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Abstract. This paper is an attempt of proposing the 

processing approach of neutrosophic technique in image 

processing. As neutrosophic sets is a suitable tool to 

cope with imperfectly defined images, the properties, 

basic operations distance measure, entropy measures, of 

the neutrosophic sets method are presented here. İn this 

paper we, introduce the distances between neutrosophic 

sets: the Hamming distance, the normalized Hamming 

distance, the Euclidean distance and normalized 

Euclidean distance. We will extend the concepts of 

distances to the case of neutrosophic hesitancy degree. 

Entropy plays an important role in image processing. In 

our further considertions on entropy for neutrosophic 

sets the concept of cardinality of a neutrosophic set will 

also be useful. Possible applications to image processing 

are touched upon. 
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1. Introduction

Since the world is full of indeterminacy, the

neutrosophics found their place into contemporary 

research. Smarandache [9, 10] and Salama et al [ 4, 5, 6, 

7, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 

26, 45]. Entropy plays an important role in image 

processing. İn this paper we, introduce the distances 

between neutrosophic sets: the Hamming distance. İn 

this paper we, introduce the distances between 

neutrosophic sets: the Hamming distance, The 

normalized Hamming distance, the Euclidean distance 

and normalized Euclidean distance. We will extend the 

concepts of distances to the case of neutrosophic 

hesitancy degree. In our further considertions on entropy 

for neutrosophic sets the concept of cardinality of a 

neutrosophic set will also be useful. 

2. Terminologies
Neutrosophy has laid the foundation for a whole family 

of new mathematical theories generalizing both their 

classical and fuzzy counterparts [1, 2, 3, 11, 27, 28, 29, 

30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 

46] such as a neutrosophic set theory. We recollect some

relevant basic preliminaries, and in particular, the work 

of Smarandache in [9, 10] and Salama et al. [4, 5, 6, 7, 8, 

12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 

45]. Smarandache introduced the neutrosophic 

components T, I, F which represent the membership, 

indeterminacy, and non-membership values respectively, 

where   1,0 is nonstandard unit interval. Salama et al.

introduced the following:  

Let X be a non-empty fixed set. A neutrosophic set A  is 

an object having the form  )(),(),( xxxA AAA 

where    xx AA  , and  xA which represent the

degree of member ship function (namely  xA ), the 

degree of indeterminacy (namely  xA ), and the degree 

of non-member ship (namely  xA ) respectively of each

element Xx to the set A where 
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  1)(),(),(0 xxx AAA  and 

  3)()()(0 xxx AAA  .Smarandache 

introduced the following:  Let T, I,F be real standard or 

nonstandard subsets of   1,0 , with

Sup_T=t_sup, inf_T=t_inf 

Sup_I=i_sup, inf_I=i_inf 

Sup_F=f_sup, inf_F=f_inf 

n-sup=t_sup+i_sup+f_sup 

n-inf=t_inf+i_inf+f_inf, 

T, I, F are called neutrosophic components 

3. Distances Betoween Neutrosophic Sets
We will now extend the concepts of distances presented 

in [11] to the case of neutrosophic sets. 

Definition 3.1 

Let  XxxxxA AAA  )),(),(),((   and 

 XxxxxB BBB  )),(),(),((   in 

 nxxxxX ,...,,, 321   then 

i) The Hamming distance is equal to

   



n

i
iBiAiBiAiBiANs xxxxxxBAd

1

)()()()()()(, 

. 

ii) The Euclidean distance is equal to

        



n

i
iBiAiBiAiBiANs xxxxxxBAe

1

222
)()()()()()(, 

iii) The  normalized Hamming distance is equal to

   



n

i
iBiAiBiAiBiANs xxxxxx

n
BANH

1

)()()()()()(
2

1
, 

iv) The normalized Euclidean distance is equal to

        



n

i
iBiAiBiAiBiANs xxxxxx

n
BANE

1

222
)()()()()()(

2

1
, 

 Example 3.1 
      Let us consider for simplicity degenrated 

neutrosophic sets FGDBA ,,,, in  .aX   A full

description of each neutrosophic set i.e. 

