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Abstract. In graph theory, the hypergraph [22] extends the traditional graph structure by allowing edges to
connect multiple vertices, and this concept is further broadened by the superhypergraph [174,176]. Additionally,
several types of uncertain graphs have been explored, including fuzzy graphs [136, 153], neutrosophic graphs
[35,36], and plithogenic graphs [66,75,185].

This study explores the SuperHyperGraph, Single-Valued Neutrosophic Quasi SuperHyperGraph, and
Plithogenic Quasi SuperHyperGraph, analyzing their relationships with other graph classes. Future work will
define the Semi Superhypergraph, Multi Superhypergraph, Pseudo Superhypergraph, Mixed Superhypergraph,
and Bidirected Superhypergraph and examine their connections to existing classes in hypergraphs and graphs.
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1. Short Introduction

1.1. Hypergraph and many applications

Graphs are widely recognized as powerful tools for representing concepts and the relation-
ships between them [57]. Graphs continue to play a significant role in computer science and
societal applications, especially in areas such as graph neural networks [14,39,60,76,121,123,
163, 211, 212, 214, 226]. In graph theory, various classes of graphs have been developed to
address diverse applications and objectives [30].

In graph theory, the concept of a hypergraph [22], which extends the idea of a traditional
graph, is well established and further generalized by the concept of a superhypergraph [174,
176]. The hypergraph concept has found applications in fields such as database theory [87,
100] and hypergraph neural networks [44, 94, 117, 122, 206, 213]. Examples in database theory
include hypertree and hypergraph databases [13, 90], while in hypergraph neural networks,
various applications have emerged, such as GroupNet, Metro, Hypergraph Neural Networks
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(HyperNN), RAHGAR, and others. In graph parameters, hypertree-width is a notable metric
that has been widely studied, among other research efforts [1, 61,86,113,128,218].

Directed hypergraphs, a variant where directionality is added to hypergraphs [85, 107, 108,
132,135], have also been defined and studied in various research areas, including applications
in pattern mining [149], Hypernetworks [205], traffic forecasting [124], Directed hypergraph
neural network [200, 216], Personalized E-learning [191], and PageRank analysis [199]. Su-
perhypergraphs further generalize hypergraphs by incorporating concepts from supergraph
theory, expanding the framework for hypergraphs [68, 174, 176]. The author anticipates that
superhypergraphs will inspire extensive research into both their mathematical structures and
various applications, similar to the broad interest seen in hypergraphs.

1.2. Various types of Uncertain Hypergraphs

Additionally, various types of uncertain graphs have been explored, including fuzzy graphs
[136, 153], neutrosophic graphs [35, 36], and plithogenic graphs [66, 75, 185], along with their
corresponding hypergraph versions [23]. In these contexts, extensive research has also been
conducted on applications such as decision-making [5, 10, 34, 106, 116, 164, 186] and uncertain
neural networks [42,89,109,120,146,208,227].

Although some superhypergraph concepts, such as Fuzzy Superhypergraphs [91–93, 175],
have been explored, their full mathematical properties and applications remain largely unex-
plored.

1.3. Our Contribution in This Short Paper

The discussion above highlights the mathematical value and significance of research on
uncertain graphs, hypergraphs, and their generalizations to superhypergraphs. In this brief
paper, we explore superhypergraphs in greater depth, specifically presenting key findings by
defining the Intuitionistic Fuzzy Quasi SuperHyperGraph, the Single-Valued Neutrosophic
Quasi SuperHyperGraph, and the Plithogenic Quasi SuperHyperGraph, as well as examining
their relationships with other graph classes. Future work will involve defining the Semi Super-
hypergraph, Multi Superhypergraph, Pseudo Superhypergraph, Mixed Superhypergraph, and
Bidirected Superhypergraph and investigating their connections to existing classes in hyper-
graphs and graphs.

2. Preliminaries and Definitions

This section provides an overview of the fundamental definitions and notations used through-
out the paper. Basic concepts from set theory are also applied in parts of this work; for
additional details, please refer to relevant references as needed [63,95,97,102,115].
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2.1. Basic Graph Concepts

This subsection explains the basic concepts of graph theory. Below are some of the foun-
dational ideas in this field. For more in-depth information on graph theory and its notations,
please refer to [52,55,57,210].

Definition 2.1 (Graph). [57] A graph G is a mathematical structure that represents rela-
tionships between objects. It consists of a set of vertices V (G) and a set of edges E(G), where
each edge connects a pair of vertices. Formally, a graph is represented as G = (V,E), where
V is the set of vertices and E is the set of edges.

Definition 2.2 (Degree). [57] Let G = (V,E) be a graph. The degree of a vertex v ∈ V ,
denoted deg(v), is defined as the number of edges connected to v. For undirected graphs, the
degree is given by:

deg(v) = |{e ∈ E | v ∈ e}|.

For directed graphs, the in-degree deg−(v) refers to the number of edges directed towards v,
while the out-degree deg+(v) represents the number of edges directed away from v.

2.2. Uncertain Graph

This subsection explains the basic concepts of graph theory. Below are some of the foun-
dational ideas in this field. For more in-depth information on graph theory and its nota-
tions, please refer to [52, 55, 57, 210]. As highlighted in the introduction, this paper centers
on uncertain graph models, including Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Graphs.
Addressing real-world uncertainties requires robust mathematical frameworks, such as Fuzzy
Sets [219–225], Soft Sets [131], Picture Fuzzy Sets [45,77,105,159,168,188,207], Spherical Fuzzy
Sets [16,111,112], Vague Sets [4, 38,43], Hesitant Fuzzy Sets [197,198], Rough Sets [143,144],
and Neutrosophic Sets [169–172,184,187]. These frameworks are invaluable for analyzing am-
biguous or imprecise information. The concept of Fuzzy Graphs and related uncertain graph
models can be viewed as extensions of these sets into graph theory, offering versatile tools for
managing uncertainty in network structures.

The following sections define these graph concepts. For more on uncertain graphs, recent
surveys provide comprehensive insights [67,69–71,192].

Definition 2.3 (Uncertain Graphs). (cf. [69]) Let G = (V,E) be a classical graph with a set
of vertices V and a set of edges E. Depending on the type of graph, each vertex v ∈ V and
edge e ∈ E is assigned membership values to represent various degrees of truth, indeterminacy,
falsity, and other nuanced measures of uncertainty.

(1) Fuzzy Graph [153]:
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• Each vertex v ∈ V is assigned a membership degree σ(v) ∈ [0, 1].
• Each edge e = (u, v) ∈ E is assigned a membership degree µ(u, v) ∈ [0, 1].

(2) Intuitionistic Fuzzy Graph (IFG) [47,134,195]:
• Each vertex v ∈ V is assigned two values: µA(v) ∈ [0, 1] (degree of membership)

and νA(v) ∈ [0, 1] (degree of non-membership), such that µA(v) + νA(v) ≤ 1.
• Each edge e = (u, v) ∈ E is assigned two values: µB(u, v) ∈ [0, 1] and νB(u, v) ∈
[0, 1], with µB(u, v) + νB(u, v) ≤ 1.

(3) Neutrosophic Graph [11,104]:
• Each vertex v ∈ V is assigned a triplet σ(v) = (σT (v), σI(v), σF (v)), where
σT (v), σI(v), σF (v) ∈ [0, 1] and σT (v) + σI(v) + σF (v) ≤ 3.

• Each edge e = (u, v) ∈ E is assigned a triplet µ(e) = (µT (e), µI(e), µF (e)).

2.3. Plithogenic Graph

This subsection provides an overview of the plithogenic graph. A plithogenic graph extends
Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Graphs, representing the graphical counterpart
of a plithogenic set [64,167,173].

A plithogenic set consists of elements with multiple attributes, where each attribute has
specific values accompanied by degrees of membership and contradiction (fuzzy, intuitionistic,
or neutrosophic) [173]. The formal definition of a plithogenic graph is outlined below [173,190].

Definition 2.4. [173,190] Let G = (V,E) be a crisp graph where V is the set of vertices and
E ⊆ V × V is the set of edges. A Plithogenic Graph PG is defined as:

PG = (PM,PN)

where:

(1) Plithogenic Vertex Set PM = (M, l,Ml, adf, aCf):
• M ⊆ V is the set of vertices.
• l is an attribute associated with the vertices.
• Ml is the range of possible attribute values.
• adf :M×Ml → [0, 1]s is the Degree of Appurtenance Function (DAF) for vertices.
• aCf : Ml × Ml → [0, 1]t is the Degree of Contradiction Function (DCF) for

vertices.
(2) Plithogenic Edge Set PN = (N,m,Nm, bdf, bCf):

• N ⊆ E is the set of edges.
• m is an attribute associated with the edges.
• Nm is the range of possible attribute values.
• bdf : N ×Nm→ [0, 1]s is the Degree of Appurtenance Function (DAF) for edges.
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• bCf : Nm × Nm → [0, 1]t is the Degree of Contradiction Function (DCF) for
edges.

The Plithogenic Graph PG must satisfy the following conditions:

(1) Edge Appurtenance Constraint: For all (x, a), (y, b) ∈M ×Ml:

bdf ((xy), (a, b)) ≤ min{adf(x, a), adf(y, b)}

where xy ∈ N is an edge between vertices x and y, and (a, b) ∈ Nm × Nm are the
corresponding attribute values.

(2) Contradiction Function Constraint: For all (a, b), (c, d) ∈ Nm×Nm:

bCf ((a, b), (c, d)) ≤ min{aCf(a, c), aCf(b, d)}

(3) Reflexivity and Symmetry of Contradiction Functions:

aCf(a, a) = 0, ∀a ∈Ml

aCf(a, b) = aCf(b, a), ∀a, b ∈Ml

bCf(a, a) = 0, ∀a ∈ Nm

bCf(a, b) = bCf(b, a), ∀a, b ∈ Nm

Example 2.5. (cf. [67]) The following examples are provided.

