝑣1, 𝑣2) ∈  𝐸1 

Example 4.2.1 

Consider two NGs 𝐺1 & 𝐺2,  as presented below.  
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                   Then the composition of 𝐺1  ∘ 𝐺2 , is shown graphically in Figure 1. 

 
Figure 1. Composition of two NGs 

 

4.3 The lexicographic product 

The lexicographic product of two NGs 𝐺1 = (𝑉1, 𝐸1)  and 𝐺2 = (𝑉2, 𝐸2)  is a new NG𝐺 = 𝐺1 ⋅ 𝐺2 ,defined as 

follows: 𝐺1  ⋅ 𝐺2 = (𝑉1 ⋅  𝑉2 , 𝐸1  ⋅  𝐸2) where 

  

�̂�𝑉1⋅ 𝑉2
(𝑣1, 𝑣2) =  𝑚𝑖𝑛{�̂�𝑉1

(𝑣1), �̂�𝑉2
(𝑣2)} 

𝐼𝑉1⋅ 𝑉2
(𝑣1, 𝑣2) =  𝑚𝑎𝑥{𝐼𝑉1

(𝑣1), 𝐼𝑉2
(𝑣2)} 

�̂�𝑉1⋅ 𝑉2
(𝑣1, 𝑣2) =  𝑚𝑎𝑥{�̂�𝑉1

(𝑣1), �̂�𝑉2
(𝑣2)} 

∀ (𝑣1, 𝑣2) ∈ (𝑉1, 𝑉2) 

�̂�𝐸1⋅ 𝐸2
((𝛽, 𝑒1), (𝛽, 𝑒2)) =  𝑚𝑖𝑛{�̂�𝑉1

(𝛽), �̂�𝐸2
(𝑒1, 𝑒2)} 

𝐼𝐸1⋅𝐸2
((𝛽, 𝑒1), (𝛽, 𝑒2)) =  𝑚𝑎𝑥{𝐼𝑉1

(𝛽), 𝐼𝐸2
(𝑒1, 𝑒2)} 

�̂�𝐸1⋅ 𝐸2
((𝛽, 𝑒1), (𝛽, 𝑒2)) =  𝑚𝑎𝑥{�̂�𝑉1

(𝛽), �̂�𝐸2
(𝑒1, 𝑒2)} 

∀ 𝛽 ∈ 𝑉1, (𝑒1, 𝑒2) ∈  𝐸2 

�̂�𝐸1⋅ 𝐸2
((𝑣1, 𝑣2), ( 𝑒1, 𝑒2)) =  𝑚𝑖𝑛{�̂�𝑉2

(𝑣2), �̂�𝑉2
(𝑒2), �̂�𝐸1

(𝑣1, 𝑒1)} 

𝐼𝐸1⋅𝐸2
((𝑣1, 𝑣2), ( 𝑒1, 𝑒2)) =  𝑚𝑎𝑥{𝐼𝑉2

(𝑢2), 𝐼𝑉2
(𝑣2), 𝐼𝐸1

(𝑣1, 𝑒1)} 

�̂�𝐸1⋅ 𝐸2
((𝑣1, 𝑣2), ( 𝑒1, 𝑒2)) =  𝑚𝑎𝑥 {�̂�𝑉2

(𝑢2), �̂�𝑉2
(𝑣2), �̂�𝐸1

(𝑣1, 𝑒1)} 

∀ (𝑣1, 𝑣2) ∈  𝐸1, (  𝑒1, 𝑒2) ∈  𝐸1 

 

 

Example 4.3.1 

Consider two NGs 𝐺1 & 𝐺2,  as presented below.  