• When s = t = 1, PG is called a Plithogenic Fuzzy Graph.
• When s = 2, t = 1, PG is called a Plithogenic Intuitionistic Fuzzy Graph.
• When s = 3, t = 1, PG is called a Plithogenic Neutrosophic Graph.
• When s = 4, t = 1, PG is called a Plithogenic quadripartitioned Neutrosophic Graph.
• When s = 5, t = 1, PG is called a Plithogenic pentapartitioned Neutrosophic Graph.
• When s = 6, t = 1, PG is called a Plithogenic hexapartitioned Neutrosophic Graph.
• When s = 7, t = 1, PG is called a Plithogenic heptapartitioned Neutrosophic Graph.
• When s = 8, t = 1, PG is called a Plithogenic octapartitioned Neutrosophic Graph.
• When s = 9, t = 1, PG is called a Plithogenic nonapartitioned Neutrosophic Graph.

2.4. Hypergraph and Uncertain Hypergraph

This subsection provides an overview of Hypergraphs and Uncertain Hypergraphs. A hy-
pergraph is a generalized graph structure that extends traditional graph concepts by allowing
hyperedges, which connect multiple vertices rather than just pairs, enabling more complex
relationships between elements [19,22,87,88]. Hypergraphs have a wide range of applications,
notably in database systems [100]. For additional information, readers are encouraged to
consult comprehensive surveys on hypergraphs, such as those in [32,33,204].
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Definition 2.6 (Hypergraph). [22] A hypergraph H = (V,E) consists of a set V of vertices
and a set E of hyperedges. Each hyperedge e ∈ E is defined as a subset of V , thus e ⊆ V , and
E ⊆ P(V ), where P(V ) denotes the power set of V .

Extensions of the hypergraph concept, including Fuzzy Hypergraphs [8,23,133], incorporate
elements from Fuzzy, Intuitionistic Fuzzy [2, 28, 51, 141], and Neutrosophic theories [6, 7, 125,
126]. These graphs extend traditional hypergraphs by applying concepts from Fuzzy Graphs,
Intuitionistic Fuzzy Graphs, and Neutrosophic Graphs to create more nuanced hypergraph
structures. For more details on specific operations and further theoretical underpinnings,
readers are encouraged to consult the cited papers.

Definitions of these extended hypergraph types are provided below. Note that the Single-
Valued Neutrosophic Hypergraph generalizes the Intuitionistic Fuzzy Hypergraph, which in
turn generalizes the Fuzzy Hypergraph, and the Fuzzy Hypergraph itself generalizes the Hy-
pergraph.

Definition 2.7 (Fuzzy Hypergraph). [8, 23, 133] A fuzzy hypergraph G = (V,E, ψ,w) is a
hypergraph where vertices have fuzzy membership degrees in hyperedges, and each hyperedge
has an associated weight. The fuzzy hypergraph is defined as follows:

• V is the set of vertices.
• E is the set of hyperedges, where each hyperedge e ∈ E is a subset of V .
• ψ ∈ [0, 1]|E|×|V | is a matrix where ψei represents the degree of membership of vertex
i ∈ V in hyperedge e ∈ E, satisfying

∑
i∈V ψei = 1 for each e ∈ E and

∑
e∈E ψei > 0

for each i ∈ V .
• w : E → R+ assigns a positive weight w(e) to each hyperedge e ∈ E.

Here, the matrix ψ serves as the incidence matrix of the fuzzy hypergraph, where each hyper-
edge quantifies the participation of each vertex. The weight function w provides a quantitative
measure for the importance or relevance of each hyperedge.

Definition 2.8 (Intuitionistic Fuzzy Hypergraph). [140] An intuitionistic fuzzy hypergraph
(IFHG) H = (V,E) consists of:

• A finite set V = {x1, x2, . . . , xn} of vertices.
• A family E = {E1, E2, . . . , Em} of intuitionistic fuzzy subsets of V , where each hyper-

edge Ej is defined as:

Ej = {(xi, µj(xi), νj(xi)) | xi ∈ V },

with µj(xi) denoting the degree of membership of vertex xi to the hyperedge Ej , and
νj(xi) denoting the degree of non-membership. It is required that 0 ≤ µj(xi)+νj(xi) ≤
1 for all xi ∈ V and all Ej ∈ E.
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Additionally, it holds that:
m⋃
j=1

supp(Ej) = V,

where supp(Ej) = {xi ∈ V | µj(xi) > 0 and νj(xi) > 0} is the support of Ej .

Definition 2.9 (Single-Valued Neutrosophic Hypergraph). [12] Let V = {v1, v2, . . . , vn} be a
finite set of vertices, and let E = {E1, E2, . . . , Em} be a collection of single-valued neutrosophic
subsets of V , such that:

m⋃
i=1

supp(Ei) = V,

where each edge Ei is defined as:

Ei = {(vj , TEi(vj), IEi(vj), FEi(vj)) | vj ∈ V },

with TEi(vj), IEi(vj), FEi(vj) representing the truth-membership, indeterminacy-membership,
and falsity-membership of vertex vj to edge Ei respectively. The pair H = (V,E) is called a
single-valued neutrosophic hypergraph (SVNH).

2.5. Superhypergraph and Quasi-SuperHyperGraph

This subsection explains the concepts of the Superhypergraph and Quasi-SuperHyperGraph.
The SuperHyperGraph is a generalized graph concept that extends the Hypergraph by in-
troducing supervertices and superedges [174, 175, 177, 178]. This framework includes related
structures such as the quasi-SuperHyperGraph [92]. As briefly mentioned in the short intro-
duction of this paper, these structures are further extended using fuzzy relations, leading to
the concept known as the Fuzzy SuperHyperGraph [92]. The definitions are provided below.

Definition 2.10 (SuperHyperGraph). [174] Let V be a finite set of vertices. A superhyper-
graph is an ordered pair H = (V,E), where:

• V ⊆ P (V ) (the power set of V ), meaning that each element of V can be either a single
vertex or a subset of vertices (called a supervertex).

• E ⊆ P (V ) represents the set of edges, called superedges, where each e ∈ E can connect
multiple supervertices.

In this framework, a superhypergraph can accommodate complex relationships among groups
of vertices, including single edges, hyperedges, superedges, and multi-edges. Superhypergraphs
provide a flexible structure to represent high-order and hierarchical relationships.

The following relationship between a superhypergraph and a hypergraph is well-known and
clearly holds.

Proposition 2.11. Every superhypergraph can be transformed into a hypergraph.
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Proof. Let H = (V,E) be a superhypergraph, where:

• V ⊆ P (U) for some underlying set U , meaning each v ∈ V is either a single element
of U or a subset of U (termed a supervertex).

• E ⊆ P (V ), with each e ∈ E linking subsets of elements in V (known as superedges).

Our objective is to construct a hypergraph H ′ = (V ′, E′) that is equivalent to H but adheres
to the structure of a hypergraph.

Construction of H ′: 1. Define V ′ as the union of all elements in the supervertices of V ,
specifically:

V ′ =
⋃
v∈V

v.

Here, each element in V ′ is a unique element of U , effectively ”flattening” the supervertices of
V into single elements in V ′.

2. Define the edge set E′ as follows: for each superedge e = {v1, v2, . . . , vn} ∈ E (where
vi ∈ V ), construct an edge e′ ⊆ V ′ by taking the union of the elements within each supervertex
vi, i.e.,

e′ =
⋃
v∈e

v.

This construction ensures that each e′ ⊆ V ′, thus meeting the definition of a hyperedge in H ′.
Verification: The transformed structure H ′ = (V ′, E′) satisfies the following properties of a

hypergraph:

• V ′ is a set of vertices, where each element corresponds to an element in the underlying
set U (not subsets of U), ensuring V ′ ⊆ U .

• Each edge e′ ∈ E′ is a subset of V ′ and does not contain supervertices, adhering to the
standard hypergraph structure where each edge is a subset of the vertex set.

Thus, the transformation from H = (V,E) to H ′ = (V ′, E′) is valid, and H ′ is a hypergraph
as required.

Definition 2.12 (Quasi-SuperHyperGraph). [92] A quasi-superhypergraph is a triple H =

(V, S,Φ) where:

• V is a set of elements called vertices.
• S = {Si}ki=1 ⊂ P (V ) is a family of subsets of V called supervertices.
• Φ = {φi,j | i 6= j} is a set of mappings φi,j : Si → Sj , known as superedges, linking

different supervertices.

The quasi-superhypergraph becomes a complete superhypergraph if, for each supervertex Si,
there exists at least one supervertex Sj such that Si links to Sj .
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The following relationship between a quasi-superhypergraph and a superhypergraph is well-
known and clearly holds.

Proposition 2.13. Every quasi-superhypergraph can be transformed into a superhypergraph.

Proof. Let H = (V, S,Φ) be a quasi-superhypergraph where:

• V is a set of vertices.
• S = {Si}ki=1 ⊂ P (V ) is a collection of subsets of V (supervertices).
• Φ = {φi,j | i 6= j} is a set of mappings φi,j : Si → Sj , linking different supervertices Si

and Sj .

We aim to construct a superhypergraph H ′ = (V ′, E′) from H by defining an appropriate
vertex set V ′ and edge set E′ that satisfy the properties of a superhypergraph.

To define the vertex set V ′, let V ′ = S, where each supervertex Si in S becomes a vertex in
V ′. Thus, each vertex in V ′ represents a subset of elements from V , satisfying the requirement
that V ′ ⊆ P (V ).

Next, we define the edge set E′ based on the mappings Φ. For each mapping φi,j ∈ Φ,
where φi,j : Si → Sj , we define a corresponding edge ei,j in E′ that links Si and Sj . Thus,
we set E′ = {ei,j | φi,j ∈ Φ}, where each ei,j = {Si, Sj}. This construction ensures that
each superedge in the quasi-superhypergraph H has a corresponding edge in H ′ connecting
supervertices in V ′.

Finally, we verify that H ′ = (V ′, E′) satisfies the properties of a superhypergraph. Each
element in V ′ is a subset of V , fulfilling the requirement that vertices may represent groups
of elements. Furthermore, each edge in E′ connects subsets of V , with each edge ei,j link-
ing two supervertices. Thus, the structure H ′ constructed from H meets the definition of a
superhypergraph.

Since this transformation process can be applied to any quasi-superhypergraph H =

(V, S,Φ), we conclude that every quasi-superhypergraph can indeed be transformed into a
superhypergraph, as required.

Next, the definitions for the Fuzzy Quasi-SuperHyperGraph and the q-Fuzzy Quasi-
SuperHyperGraph are provided below. These are graph concepts that extend the Quasi-
SuperHyperGraph through fuzzy relations.

Definition 2.14 (q-Fuzzy Quasi-SuperHyperGraph). [92] Let H∗ = (V, S,Φ) be a quasi-
superhypergraph, and let σi = {(x, σi(x)) | x ∈ Si, 0 ≤ σi(x) ≤ 1} represent fuzzy superver-
tices, where σi(x) denotes the degree of membership of x in Si. Define µi,j : φi,j → [0, 1] as
fuzzy superedges.
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Then H = ({σi}ki=1, {µi,j}i,j) is called a q-fuzzy quasi-superhypergraph on H∗, where:

µi,j(x, φi,j(x)) ≤
σi(x)

q w(σi)
∧ σj(φi,j(x))

q w(σj)
,

for all x ∈ V , and where w(σt) =
∑

x∈St
σt(x) denotes the total weight of the fuzzy supervertex

σt. Here, σi and σj represent fuzzy supervertices, and µi,j represents fuzzy superedges or fuzzy
links from σi to σj .

If q = 1, we denote this as a fuzzy quasi-superhypergraph.

3. Result in this paper

In this section, we present the main results of this paper by defining the Intuitionistic
Fuzzy Quasi SuperHyperGraph, Single-Valued Neutrosophic Quasi SuperHyperGraph, and
Plithogenic Quasi SuperHyperGraph, and examining their relationships with other graph
classes. While the ideas underlying these graph concepts have been suggested in sources
such as [174], this paper reinterprets them through formal mathematical definitions.

3.1. Intuitionistic Fuzzy Quasi SuperHyperGraph

The definition of an Intuitionistic Fuzzy Quasi SuperHyperGraph and its relationships with
other graph classes are presented below.

Definition 3.1 (Intuitionistic Fuzzy Quasi SuperHyperGraph). Let H∗ = (V, S,Φ) be a quasi-
superhypergraph, where:

• V is a non-empty set of vertices.
• S = {Si}ki=1 is a family of non-empty subsets of V called supervertices, i.e., Si ⊆ V .
• Φ = {φi,j}i,j is a set of mappings φi,j : Si → Sj called superedges, for i 6= j.

An intuitionistic fuzzy quasi superhypergraph (IFQSHG)

H = ({〈Si, µSi , νSi〉}ki=1, {〈φi,j , µi,j , νi,j〉}i,j)

on H∗ consists of:

• For each supervertex Si, membership and non-membership functions µSi , νSi : Si →
[0, 1] satisfying:

0 ≤ µSi(x) + νSi(x) ≤ 1, ∀x ∈ Si.

• For each superedge φi,j : Si → Sj , membership and non-membership functions
µi,j , νi,j : φi,j → [0, 1] satisfying:

0 ≤ µi,j(x, φi,j(x)) + νi,j(x, φi,j(x)) ≤ 1, ∀x ∈ Si.
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Additionally, we define the hesitation degree for vertices and edges as:

πSi(x) = 1− µSi(x)− νSi(x), πi,j(x, φi,j(x)) = 1− µi,j(x, φi,j(x))− νi,j(x, φi,j(x)),

representing the indeterminacy or hesitation of x in Si and the connection from x to φi,j(x),
respectively.

Theorem 3.2. Any intuitionistic fuzzy quasi superhypergraph H can be transformed into a
fuzzy quasi superhypergraph H ′ by neglecting the non-membership functions and adjusting the
membership functions accordingly.

Proof. Given an intuitionistic fuzzy quasi superhypergraph H, we construct a fuzzy quasi
superhypergraph H ′ as follows:

• For each supervertex Si, define the membership function µ′Si
: Si → [0, 1] by:

µ′Si
(x) = µSi(x), ∀x ∈ Si.

• For each superedge φi,j , define the membership function µ′i,j : φi,j → [0, 1] by:

µ′i,j(x, φi,j(x)) = µi,j(x, φi,j(x)), ∀x ∈ Si.

By omitting the non-membership functions νSi and νi,j , we effectively reduce the intuitionistic
fuzzy structure to a fuzzy one. The resulting fuzzy membership functions µ′Si

and µ′i,j retain
the original membership degrees, ensuring that the essential relationships in H are preserved
in H ′.

Theorem 3.3. Any intuitionistic fuzzy quasi superhypergraph H can be transformed into an
intuitionistic fuzzy hypergraph H ′′ by representing the supervertices and superedges as standard
vertices and edges in a hypergraph.

Proof. To transform H into an intuitionistic fuzzy hypergraph H ′′, we proceed as follows:

• Let the vertex set V ′ of H ′′ be the union of all supervertices:

V ′ =
k⋃

i=1

Si.

• For each element x ∈ V ′, define the membership and non-membership functions µV ′(x)

and νV ′(x) as:

µV ′(x) = µSi(x), νV ′(x) = νSi(x), if x ∈ Si.

• For each mapping φi,j : Si → Sj , create edges in H ′′ connecting x ∈ Si to y = φi,j(x) ∈
Sj , with membership and non-membership functions µE(x, y) and νE(x, y) defined by:

µE(x, y) = µi,j(x, y), νE(x, y) = νi,j(x, y).
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By treating each element of the supervertices as individual vertices and each mapping as edges,
we construct an intuitionistic fuzzy hypergraph H ′′ that encapsulates the same relationships
as H.

3.2. Single-Valued Neutrosophic Quasi SuperHyperGraph

The definition of a Single-Valued Neutrosophic Quasi SuperHyperGraph and its relationship
with other graph classes are outlined below.

Definition 3.4 (Single-Valued Neutrosophic Quasi SuperHyperGraph). A Single-Valued Neu-
trosophic Quasi SuperHyperGraph H = (X,S,Φ, T, I, F ) is a quasi superhypergraph where:

• For each supervertex Si:
– Truth-membership function TSi : Si → [0, 1].
– Indeterminacy-membership function ISi : Si → [0, 1].
– Falsity-membership function FSi : Si → [0, 1].
– For all x ∈ Si:

0 ≤ TSi(x) + ISi(x) + FSi(x) ≤ 1.

• For each superedge φi,j :
– Truth-membership function Tφi,j

: φi,j → [0, 1].
– Indeterminacy-membership function Iφi,j

: φi,j → [0, 1].
– Falsity-membership function Fφi,j

: φi,j → [0, 1].
– For all (x, y) ∈ φi,j :

0 ≤ Tφi,j
(x, y) + Iφi,j

(x, y) + Fφi,j
(x, y) ≤ 1.

Theorem 3.5. Any single-valued neutrosophic quasi superhypergraph H can be transformed
into an intuitionistic fuzzy quasi superhypergraph H ′ by merging the indeterminacy and falsity
memberships.

Proof. Given H, we construct an intuitionistic fuzzy quasi superhypergraph H ′ as follows:

• For each supervertex Si, define the membership and non-membership functions µSi

and νSi by:

µSi(x) = TSi(x), νSi(x) = FSi(x) + ISi(x), ∀x ∈ Si.

• Since 0 ≤ TSi(x) + ISi(x) + FSi(x) ≤ 1, it follows that µSi(x) + νSi(x) ≤ 1, satisfying
the conditions of an intuitionistic fuzzy membership.

• For each superedge φi,j , define µi,j and νi,j similarly:

µi,j(x, φi,j(x)) = Ti,j(x, φi,j(x)), νi,j(x, φi,j(x)) = Fi,j(x, φi,j(x)) + Ii,j(x, φi,j(x)).
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By combining the indeterminacy and falsity degrees into a single non-membership function,
we effectively reduce the neutrosophic structure to an intuitionistic fuzzy structure.

Theorem 3.6. Any single-valued neutrosophic quasi superhypergraph H can be transformed
into a single-valued neutrosophic hypergraph H ′′ by representing supervertices and superedges
as standard vertices and edges.

Proof. We construct H ′′ as follows:

• The vertex set V ′ of H ′′ is V ′ =
⋃k

i=1 Si.
• For each vertex x ∈ V ′, define the neutrosophic membership functions:

TV ′(x) = TSi(x), IV ′(x) = ISi(x), FV ′(x) = FSi(x), if x ∈ Si.

• For each mapping φi,j , create edges between x ∈ Si and y = φi,j(x) ∈ Sj , with
neutrosophic membership functions:

TE(x, y) = Ti,j(x, y), IE(x, y) = Ii,j(x, y), FE(x, y) = Fi,j(x, y).

This construction transforms the quasi superhypergraph H into a single-valued neutrosophic
hypergraph H ′′ by flattening the supervertex and superedge structures into standard vertices
and edges.

Theorem 3.7. The intersection of two Single-Valued Neutrosophic Quasi SuperHyperGraphs
with the same vertex set X results in a Single-Valued Neutrosophic Quasi SuperHyperGraph.