 

 
Then the lexicographic product of 𝐺1 & 𝐺2 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦  𝐺1  ⋅ 𝐺2, is shown graphically in Figure 2. 
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Figure 2. Lexicographic product of two NGs 

4.4 Union of NGs 

The union of two NGs G1 = (V1, E1) and G2 = (V2, E2) is a new NG G = G1 ∪ G2, where the vertex set is the 

union of the vertex sets of G1 and G2, and the edge set is the union of the edge sets of G1and G2., is defined as 

follows: G1  ∪ G2 = (V1 ∪ V2 , E1  ∪ E2 ) 

where 

�̂�𝑉1∪ 𝑉2
(𝑣) = {

�̂�𝑉1
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉1 − 𝑉2

�̂�𝑉2
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉2 − 𝑉1

𝑚𝑎𝑥{�̂�𝑉1
(𝑣1), �̂�𝑉2

(𝑣2)} 𝑖𝑓 𝑣 ∈  𝑉1 ∪ 𝑉2

  

𝐼𝑉1∪ 𝑉2
(𝑣) = {

𝐼𝑉1
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉1 − 𝑉2

𝐼𝑉2
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉2 − 𝑉1

𝑚𝑖𝑛{𝐼𝑉1
(𝑣1), 𝐼𝑉2

(𝑣2)} 𝑖𝑓 𝑣 ∈  𝑉1 ∪ 𝑉2

 

�̂�𝑉1∪ 𝑉2
(𝑣) = {

�̂�𝑉1
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉1 − 𝑉2

�̂�𝑉2
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉2 − 𝑉1

𝑚𝑖𝑛{�̂�𝑉1
(𝑣1), �̂�𝑉2

(𝑣2)} 𝑖𝑓 𝑣 ∈  𝑉1 ∪ 𝑉2

 

 
 

  

�̂�𝑉1∪ 𝑉2
(𝑣1, 𝑣2) = {

�̂�𝐸1
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 − 𝐸2

�̂�𝐸2
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸2 − 𝐸1

𝑚𝑎𝑥{�̂�𝐸1
(𝑣1, 𝑣2), �̂�𝐸2

(𝑣1, 𝑣2)} 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 ∪ 𝐸2

  

𝐼𝑉1∪ 𝑉2
(𝑣1, 𝑣2) = {

𝐼𝐸1
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 − 𝐸2

𝐼𝐸2
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸2 − 𝐸1

𝑚𝑖𝑛{𝐼𝐸1
(𝑣1, 𝑣2), 𝐼𝐸2

(𝑣1, 𝑣2)} 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 ∪ 𝐸2

 

�̂�𝑉1∪ 𝑉2
(𝑣1, 𝑣2) = {

�̂�𝐸1
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 − 𝐸2

�̂�𝐸2
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸2 − 𝐸1

𝑚𝑖𝑛{�̂�𝐸1
(𝑣1, 𝑣2), 𝐹𝐸2

(𝑣1, 𝑣2)} 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 ∪ 𝐸2

 

 
Example 4.4.1 

Consider two NGs 𝐺1 𝑎𝑛d 𝐺2,  as presented  below.  
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   Then the union of 𝐺1 𝑎𝑛d 𝐺2,   is denoted by  𝐺1  ∪ 𝐺2 and  is shown graphically in Figure 3. below. 

Neutrosophic graphs 

 

 
 

Figure 3.  Union of two NGs 

 

4.5  Intersection of NGs 

The intersection of two NGs G1 = (V1, E1) and G2 = (V2, E2) is a new NG G = G1 ∩ G2, where the vertex set is the 

intersection of the vertex sets of G1 and G2, and the edge set is the intersection of the edge sets of G1and G2., is defined 

as follows: G1  ∩ G2 = (V1 ∩ V2 , E1  ∩ E2 ) 

where 

�̂�𝑉1∩𝑉2
(𝑣) = {

�̂�𝑉1
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉1 − 𝑉2

�̂�𝑉2
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉2 − 𝑉1

𝑚𝑖𝑛{�̂�𝑉1
(𝑣1), �̂�𝑉2

(𝑣2)} 𝑖𝑓 𝑣 ∈  𝑉1 ∪ 𝑉2

  

𝐼𝑉1∩ 𝑉2
(𝑣) = {

𝐼𝑉1
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉1 − 𝑉2

𝐼𝑉2
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉2 − 𝑉1

𝑚𝑎𝑥{𝐼𝑉1
(𝑣1), 𝐼𝑉2

(𝑣2)} 𝑖𝑓 𝑣 ∈  𝑉1 ∪ 𝑉2

 

�̂�𝑉1 ∩ 𝑉2
(𝑣) = {

�̂�𝑉1
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉1 − 𝑉2

�̂�𝑉2
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉2 − 𝑉1

𝑚𝑎𝑥{�̂�𝑉1
(𝑣1), �̂�𝑉2

(𝑣2)} 𝑖𝑓 𝑣 ∈  𝑉1 ∪ 𝑉2

 

  

�̂�𝑉1∩ 𝑉2
(𝑣1, 𝑣2) = {

�̂�𝐸1
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 − 𝐸2

�̂�𝐸2
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸2 − 𝐸1

𝑚𝑖𝑛{�̂�𝐸1
(𝑣1, 𝑣2), �̂�𝐸2

(𝑣1, 𝑣2)} 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 ∪ 𝐸2
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𝐼𝑉1∩ 𝑉2
(𝑣1, 𝑣2) = {

𝐼𝐸1
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 − 𝐸2

𝐼𝐸2
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸2 − 𝐸1

𝑚𝑎𝑥{𝐼𝐸1
(𝑣1, 𝑣2), 𝐼𝐸2

(𝑣1, 𝑣2)} 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 ∪ 𝐸2

 

�̂�𝑉1∩ 𝑉2
(𝑣1, 𝑣2) = {

�̂�𝐸1
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 − 𝐸2

�̂�𝐸2
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸2 − 𝐸1

𝑚𝑎𝑥{�̂�𝐸1
(𝑣1, 𝑣2), 𝐹𝐸2

(𝑣1, 𝑣2)} 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 ∪ 𝐸2

 

 

 

Example 4.5.1 

Consider two NGs𝐺1 𝑎𝑛d 𝐺2,  as presented below.  

 
Then the intersection of two graphs mis denioted by  𝐺1  ∩ 𝐺2, and is e shown graphically in Figuren4. 

 

 
Figure 4.  Intersection of two NGs 

4.6 Join of NGs 

The join of two NGs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) is a new NG 𝐺 = 𝐺1 + 𝐺2, where the vertex set and the 

edge set is  𝐺1 and  𝐺2 , denoted by 𝐺1  + 𝐺2 , is defined as follows: 𝐺1 + 𝐺2 = (𝑉1 + 𝑉2 , 𝐸1 + 𝐸2 ) where 

�̂�𝑉1+ 𝑉2
(𝑣) = {

�̂�𝑉1
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉1 − 𝑉2

�̂�𝑉2
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉1 − 𝑉2

𝑚𝑖𝑛{�̂�𝑉1
(𝑣), �̂�𝑉2

(𝑣)} 𝑖𝑓 𝑣 ∈  𝑉1 ∪ 𝑉2

  

𝐼𝑉1+ 𝑉2
(𝑣) = {

𝐼𝑉1
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉1 − 𝑉2

𝐼𝑉2
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉1 − 𝑉2

𝑚𝑎𝑥{𝐼𝑉1
(𝑣), 𝐼𝑉2

(𝑣)} 𝑖𝑓 𝑣 ∈  𝑉1 ∪ 𝑉2
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�̂�𝑉1+ 𝑉2
(𝑣) = {

�̂�𝑉1
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉1 − 𝑉2

�̂�𝑉2
(𝑣) 𝑖𝑓 𝑣 ∈  𝑉1 − 𝑉2

𝑚𝑎𝑥{�̂�𝑉1
(𝑣), �̂�𝑉2

(𝑣)} 𝑖𝑓 𝑣 ∈  𝑉1 ∪ 𝑉2

 

 

 