Proof. Let H1 = (X,S1,Φ1, T 1, I1, F 1) and H2 = (X,S2,Φ2, T 2, I2, F 2). Define H =

(X,S,Φ, T, I, F ) where:

S = S1 ∩ S2,

Φ = Φ1 ∩ Φ2,

TSi(x) = min{T 1
Si
(x), T 2

Si
(x)},

ISi(x) = max{I1Si
(x), I2Si

(x)},

FSi(x) = max{F 1
Si
(x), F 2

Si
(x)}.

Since T + I + F ≤ 1, H satisfies the conditions of a Single-Valued Neutrosophic Quasi
SuperHyperGraph.
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3.3. Plithogenic Quasi SuperHyperGraph

The definition of a Plithogenic Quasi SuperHyperGraph is outlined below.

Definition 3.8 (Plithogenic Quasi SuperHyperGraph). A Plithogenic Quasi SuperHyperGraph
H = (X,S,Φ,Θ) extends the quasi superhypergraph by incorporating attributes and their
associated degrees. It consists of:

• A non-empty set X of elements called vertices.
• A set S = {Si}ki=1 of non-empty subsets of X, called supervertices.
• A set of mappings Φ = {φi,j}i 6=j , where φi,j : Si → Sj are called superedges.
• For each supervertex Si:

– An attribute li with a domain of possible values Mli .
– A Degree of Appurtenance Function (DAF) adfSi : Si ×Mli → [0, 1]s.

• For each superedge φi,j :
– An attribute mi,j with a domain of possible values Mmi,j .
– A DAF adfφi,j

: φi,j ×Mmi,j → [0, 1]s.
• Degrees of Contradiction Functions (DCFs):

– For supervertices: aCfSi :Mli ×Mli → [0, 1]t.
– For superedges: aCfφi,j

:Mmi,j ×Mmi,j → [0, 1]t.

These functions satisfy:

(1) Reflexivity and symmetry of DCFs:

aCfSi(a, a) = 0, ∀a ∈Mli ,

aCfSi(a, b) = aCfSi(b, a), ∀a, b ∈Mli ,

aCfφi,j
(c, c) = 0, ∀c ∈Mmi,j ,

aCfφi,j
(c, d) = aCfφi,j

(d, c), ∀c, d ∈Mmi,j .

(2) The overall membership degree of an element x ∈ Si with attribute value a is adjusted
by the contradiction between a and other attribute values.

Theorem 3.9. Every Plithogenic Quasi SuperHyperGraph can be transformed into a Single-
Valued Neutrosophic Quasi SuperHyperGraph.

Proof. Given a Plithogenic Quasi SuperHyperGraph H = (X,S,Φ,Θ), we can define the
neutrosophic membership functions for each supervertex and superedge based on the Degrees
of Appurtenance and Contradiction.

For each supervertex Si and x ∈ Si with attribute value a ∈Mli :
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TSi(x) = adfSi(x, a) · (1− aCfSi(a, a
′)),

ISi(x) = aCfSi(a, a
′),

FSi(x) = 1− TSi(x)− ISi(x),

where a′ is a reference attribute value.
Similarly, for each superedge φi,j and (x, y) ∈ φi,j with attribute value c ∈Mmi,j :

Tφi,j
(x, y) = adfφi,j

((x, y), c) · (1− aCfφi,j
(c, c′)),

Iφi,j
(x, y) = aCfφi,j

(c, c′),

Fφi,j
(x, y) = 1− Tφi,j

(x, y)− Iφi,j
(x, y),

with c′ as a reference attribute value for edges.
Since the sum T + I + F ≤ 1 holds by construction, the transformed structure satisfies the

conditions of a Single-Valued Neutrosophic Quasi SuperHyperGraph.

Theorem 3.10. In a Plithogenic Quasi SuperHyperGraph, the degree of contradiction function
aCf is symmetric and reflexive.

Proof. By the definition of a Plithogenic Quasi SuperHyperGraph, the degree of contradiction
functions satisfy:

aCf(a, a) = 0, aCf(a, b) = aCf(b, a).

Reflexivity follows from aCf(a, a) = 0, and symmetry from aCf(a, b) = aCf(b, a).

4. Future tasks and Discussions

The following outlines future prospects for this study.

4.1. Semi Superhypergraph

As noted in the introduction, numerous graph classes have been proposed within graph
theory, alongside ongoing efforts to generalize these classes [30]. The semigraph is recognized
as a generalized graph class extending the standard concept of a graph [46,161,165]. Recently,
an even broader generalization, the semihypergraph, has been introduced, further expanding
on this structure [101]. Similarly, it is reasonable to expect the existence of a semi superhy-
pergraph, which would build on the structure of the superhypergraph. In future work, we
aim to explore the mathematical structure of the semi superhypergraph, as well as potential
extensions incorporating Fuzzy and Neutrosophic properties and concepts such as the semi
n-superhypergraph [174].
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The definitions of the already established concepts of the semigraph and semihypergraph,
along with the conceptual framework for the semi superhypergraph, are presented below.

Definition 4.1 (Semigraph). [161] A semigraph G = (V,E) consists of:

• A non-empty set V of elements called vertices.
• A set E of ordered n-tuples of distinct vertices, called edges, where n ≥ 2 for each

edge. Each edge connects a specific sequence of vertices.

The semigraph G must satisfy the following conditions:

(1) Intersection Condition: Any two edges in E have at most one vertex in common.
(2) Edge Equivalence: Two edges E1 = (u1, u2, . . . , um) and E2 = (v1, v2, . . . , vn) are

considered equal if and only if:
• m = n (they have the same length).
• Either ui = vi for all i = 1, . . . , n (identical ordering), or ui = vn−i+1 for all
i = 1, . . . , n (reverse ordering).

Definition 4.2 (Semihypergraph). [101] A semihypergraph Hs = (V,Eh) consists of:

• A finite set V = {v1, v2, . . . , vn} of vertices.
• A set Eh = {E1

h, E
2
h, . . . , E

p
h} of ordered hyperedges, where each hyperedge Ej

h is an
ordered kj-tuple of distinct vertices from V , with kj ≥ 2.

The semihypergraph Hs must satisfy the following conditions:

(1) Intersection Condition: Any two hyperedges in Eh have at most one vertex in common.
(2) Hyperedge Equivalence: Two hyperedges Em

h = (u1, u2, . . . , um) and En
h =

(v1, v2, . . . , vn) are considered equal if and only if:
• m = n (they have the same length).
• Either ui = vi for all i = 1, . . . , n (identical ordering), or ui = vn−i+1 for all
i = 1, . . . , n (reverse ordering).

Proposition 4.3. Every semihypergraph Hs = (V,Eh) can be transformed into a semigraph
G = (V,E).

Proof. Let Hs = (V,Eh) be a semihypergraph with a vertex set V and a set Eh of hyperedges,
where each hyperedge Ej

h ∈ Eh is an ordered kj-tuple of distinct vertices from V with kj ≥ 2.
We construct a corresponding semigraph G = (V,E) as follows:

(1) Set V as the vertex set of G, identical to the vertex set of Hs.
(2) For each hyperedge Ej

h = (vj1 , vj2 , . . . , vjkj ) in Hs, define a corresponding edge Ej =

(vj1 , vj2 , . . . , vjkj ) in E of G. Add Ej to E.
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This construction ensures that each hyperedge in Hs corresponds directly to an edge in G

with identical ordering and vertex sequence. Next, we verify that G = (V,E) satisfies the
conditions of a semigraph.

The set V in G is identical to that in Hs, so V is non-empty, meeting the requirement for a
semigraph. Additionally, each edge Ej ∈ E is an ordered kj-tuple of distinct vertices from V ,
with kj ≥ 2 by construction, which aligns with the edge structure required for semigraphs.

By the intersection condition of the semihypergraph Hs, any two hyperedges Ea
h and Eb

h

share at most one vertex. Since each edge in G corresponds to a hyperedge in Hs, the inter-
section condition is preserved in G; any two edges in E have at most one vertex in common.

The hyperedge equivalence condition in Hs specifies that two hyperedges are equal if they
have the same length and either identical or reverse ordering of vertices. Since each edge in G
corresponds to a hyperedge in Hs, this equivalence criterion holds for the edges in G as well.

Thus, the constructed graph G = (V,E) satisfies all conditions of a semigraph. Therefore,
any semihypergraph Hs can indeed be transformed into a semigraph G, as required.

Definition 4.4 (Semi SuperHyperGraph). A semi superhypergraph H = (V, S,E) consists of:

• A finite set V of elements called vertices.
• A collection S = {S1, S2, . . . , Sk} of non-empty subsets of V , called supervertices.
• A set E of ordered n-tuples of supervertices, called superedges, where n ≥ 2 for each

superedge.

The semi superhypergraph H must satisfy the following conditions:

(1) Intersection Condition: Any two superedges in E have at most one supervertex in
common.

(2) Superedge Equivalence: Two superedges E1 = (Si1 , Si2 , . . . , Sim) and E2 =

(Sj1 , Sj2 , . . . , Sjn) are considered equal if and only if:
• m = n (they have the same length).
• Either Sik = Sjk for all k = 1, . . . , n (identical ordering), or Sik = Sjn−k+1

for all
k = 1, . . . , n (reverse ordering).

We can show that both superhypergraphs and semihypergraphs can be represented as semi
superhypergraphs.

Theorem 4.5. Every superhypergraph and every semihypergraph can be represented as a semi
superhypergraph.

Proof. We will prove this theorem in two parts.
Part 1: Superhypergraphs as Semi SuperHyperGraphs
Let G = (V,E) be a superhypergraph, where:
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• V is a set of supervertices, each being a subset of some underlying set U .
• E ⊆ P(V ) is a set of superedges, where each superedge e ∈ E is a subset of V .

To represent G as a semi superhypergraph H = (V ′, S, E′), we proceed as follows:

• Set V ′ = V . That is, the vertices of the semi superhypergraph are the supervertices of
the superhypergraph.

• Set S = V ′. Each supervertex in V ′ is a supervertex in H.
• For each superedge e = {Si1 , Si2 , . . . , Sim} ∈ E, define an ordered superedge E′ =

(Si1 , Si2 , . . . , Sim) and include it in E′.

The Intersection Condition and Superedge Equivalence in the semi superhypergraph are
satisfied because they correspond directly to those in the superhypergraph, with the addition
of ordering, which is accounted for in the equivalence condition.

Part 2: Semihypergraphs as Semi SuperHyperGraphs
Let Hs = (V,Eh) be a semihypergraph, where:

• V = {v1, v2, . . . , vn} is a set of vertices.
• Eh is a set of ordered hyperedges, each hyperedge being an ordered tuple of vertices

from V .

To represent Hs as a semi superhypergraph H = (V, S,E′), we proceed as follows:

• Define the supervertex set S = {{v} | v ∈ V }, where each supervertex is a singleton
set containing a single vertex from V .

• The vertex set V remains the same.
• For each hyperedge Ej

h = (vj1 , vj2 , . . . , vjm) ∈ Eh, define a superedge E′ =

({vj1}, {vj2}, . . . , {vjm}) and include it in E′.

Again, the Intersection Condition and Superedge Equivalence in the semi superhypergraph
are satisfied because they correspond to those in the semihypergraph, with vertices replaced
by singleton supervertices.

4.2. Soft Semihypergraph

In this paper, we also introduce the concept of a Soft Semihypergraph, a hybrid graph
structure that merges elements from both Soft Hypergraphs [9, 82, 162] and Soft Semigraphs
[79–81]. A soft graph, in general, is a mathematical framework that extends soft set theory to
graph structures, assigning parameters to vertices and edges to effectively manage uncertainty.
Below, we provide definitions of Soft Hypergraphs and Soft Semigraphs, followed by an initial
definition of a Soft Semihypergraph as a concept still under development.
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Definition 4.6. [131] Let U be a non-empty finite set, called the universe of discourse, and
let E be a non-empty set of parameters. A soft set over U is defined as follows:

F = (F,A) over U is an ordered pair, where A ⊆ E and F : A→ P (U),

where F (a) ⊆ U for each a ∈ A and P (U) denotes the power set of U . The set of all soft sets
over U is denoted by S(U).

(1) Soft Subset: Let F = (F,A) and G = (G,B) be two soft sets over the common universe
U . We say that F is a soft subset of G, denoted F ⊆ G, if:

• A ⊆ B

• F (a) ⊆ G(a) for all a ∈ A.
(2) Union of Soft Sets: The union of two soft sets F = (F,A) and G = (G,B) over U is

defined as H = (H,C) where C = A ∪B and

H(e) =


F (e), e ∈ A−B

G(e), e ∈ B −A

F (e) ∪G(e), e ∈ A ∩B

(3) Intersection of Soft Sets: The intersection of two soft sets F = (F,A) and G = (G,B)

with disjoint parameter sets A ∩ B = ∅ is defined as H = (H,C), where C = A ∩ B
and

H(e) = F (e) ∩G(e), ∀e ∈ C.

Definition 4.7. [82] Let H∗ = (V,E) be a hypergraph with a vertex set V and a hyperedge
set E. A soft hypergraph is defined by a 4-tuple H = (H∗, A,B,C), where:

(1) H∗ = (V,E) is a simple hypergraph.
(2) C is a nonempty set of parameters.
(3) (A,C) is a soft set over V , where A : C → P(V ) is a mapping such that A(c) ⊆ V for

each c ∈ C.
(4) (B,C) is a soft set over Es, the set of all subhyperedges of H∗, where B : C → P(Es)

maps each c ∈ C to a subset of the maximal subhyperedges of H∗.
(5) For each c ∈ C, the pair (A(c), B(c)) forms a semisubhypergraph of H∗, meaning each

element in B(c) is a subhyperedge of a hyperedge in H∗ and corresponds to the vertices
in A(c).

If we denote (A(c), B(c)) by F (c), then the soft hypergraph H is represented by {F (c) : c ∈ C},
where each F (c) is termed as a hyperpart (or simply h-part) of the soft hypergraph H.

Definition 4.8 (Soft Semigraph). [79,81] Let S∗ = (T,D) be a semigraph with vertex set T
and edge set D. A soft semigraph is defined by a 4-tuple S = (S∗, I, J,K), where:
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(1) S∗ = (T,D) is a semigraph with a set T of vertices and a set D of edges.
(2) K is a nonempty set of parameters.
(3) (I,K) is a soft set over T , where I : K → P(T ) is a mapping such that I(k) ⊆ T

for each k ∈ K. For each k ∈ K, I(k) denotes the subset of vertices associated with
parameter k.

(4) (J,K) is a soft set over Dp, the set of all maximal partial edges (or mp edges) in S∗.
Here, J : K → P(Dp) maps each k ∈ K to a subset J(k) of Dp, where each element in
J(k) is an mp edge formed by some or all vertices in I(k).

The soft semigraph S = (S∗, I, J,K) represents a collection of partial semigraphs of S∗ defined
by different parameters in K. Specifically, for each k ∈ K, the pair L(k) = (I(k), J(k)) is called
a partial semigraph (or p-part) of S∗.

Definition 4.9 (Soft Semihypergraph). Let H∗ = (V,Eh) be a semihypergraph, where:

• V is a finite set of vertices.
• Eh = {E1

h, E
2
h, . . . , E

p
h} is a set of hyperedges, where each hyperedge Ej

h is an ordered
nj-tuple of distinct vertices from V , with nj ≥ 2.

Let C be a non-empty set of parameters. A soft semihypergraph is a quadruple H =

(H∗, A,B,C), where:

(1) (A,C) is a soft set over V , i.e., A : C → P(V ) is a mapping such that A(c) ⊆ V for
each c ∈ C.

(2) (B,C) is a soft set over Es, where Es is the set of all subhyperedges of H∗. The
mapping B : C → P(Es) assigns to each c ∈ C a set B(c) of maximal subhyperedges
corresponding to A(c).

(3) For each c ∈ C, the pair F (c) = (A(c), B(c)) forms a partial semihypergraph of H∗,
meaning:

• Each hyperedge in B(c) is a subhyperedge of some hyperedge in Eh.
• The vertices of each hyperedge in B(c) are elements of A(c).

The collection H = {F (c) : c ∈ C} represents the soft semihypergraph, where each F (c) is
called a partial semihypergraph (or p-part) of H.

Theorem 4.10. The concept of a soft semihypergraph generalizes both semihypergraphs and
soft semigraphs. Specifically:

(1) Every semihypergraph can be considered as a soft semihypergraph.
(2) Every soft semigraph can be represented as a soft semihypergraph.

Proof. Let H∗ = (V,Eh) be a semihypergraph. We can construct a soft semihypergraph
H = (H∗, A,B,C) by choosing:
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• C = {c} is a singleton parameter set.
• Define A : C → P(V ) by A(c) = V .
• Define B : C → P(Eh) by B(c) = Eh.

Then, (A(c), B(c)) = (V,Eh) is the original semihypergraph H∗. Since H consists of a single
partial semihypergraph identical to H∗, the semihypergraph is represented as a soft semihy-
pergraph.

Let S = (S∗, I, J,K) be a soft semigraph as defined in [82], where:

• S∗ = (T,D) is a semigraph with vertex set T and edge set D.
• K is a non-empty set of parameters.
• I : K → P(T ) is a mapping representing the soft set over T .
• J : K → P(Dp), where Dp is the set of partial edges of S∗.

We can construct a semihypergraph H∗ = (V,Eh) corresponding to S∗ by setting:

• V = T .
• Eh = Dp, treating each partial edge as an ordered hyperedge.

Now, define the soft semihypergraph H = (H∗, A,B,K) by:

• A = I.
• B = J .

For each k ∈ K, the partial semihypergraph F (k) = (A(k), B(k)) corresponds to the partial
semigraph L(k) = (I(k), J(k)) in the soft semigraph S.

Therefore, the soft semigraph S = (S∗, I, J,K) is represented as a soft semihypergraph
H = (H∗, A,B,K).

Question 4.11. Is it possible to extend a Soft Semihypergraph to a Soft Semisuperhyper-
graph? What potential applications might such an extension have?

4.3. Multi-Superhypergraph

One well-known graph class is the multigraph, which allows for multiple (parallel) edges be-
tween the same pair of vertices [40,62,110,127]. This concept extends to the multi-hypergraph,
a generalization to hypergraphs where parallel hyperedges are permitted. Both multigraphs
and multi-hypergraphs [145, 209] have numerous applications, particularly in areas such as
neural network theory [25, 114, 119, 189]. Here, we aim to explore an even broader extension
with the definition of the Multi-Superhypergraph, provided below.

Definition 4.12 (Multiset). [26, 27, 166] A multiset M over a set S is a collection where
each element x ∈ S can appear more than once. Formally, a multiset is defined as a pair
M = (S,m), where:
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• S is the underlying set of distinct elements, called the support of M .
• m : S → Z≥0 is a function called the multiplicity function, which assigns to each

element x ∈ S a non-negative integer m(x), representing the number of occurrences of
x in M .

If m(x) > 0 for some x ∈ S, then x is said to be an element of M with multiplicity m(x). A
multiset with all multiplicities equal to 1 is equivalent to a set.