�̂�𝑉1+ 𝑉2
(𝑣1, 𝑣2) = {

�̂�𝐸1
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 − 𝐸2

�̂�𝐸2
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸2 − 𝐸1

𝑚𝑖𝑛{�̂�𝐸1
(𝑣1, 𝑣2), �̂�𝐸2

(𝑣1, 𝑣2)} 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 ∪ 𝐸2

  

𝐼𝑉1+ 𝑉2
(𝑣1, 𝑣2) = {

𝐼𝐸1
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 − 𝐸2

𝐼𝐸2
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸2 − 𝐸1

𝑚𝑎𝑥{𝐼𝐸1
(𝑣1, 𝑣2), 𝐼𝐸2

(𝑣1, 𝑣2)} 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 ∪ 𝐸2

 

�̂�𝑉1+ 𝑉2
(𝑣1, 𝑣2) = {

�̂�𝐸1
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 − 𝐸2

�̂�𝐸2
(𝑣1, 𝑣2) 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸2 − 𝐸1

𝑚𝑎𝑥{�̂�𝐸1
(𝑣1, 𝑣2), �̂�𝐸2

(𝑣1, 𝑣2)} 𝑖𝑓 (𝑣1, 𝑣2)  ∈  𝐸1 ∪ 𝐸2

 

 

 

Example 4.6.1 

Consider two NGs 𝐺1 𝑎𝑛d 𝐺2,  as presented  below.  

 
Then the join of 𝐺1 𝑎𝑛d 𝐺2  𝑖𝑠 𝑑𝑒𝑜𝑡𝑒𝑑 𝑏𝑦 𝐺1  + 𝐺2,  and is shown graphically in Figure 5. 

 

               

 
Figure 5.  Join of two NGs 

5. Example illustrating the use of NGs in decision-making. 
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Below is a numerical illustration that demonstrates the use of NGs in the decision-making process: 

 

Suppose an organization is contemplating three potential sites (𝐴, 𝐵, 𝑎𝑛𝑑 𝐶)  for establishing a new 

branch. The decision-makers have established five criteria (𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝑎𝑛𝑑 𝐶5)  that will serve as 

guidelines for their decision-making process. These factors include market potential, transportation 

infrastructure, labor availability, operating expenses, and environmental restrictions. 

We can model this decision-making problem using a neutrosophic graph, where we represent the 

locations as vertices and the criteria as edges connecting the vertices. The membership values 

associated with each edge will represent the level of truth, indeterminacy, and falsehood in relation to 

each location's eligibility for the applicable criterion. 

 

Suppose that the edges have the following membership values: 

𝑇(𝐴, 𝐶1)  =  0.7, 𝐼(𝐴, 𝐶1)  =  0.2, 𝐹(𝐴, 𝐶1)  =  0.1 

𝑇(𝐴, 𝐶2)  =  0.6, 𝐼(𝐴, 𝐶2)  =  0.3, 𝐹(𝐴, 𝐶2)  =  0.1 

𝑇(𝐴, 𝐶3)  =  0.8, 𝐼(𝐴, 𝐶3)  =  0.1, 𝐹(𝐴, 𝐶3)  =  0.1 

𝑇(𝐴, 𝐶4)  =  0.7, 𝐼(𝐴, 𝐶4)  =  0.2, 𝐹(𝐴, 𝐶4)  =  0.1 

𝑇(𝐴, 𝐶5)  =  0.6, 𝐼(𝐴, 𝐶5)  =  0.3, 𝐹(𝐴, 𝐶5)  =  0.1 

 