Definition 4.13 (Multigraph). [40] Let G = (V,E) be a multigraph, where:

• V is a non-empty set of vertices.
• E is a multiset of unordered pairs of vertices, meaning that E allows multiple edges

(parallel edges) between the same pair of vertices.

In a multigraph, loops (edges that connect a vertex to itself) may or may not be permitted,
depending on the specific multigraph definition being used.

Definition 4.14 (Multi-Hypergraph). [209] Let H = (V,E) be a multi-hypergraph, where:

• V is a non-empty set of vertices.
• E is a multiset of subsets of V , called hyperedges, where each hyperedge can contain

any number of vertices. The multiset property allows for multiple occurrences of the
same hyperedge (parallel hyperedges).

In a multi-hypergraph, hyper-loops (hyperedges that contain repeated vertices) may be al-
lowed, providing further generalization.

Definition 4.15 (Multi-Superhypergraph). A Multi-Superhypergraph is a triple H = (V, S,E),
where:

• V is a non-empty finite set of elements called vertices.
• S is a multiset of non-empty subsets of V , called supervertices. Each supervertex
s ∈ S satisfies s ⊆ V , and the multiset allows for multiple occurrences of the same
supervertex.

• E is a multiset of non-empty subsets of S, called superedges. Each superedge e ∈ E is
a subset of supervertices from S, and multiple occurrences of the same superedge are
permitted.

Theorem 4.16. Every Multigraph and every Multi-Hypergraph can be represented as a Multi-
Superhypergraph. Conversely, the Multi-Superhypergraph generalizes both the Multigraph and
the Multi-Hypergraph.

Proof. Let G = (V,EG) be a multigraph, where:

• V is a non-empty set of vertices.
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• EG is a multiset of unordered pairs of vertices, allowing multiple edges between the
same pair of vertices.

Construction:
Define a Multi-Superhypergraph H = (V ′, S, E) as follows:

• Set V ′ = V .
• Let S = {{v} | v ∈ V }. Each vertex v becomes a singleton supervertex {v}. Since S

is a multiset, multiplicities are considered if necessary.
• For each edge e = {u, v} ∈ EG, include the superedge e′ = {{u}, {v}} in the multiset
E. The multiplicity of e′ in E matches the multiplicity of e in EG.

Verification:

• Supervertices in S correspond to individual vertices in V .
• Superedges in E connect singleton supervertices, reflecting the edges in G.
• Multiplicities of edges are preserved due to the multiset nature of E.

And let HG = (V,EH) be a multi-hypergraph, where:

• V is a non-empty set of vertices.
• EH is a multiset of subsets of V , called hyperedges, allowing multiple occurrences of

the same hyperedge.

Construction:
Define a Multi-Superhypergraph H = (V ′, S, E) as follows:

• Set V ′ = V .
• Let S = {{v} | v ∈ V }. Each vertex becomes a singleton supervertex.
• For each hyperedge eH ∈ EH , include the superedge e = {{v} | v ∈ eH} in the multiset
E. The multiplicity of e in E matches that of eH in EH .

Verification:

• Supervertices represent the original vertices as singleton sets.
• Superedges correspond to hyperedges by connecting the supervertices representing the

vertices in each hyperedge.
• Multiplicities of hyperedges are preserved in E.

The Multi-Superhypergraph accommodates:

• Supervertices that are subsets of V , not limited to singletons.
• Superedges connecting any subsets of supervertices.
• Multiplicities of supervertices and superedges through the use of multisets.

Thus, the Multi-Superhypergraph generalizes both the Multigraph and the Multi-
Hypergraph by allowing more complex relationships and multiplicities.
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4.4. Pseudo-SuperHypergraph

A pseudograph is a type of graph that allows parallel edges and self-loops (edges that
return to the originating vertex) [21, 29, 110]. This structure enables the representation of
more complex relationships and intricate networks compared to standard graphs [203, 217].
A pseudo-hypergraph generalizes the pseudograph concept by incorporating hypergraphs, ex-
tending its capabilities for modeling even more sophisticated connections [17,31,118]. Moving
forward, We aim to elucidate the mathematical structure and potential applications of the
pseudo-superhypergraph. Below, we present the established definitions of pseudograph and
pseudo-hypergraph, followed by an overview of the pseudo-superhypergraph.

Definition 4.17 (Pseudograph). [202] A pseudograph G = (V,E) is a graph that consists of:

• A non-empty set V of elements called vertices.
• A set E of unordered pairs of vertices, where each edge e ∈ E is of the form {u, v}

with u, v ∈ V . The following are permitted in E:
– Parallel edges: Multiple instances of the same pair {u, v} are allowed in E.
– Loops: An edge of the form {v, v}, which connects a vertex to itself, is allowed.

Definition 4.18 (Pseudo-Hypergraph). [17] A pseudo-hypergraph H = (V,E) generalizes the
concept of a hypergraph and consists of:

• A non-empty set V of elements called vertices.
• A set E of multisets of vertices, where each hyperedge e ∈ E is a multiset over V . This

allows:
– Multiple occurrences of vertices within a hyperedge: A vertex v ∈ V may appear

more than once in a single hyperedge e, resembling loops in pseudographs.
– Multiple identical hyperedges: The same multiset of vertices may appear multiple

times in E, resembling parallel edges in pseudographs.

Remark 4.19 (Pseudo-Hypergraph). In a pseudo-hypergraph, each hyperedge can connect
any subset of vertices from V , with repetitions of vertices within hyperedges permitted. This
allows a single hyperedge to act both as a multi-edge and as a ”loop” by including repeated
occurrences of vertices.

Definition 4.20 (Pseudo-Superhypergraph). A pseudo-superhypergraph H = (V, S,E) con-
sists of:

• Vertices: A non-empty finite set V of elements called vertices.
• Supervertices: A multiset S of multisets over V , called supervertices. Each supervertex
s ∈ S is a multiset of vertices from V , allowing:
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– Multiple occurrences of the same vertex within a supervertex (vertices can repeat
within s).

– Multiple occurrences of the same supervertex in S (supervertices can repeat in
S).

• Superedges: A multiset E of multisets over S, called superedges. Each superedge e ∈ E

is a multiset of supervertices from S, allowing:
– Multiple occurrences of the same supervertex within a superedge (supervertices

can repeat within e).
– Multiple occurrences of the same superedge in E (superedges can repeat in E).

Remark 4.21 (Pseudo-Superhypergraph). In a pseudo-superhypergraph:

• Supervertices can have repeated vertices from V .
• Superedges can have repeated supervertices from S.
• Superedges themselves can appear multiple times in E.

Theorem 4.22. Every pseudograph and every pseudo-hypergraph can be represented as a
pseudo-superhypergraph. Conversely, the pseudo-superhypergraph generalizes both the pseudo-
graph and the pseudo-hypergraph.

Proof. We prove this theorem in two parts.
Part 1: Pseudographs as Pseudo-Superhypergraphs. LetG = (V,EG) be a pseudograph, where:

• V is a non-empty set of vertices.
• EG is a multiset of unordered pairs {u, v} with u, v ∈ V , allowing for loops and multiple

edges.

Construction:
Define a pseudo-superhypergraph H = (V ′, S, E) as follows:

• Set V ′ = V .
• Let S = {{v} | v ∈ V }. Each vertex v becomes a supervertex sv = {v} in S.
• For each edge e = {u, v} ∈ EG:

– If u 6= v:
∗ Define e′ = {su, sv}, a multiset containing su and sv.
∗ Include e′ in E with multiplicity equal to the number of edges between u

and v in EG.
– If u = v (a loop at v):

∗ Define e′ = {sv, sv}, a multiset containing sv twice.
∗ Include e′ in E with multiplicity equal to the number of loops at v in EG.

Verification:
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• Supervertices represent the vertices in V .
• Superedges correspond to edges in EG, including loops and multiple edges.
• Repeated supervertices within a superedge represent loops.
• Multiplicities in E reflect the multiplicities in EG.

Part 2: Pseudo-Hypergraphs as Pseudo-Superhypergraphs. Let HG = (V,EH) be a pseudo-
hypergraph, where:

• V is a non-empty set of vertices.
• EH is a multiset of multisets over V , allowing for repeated vertices within hyperedges

and multiple hyperedges.

Construction:
Define a pseudo-superhypergraph H = (V ′, S, E) as follows:

• Set V ′ = V .
• Let S = {{v} | v ∈ V }.
• For each hyperedge eH ∈ EH :

– Construct a superedge e by replacing each occurrence of v in eH with sv.
– Thus, if v appears m times in eH , sv appears m times in e.
– Include e in E with multiplicity equal to the multiplicity of eH in EH .

Verification:

• Supervertices correspond to vertices in V .
• Superedges represent hyperedges, preserving multiplicities and repeated vertices.
• Repeated supervertices within a superedge represent repeated vertices within a hyper-

edge.
• Multiplicities of hyperedges are preserved in E.

Since both pseudographs and pseudo-hypergraphs can be represented as pseudo-
superhypergraphs, and the pseudo-superhypergraph allows for more general structures, it
follows that the pseudo-superhypergraph generalizes both concepts.

4.5. Mixed Superhypergraph

A mixed graph integrates undirected and directed edges, allowing both bidirectional and
directional connections between vertices [64, 154]. This concept has been expanded to mixed
hypergraphs [193], extending the structure to hypergraphs, whose mathematical properties
have been examined in depth. In this paper, we further introduce the framework of mixed
superhypergraphs. Future work will explore fuzzy mixed hypergraphs and neutrosophic mixed
hypergraphs, combining elements of fuzzy and neutrosophic graphs within this extended struc-
ture. Although detailed definitions are beyond this paper’s scope, readers needing background
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on directed graphs [24, 37, 103], directed hypergraphs [85, 108, 132, 135], or directed superhy-
pergraphs [65] are encouraged to consult relevant literature as needed.