𝑇(𝐵, 𝐶1)  =  0.5, 𝐼(𝐵, 𝐶1)  =  0.4, 𝐹(𝐵, 𝐶1)  =  0.1 

𝑇(𝐵, 𝐶2)  =  0.7, 𝐼(𝐵, 𝐶2)  =  0.2, 𝐹(𝐵, 𝐶2)  =  0.1 

𝑇(𝐵, 𝐶3)  =  0.6, 𝐼(𝐵, 𝐶3)  =  0.3, 𝐹(𝐵, 𝐶3)  =  0.1 

𝑇(𝐵, 𝐶4)  =  0.8, 𝐼(𝐵, 𝐶4)  =  0.1, 𝐹(𝐵, 𝐶4)  =  0.1 

𝑇(𝐵, 𝐶5)  =  0.7, 𝐼(𝐵, 𝐶5)  =  0.2, 𝐹(𝐵, 𝐶5)  =  0.1 

 

𝑇(𝐶, 𝐶1)  =  0.6, 𝐼(𝐶, 𝐶1)  =  0.3, 𝐹(𝐶, 𝐶1)  =  0.1 

𝑇(𝐶, 𝐶2)  =  0.5, 𝐼(𝐶, 𝐶2)  =  0.4, 𝐹(𝐶, 𝐶2)  =  0.1 

𝑇(𝐶, 𝐶3)  =  0.7, 𝐼(𝐶, 𝐶3)  =  0.2, 𝐹(𝐶, 𝐶3)  =  0.1 

𝑇(𝐶, 𝐶4)  =  0.6, 𝐼(𝐶, 𝐶4)  =  0.3, 𝐹(𝐶, 𝐶4)  =  0.1 

𝑇(𝐶, 𝐶5)  =  0.8, 𝐼(𝐶, 𝐶5)  =  0.1, 𝐹(𝐶, 𝐶5)  =  0.1 

To make a decision, decision-makers can examine membership values and use various decision-

making strategies, such as aggregating membership values or ranking each criterion based on 

importance.  

 

For example, if all criteria are equally relevant, decision-makers could calculate the total score for each 

site by adding the truth membership values and subtracting the indeterminacy and falsity membership 

values. 

𝑆𝑐𝑜𝑟𝑒(𝐴)  =  0.7 +  0.6 +  0.8 +  0.7 +  0.6 − (0.2 +  0.3 +  0.1 +  0.2 +  0.3)  − (0.1 +  0.1 +  0.1 

+  0.1 +  0.1)  =  2.4 

𝑆𝑐𝑜𝑟𝑒(𝐵)  =  0.5 +  0.7 +  0.6 +  0.8 +  0.7 − (0.4 +  0.2 +  0.3 +  0.1 +  0.2)  − (0.1 +  0.1 +  0.1 

+  0.1 +  0.1)  =  2.2 

𝑆𝑐𝑜𝑟𝑒(𝐶)  =  0.6 +  0.5 +  0.7 +  0.6 +  0.8 − (0.3 +  0.4 +  0.2 +  0.3 +  0.1)  − (0.1 +  0.1 +  0.1 

+  0.1 +  0.1)  =  2.0 

Based on the overall scores, Location A gets the highest score of 2.4, suggesting it may be the best 

option based on all criteria and membership values.  
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However, depending on their preferences and the decision-making situation, decision-makers may 

also consider other aspects, such as the relative relevance of each criterion or other aggregation 

methods.  

 

This example demonstrates neutrosophic graphs' ability to simulate decision-making scenarios 

involving multiple criteria and ambiguity or uncertainty in the available data. Edge membership 

values enable a more sophisticated decision-making process by representing each alternative's 

suitability to the criterion. 

 
6. Conclusion: 

In conclusion, NGs offer a powerful and versatile framework for representing and analyzing complex 

systems and networks, particularly those involving uncertainty and indeterminacy. Neutrosophic 

graph theory could make big contributions to many fields if more research is done, theory is improved, 

and people from different fields work together. This would allow for more accurate and complete 

modeling of real-life situations and help people make better decisions. Moreover, real-world case 

studies and applications of neutrosophic graphs in various domains are essential to validate their 

effectiveness and demonstrate their practical value. These practical applications can also provide 

insights and feedback to refine and extend the theoretical foundations of neutrosophic graph theory in 

extended version. 
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