Definition 4.23 (Mixed Graph). [152] A mixed graph G = (V,E ∪ A) is a graph structure
with:

• V , a non-empty set of vertices.
• E, a set of undirected edges, where each edge e ∈ E is an unordered pair {u, v} of

distinct vertices u, v ∈ V .
• A, a set of directed edges (also called arcs), where each arc a ∈ A is an ordered pair
(u, v) of distinct vertices u, v ∈ V .

In a mixed graph, an edge can either connect two vertices bidirectionally (undirected) or
directionally (from one vertex to another).

Remark 4.24. A mixed graph combines features of both undirected and directed graphs.
While undirected edges e = {u, v} imply symmetric relationships between vertices u and v,
directed edges a = (u, v) define an asymmetric connection from u to v.

Definition 4.25 (Mixed Hypergraph). [193] A mixed hypergraph H = (V,E ∪A) is a hyper-
graph structure with:

• V , a non-empty set of vertices.
• E, a set of undirected hyperedges, where each hyperedge e ∈ E is a non-empty subset

of V containing at least two vertices.
• A, a set of directed hyperedges (also known as dyperedges), where each directed hyper-

edge a = (Z, z) ∈ A is an ordered pair consisting of:
– Z, a non-empty subset of V \ {z}, called the tail set of a.
– z ∈ V , a single vertex called the head of a.

In a mixed hypergraph, undirected hyperedges connect subsets of vertices without directional-
ity, whereas directed hyperedges represent a directed relationship from the vertices in the tail
set Z to the head z.

Remark 4.26. Mixed hypergraphs generalize mixed graphs by allowing hyperedges, which can
involve more than two vertices, and by permitting directed connections (dyperedges) between
sets of vertices and individual vertices. The structure enables modeling of more complex
relationships in network theory, such as group-to-individual influence dynamics.

Theorem 4.27. Any mixed hypergraph can be transformed into a mixed graph.

Proof. Given a mixed hypergraph H = (V,E∪A), we construct a mixed graph G = (V ′, E′∪A′)

as follows:
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(1) Vertex Set V ′: Define V ′ = V ∪ {e | e ∈ E}. For each undirected hyperedge e ∈ E,
introduce a new vertex in V ′ to represent it.

(2) Edge Set E′: For each undirected hyperedge e ∈ E and each v ∈ e, create an undirected
edge {v, e} in E′.

(3) Arc Set A′: For each directed hyperedge a = (Z, z) ∈ A, choose a vertex y ∈ Z and
create a directed edge (y, z) in A′.

Verification:

• The structure of the undirected hyperedges E is represented in G by the connections
between the original vertices in V and the new vertices representing hyperedges in V ′.

• Directed hyperedges in A are represented by directed edges connecting a vertex in the
tail set to the head vertex, thereby preserving directionality in the transformed graph.

The resulting G is a mixed graph that represents the original mixed hypergraph H.

Definition 4.28 (Mixed Superhypergraph). A mixed superhypergraph H = (V, S,E,A) con-
sists of:

• A non-empty set V of elements called vertices.
• A set S of non-empty subsets of V , called supervertices, where each supervertex s ∈ S

satisfies s ⊆ V .
• A set E of undirected superedges, where each superedge e ∈ E is a non-empty subset

of S.
• A set A of directed superedges (also known as super-dyperedges), where each directed

superedge a = (Z, z) ∈ A consists of:
– A non-empty subset Z ⊆ S \ {z}, called the tail set.
– A supervertex z ∈ S, called the head.

In a mixed superhypergraph, undirected superedges connect subsets of supervertices without
directionality, while directed superedges represent a directed relationship from the tail set Z
to the head z.

Theorem 4.29. Any mixed superhypergraph can be transformed into a mixed hypergraph.

Proof. Let H = (V, S,E,A) be a mixed superhypergraph. We construct a mixed hypergraph
H ′ = (V ′, E′, A′) as follows:

(1) Vertex Set V ′: Introduce a new vertex vs in V ′ for each supervertex s ∈ S. Thus,

V ′ = {vs | s ∈ S}.
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(2) Undirected Hyperedges E′: For each undirected superedge e ∈ E, create an undirected
hyperedge e′ in E′ defined by:

e′ = {vs | s ∈ e}.

(3) Directed Hyperedges A′: For each directed superedge a = (Z, z) ∈ A, create a directed
hyperedge a′ in A′ defined by:

a′ = ({vs | s ∈ Z}, vz),

where vz is the vertex corresponding to the head supervertex z.

Verification:

• The vertex set V ′ represents the supervertices of H.
• Undirected superedges in E are transformed into undirected hyperedges in E′ by map-

ping the supervertices in e to their corresponding vertices in V ′.
• Directed superedges in A are transformed into directed hyperedges in A′, preserving

the direction from the tail set Z to the head z.

The mixed hypergraph H ′ = (V ′, E′, A′) represents the original mixed superhypergraph H,
with supervertices replaced by vertices and superedges appropriately transformed.

Theorem 4.30. Any mixed superhypergraph can be transformed into an undirected superhy-
pergraph by removing the directed superedges.

Proof. Given a mixed superhypergraph H = (V, S,E,A), we construct an undirected super-
hypergraph H ′ = (V, S,E′) as follows:

(1) Supervertex Set S: Retain the same supervertex set from H.
(2) Undirected Superedges E′: Form E′ by combining the undirected superedges E with

the directed superedges A converted to undirected superedges:

E′ = E ∪ {ea | a = (Z, z) ∈ A},

where for each a = (Z, z) ∈ A, the undirected superedge ea is defined as:

ea = Z ∪ {z}.

Verification:

• The undirected superedges in E remain unchanged.
• Each directed superedge a = (Z, z) is converted into an undirected superedge ea con-

necting all supervertices in Z ∪ {z}, thus removing directionality while preserving the
connectivity.
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The undirected superhypergraph H ′ = (V, S,E′) maintains the structure of H without
directionality, representing all relationships among supervertices with undirected superedges.

4.6. Bidirected Superhypergraph

The concept of the bidirected graph [15,59,78] has been introduced in recent years. Below,
we provide definitions for the bidirected hypergraph and bidirected superhypergraph, which
generalize bidirected graphs.

Definition 4.31 (Bidirected Graph). [15,59,78] A bidirected graph (also known as a bigraph)
is a pair B = (G, τ), where:

• G = (V,E) is a simple undirected graph, where V is a non-empty set of vertices and
E is a set of edges (without parallel edges or loops).

• τ : V × E → {−1, 0, 1} is a function called the bidirection function, which assigns a
local orientation to each vertex-edge pair (v, e) as follows:

– τ(v, e) = 1: Edge e is directed towards vertex v.
– τ(v, e) = −1: Edge e is directed away from vertex v.
– τ(v, e) = 0: Vertex v is not incident to edge e.

The graph G is referred to as the underlying graph of B, and the function τ provides the
bidirected structure on G by assigning a direction at each endpoint of every edge in E.

Definition 4.32 (Bidirected Hypergraph). A bidirected hypergraph is a triple H = (V,E, τ),
where:

• V is a non-empty set of vertices.
• E is a set of hyperedges, where each hyperedge e ∈ E is a non-empty subset of V .
• τ : V × E → {−1, 0, 1} is a function called the bidirection function, assigning a local

orientation to each vertex-hyperedge pair (v, e) such that:
– τ(v, e) = 1 if hyperedge e is directed towards vertex v.
– τ(v, e) = −1 if hyperedge e is directed away from vertex v.
– τ(v, e) = 0 if v /∈ e.

Additionally, for each hyperedge e ∈ E, we require that:∑
v∈e

τ(v, e) = 0.

This condition ensures that the hyperedge is balanced in terms of its local orientations.

Definition 4.33 (Bidirected Superhypergraph). A bidirected superhypergraph is a quadruple
H = (V, S,E, τ), where:
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• V is a non-empty set of vertices.
• S is a set of non-empty subsets of V , called supervertices.
• E is a set of superedges, where each superedge e ∈ E is a non-empty subset of S.
• τ : S × E → {−1, 0, 1} is a function called the bidirection function, assigning a local

orientation to each supervertex-superedge pair (s, e) such that:
– τ(s, e) = 1 if superedge e is directed towards supervertex s.
– τ(s, e) = −1 if superedge e is directed away from supervertex s.
– τ(s, e) = 0 if s /∈ e.

Similarly to bidirected hypergraphs, for each superedge e ∈ E, we require that:∑
s∈e

τ(s, e) = 0.

This condition ensures that the superedge is balanced in terms of its local orientations.

Theorem 4.34. Any bidirected hypergraph can be transformed into a bidirected graph.

Proof. Given a bidirected hypergraph H = (V,E, τ), we construct a bidirected graph G =

(V ′, E′, τ ′) as follows:

(1) Vertex Set V ′: Let V ′ = V ∪{e | e ∈ E}. That is, for each hyperedge e ∈ E, introduce
a new vertex representing e.

(2) Edge Set E′: For each hyperedge e ∈ E and each vertex v ∈ e, create an edge {v, e}
connecting vertex v to the hyperedge vertex e.

(3) Bidirection Function τ ′: For each edge {v, e} ∈ E′, define:

τ ′(v, {v, e}) = τ(v, e), τ ′(e, {v, e}) = −τ(v, e).

Verification:

• The sum of the bidirections at the endpoints of each edge {v, e} is zero:

τ ′(v, {v, e}) + τ ′(e, {v, e}) = τ(v, e)− τ(v, e) = 0.

• This construction preserves the bidirectional relationships of the original hypergraph
H in the graph G.

The resulting G is a bidirected graph that represents the original bidirected hypergraph H.
Therefore, any bidirected hypergraph can be transformed into a bidirected graph.

Theorem 4.35. Any bidirected superhypergraph can be transformed into a bidirected hyper-
graph.

Proof. Given a bidirected superhypergraph H = (V, S,E, τ), we construct a bidirected hyper-
graph H ′ = (V ′, E′, τ ′) as follows:
Takaaki Fujita and Florentin Smarandache, A Concise Study of Some Superhypergraph
classes



Neutrosophic Sets and Systems, Vol. 77, 2025 579

(1) Vertex Set V ′: Let V ′ = S. Each supervertex s ∈ S becomes a vertex in V ′.
(2) Hyperedge Set E′: For each superedge e ∈ E, define a hyperedge e′ = e, consisting of

the supervertices in e.
(3) Bidirection Function τ ′: For each s ∈ V ′ and e′ ∈ E′, define:

τ ′(s, e′) = τ(s, e).

Verification:

• The bidirected hypergraph H ′ has vertices corresponding to the supervertices of H,
and hyperedges corresponding to the superedges.

• The local orientations in H ′ are preserved from H via τ ′.

Thus, any bidirected superhypergraph can be transformed into a bidirected hypergraph by
considering supervertices as vertices and superedges as hyperedges.

Theorem 4.36. Any bidirected superhypergraph can be transformed into an undirected super-
hypergraph by removing the bidirections.

Proof. Given a bidirected superhypergraph H = (V, S,E, τ), we construct an undirected su-
perhypergraph H ′ = (V, S,E) by:

• Retaining the same vertex set V , supervertex set S, and superedge set E.
• Omitting the bidirection function τ .

Verification:

• The connectivity among supervertices via superedges remains unchanged.
• The removal of τ eliminates all local orientations, resulting in an undirected structure.

The resulting H ′ is an undirected superhypergraph that retains the original connectivity of
H without bidirections. Therefore, any bidirected superhypergraph can be transformed into
an undirected superhypergraph.

We also aim to explore extensions of these concepts, such as fuzzy bidirected graphs and
neutrosophic bidirected graphs, by integrating elements from fuzzy and neutrosophic graph
theory. While these ideas are still in the conceptual stage, we propose the following definitions
as a foundation. Further research into the mathematical structures of these graphs is expected
to advance in the future.

Definition 4.37 (Bidirected Fuzzy Graph). A Bidirected Fuzzy Graph is a tuple BFG =

(G, τ, σ, µ), where:

• G = (V,E) is a simple undirected graph, where V is the set of vertices and E is the
set of edges.
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• τ : V × E → {−1, 0, 1} is the bidirection function, which assigns a direction to each
vertex-edge pair as follows:

τ(v, e) =


1 if e is directed towards v,

−1 if e is directed away from v,

0 if v is not incident to e.

• σ : V → [0, 1] is the vertex membership function, assigning a membership degree to
each vertex v ∈ V .

• µ : E → [0, 1] is the edge membership function, assigning a membership degree to each
edge e ∈ E.

The membership functions must satisfy the condition:

µ(e) ≤ min{σ(u), σ(v)}, for each edge e = (u, v) ∈ E.

Definition 4.38 (Bidirected Neutrosophic Graph). A Bidirected Neutrosophic Graph is a
tuple BNG = (G, τ, σ, µ), where:

• G = (V,E) is a simple undirected graph.
• τ : V × E → {−1, 0, 1} is the bidirection function as defined above.
• σ : V → [0, 1]3 assigns a triplet σ(v) = (σT (v), σI(v), σF (v)) to each vertex v ∈ V ,

representing the truth, indeterminacy, and falsity degrees, respectively.
• µ : E → [0, 1]3 assigns a triplet µ(e) = (µT (e), µI(e), µF (e)) to each edge e ∈ E.

The membership functions must satisfy the following conditions:

σT (v) + σI(v) + σF (v) ≤ 3, ∀v ∈ V,

µT (e) + µI(e) + µF (e) ≤ 3, ∀e ∈ E.

Definition 4.39 (Bidirected Plithogenic Graph). A Bidirected Plithogenic Graph is a tuple
BPG = (G, τ, PM,PN), where:

• G = (V,E) is a simple undirected graph.
• τ : V × E → {−1, 0, 1} is the bidirection function as defined above.
• PM = (M, l,Ml, adf, aCf) is the Plithogenic Vertex Set:

– M ⊆ V is the set of vertices.
– l is the vertex attribute.
– Ml is the range of possible vertex attribute values.
– adf :M ×Ml → [0, 1]s is the Degree of Appurtenance Function.
– aCf :Ml ×Ml → [0, 1]t is the Degree of Contradiction Function for vertices.

• PN = (N,m,Nm, bdf, bCf) is the Plithogenic Edge Set:
– N ⊆ E is the set of edges.
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– m is the edge attribute.
– Nm is the range of possible edge attribute values.
– bdf : N ×Nm→ [0, 1]s is the Degree of Appurtenance Function.
– bCf : Nm×Nm→ [0, 1]t is the Degree of Contradiction Function for edges.

The functions adf and bdf must satisfy the Appurtenance Constraint, and aCf and bCf must
satisfy the Contradiction Function Constraints as defined in Plithogenic Graphs.

Theorem 4.40. Bidirected Fuzzy Graphs, Bidirected Neutrosophic Graphs, and Bidirected
Plithogenic Graphs are generalizations of Bidirected Graphs.

Proof. Let B = (G, τ) be a Bidirected Graph, where:

• G = (V,E) is a simple undirected graph, with V as the set of vertices and E as the set
of edges.

• τ : V × E → {−1, 0, 1} is the bidirection function, assigning a local direction to each
vertex-edge pair.

A Bidirected Fuzzy Graph BFG = (G, τ, σ, µ) extends B by introducing:

• σ : V → [0, 1], the vertex membership function.
• µ : E → [0, 1], the edge membership function.

When σ(v) = 1 for all v ∈ V and µ(e) = 1 for all e ∈ E, the fuzzy graph reduces to the
classical bidirected graph B. Hence, BFG generalizes B.

A Bidirected Neutrosophic Graph BNG = (G, τ, σ, µ) extends B by introducing:

• σ : V → [0, 1]3, assigning truth, indeterminacy, and falsity degrees to each vertex.
• µ : E → [0, 1]3, assigning truth, indeterminacy, and falsity degrees to each edge.

When σ(v) = (1, 0, 0) and µ(e) = (1, 0, 0) for all v ∈ V and e ∈ E, the neutrosophic graph
reduces to B. Thus, BNG generalizes B.

A Bidirected Plithogenic Graph BPG = (G, τ, PM,PN) extends B by incorporating:

• Plithogenic Vertex Set PM = (M, l,Ml, adf, aCf), which assigns attributes and ap-
purtenance/contradiction values to vertices.

• Plithogenic Edge Set PN = (N,m,Nm, bdf, bCf), which assigns attributes and ap-
purtenance/contradiction values to edges.

When adf(x, a) = 1, bdf(e, b) = 1, and contradiction functions are zero for all x ∈ M, e ∈ N ,
and attributes a, b, the plithogenic graph reduces to B. Hence, BPG generalizes B.

Since each of these graph types reduces to the classical Bidirected Graph under specific
conditions, it follows that Bidirected Fuzzy Graphs, Bidirected Neutrosophic Graphs, and
Bidirected Plithogenic Graphs are generalizations of Bidirected Graphs.
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Theorem 4.41. A Bidirected Plithogenic Graph is a generalization of a Plithogenic Graph.

Proof. Let PG = (G,PM,PN) be a Plithogenic Graph. Now, let BPG = (G, τ, PM,PN) be
a Bidirected Plithogenic Graph, where:

• G = (V,E) and PM,PN are as defined in PG.
• τ : V ×E → {−1, 0, 1} is the bidirection function, which assigns a local orientation to

each vertex-edge pair.

To prove the generalization, consider the following:

• If τ(v, e) = 0 for all v ∈ V and e ∈ E, the bidirection function does not influence the
structure of the graph. In this case, BPG reduces to PG, as the bidirection function
becomes irrelevant.

• All other components of BPG, including the vertex and edge attribute structures (DAF
and DCF), remain identical to those in PG.

Since BPG retains all the characteristics of PG and extends it with the bidirection function
τ , it follows that every Plithogenic Graph PG can be represented as a Bidirected Plithogenic
Graph BPG under appropriate conditions (τ(v, e) = 0 for all v and e).

Thus, Bidirected Plithogenic Graphs generalize Plithogenic Graphs.

4.7. Other future tasks: More Graph Classes

Additionally, we aim to generalize above structures using Fuzzy and Neutrosophic principles
[169,170], examining their mathematical frameworks and applications, particularly in decision-
making contexts. Furthermore, we plan to extend the concept of the Soft Semihypergraph
by integrating ideas from Rough Graphs [41, 49, 96, 137, 196], Soft Expert Graphs [18, 58,
151, 194, 201], Hypersoft Graphs [73, 74, 148, 156–158], Superhypersoft Sets [83, 130, 179, 182],
TreeSoft Sets [50,139,180,181,183], Intersection Graphs [69,129], Vague Graphs [3,4,150,160],
Single-Valued Pentapartitioned Neutrosophic Graphs [48,72,98,99,147], Hesitant Fuzzy Graphs
[20, 84, 138, 142, 215], Infinite Graphs [53, 54, 56], Directed Graphs [24, 37, 103], Mixed Graphs
[64, 154, 155], and Superhypergraphs. This approach aims to facilitate a deeper investigation
and broader applicability of these advanced structures.

As an additional note, applications of the aforementioned graph classes extend beyond
decision-making, which is often explored in uncertain graphs, to promising advancements in
areas like superhypergraph neural networks, fuzzy hypergraph neural networks, neutrosophic
graph networks, and more. The authors hopes that research in these areas will gain momentum,
fostering further developments across these fields.
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