 XaxxxA AAA  )),(),(),((  , may be exemplified 

by  XaA  ,0,0,1 ,  ,,0,1,0 XaB 

 ,,1,0,0 XaD   ,,0,5.0,5.0 XaG 

 ,,5.0.0,25.0,25.0 XaE  .

     Let us calculate four distances between the above 

neutrosophic sets using i), ii), iii) and iv) formulas , 

 (Fig.1) A geometrical interpretation of the neutrosophic 

considered in Example 5.1 . 

We obtain  
2

1
, DAeNs ,  

2

1
, DBeNs , 

 
2

1
, BAeNs ,  

2

1
, GAeNs ,   ,

2

1
, GBeNs

  ,
4

1
, GEeNs   ,

4

1
, GDeNs

  ,1, BANE Ns

  ,1, DANE Ns   ,1, DBNE Ns   ,
2

1
, GANENs

  ,
2

1
, GBNE Ns   ,

2

1
, GBNENs   ,

4

3
, GENENs a

nd   ,
2

3
, GDNENs

      From the above results the triangle ABD (Fig.1) 

has edges equal to 2   and 

      
2

1
,,,  BAeDBeDAe NsNsNs  and 

      DBNEDANEBANE NsNsNs ,,,

    ,1,2,2  GBNEGANE NsNs and  GENE Ns , is

equal to half of the height of triangle with all edges equal 

to 2 multiplied by,
2

1
 i.e.  

4

3
. 

 Example 3.2 
   Let us consider the following neutrosophic sets A 

and B in   .,,,, edcbaX  ,

 0,0,1,6.0,2.0,2.0,5.0,2.0,3.0,2.0,6.0,2.0,2.0,3.0,5.0A

 0,0,0,1.0,0,9.0,3.0,2.0,5.0,5.0,2.0,3.0,2.0,6.0,2.0B

.Then 

  ,3, BAd Ns   ,43.0, BANH Ns   49.1, BAeNs

and   .55.0, BANE Ns

 Remark 3.1 
     Clearly these distances satisfy the conditions of 

metric space. 

 Remark 3.2 
       It is easy to notice that for formulas i), ii), iii) and 

iv) the following is valid:

a)   nBAd Ns  ,0

b)   1,0  BANH Ns

c)    nBAeNs  ,0

d)   1,0  BANE Ns . 

This representation of a neutrosophic set (Fig. 2) will be 

a point of departure for neutrosophic crisp distances, and 

entropy of neutrosophic sets. 
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Fig. 2. A three-dimension representation of a 

neutrosophic set[9, 10]. 

4. Hesitancy Degree and Cardinality for
Neutrosophic Sets 
We will now extend the concepts of distances to the case 

of neutrosophic hesitancy degree. By taking into account 

the four parameters characterization of  neutrosophic  

sets  i.e.  XxxxxxA AAAA  ,)(),(),(),( 

Definition4.1 

Let  XxxxxA AAA  )),(),(),((   and 

 XxxxxB BBB  )),(),(),((  on 

 nxxxxX ,...,,, 321

For  a neutrosophic 

set  XxxxxA AAA  )),(),(),((  in X, we 

call   )()()(3 xxxx AAAA   , the neutrosophic 

index of x in A. İt is a hesitancy degree of x to A it is 

obvtous that   30  xA . 

Definition 4.2 

Let  XxxxxA AAA  )),(),(),((  and

 XxxxxB BBB  )),(),(),((  in

 nxxxxX ,...,,, 321  then 

i) The Hamming distance is equal to 

      



n

i
iBiAiBiAiBiAiBiANs xxxxxxxxBAd

1

)()()()()()(, 

. Taking into account that 

  )()()(3 iAiAiAiA xxxx  
 and 

  )()()(3 iBiBiBiB xxxx  

we have 
  )()()(3)()()(3)( iBiBiAiAiAiAiBiA xxxxxxxx  

)()()()()()( iAiBiAiBiAiB xxxxxx  

. 

ii) The Euclidean distance is equal to

             



n

i
iBiAiBiAiBiAiBiANs xxxxxxxxBAe

1

2222
)()()()()()(, 

we have 

 

     
2

iBiA xx 

  2))()()(()()( iBiBiBiAiAiA xxxxxx  

=   
22 )()())()(( iBiAiAiB xxxx 

2))()(( iBiA xx  

+  )()()()((2 iBiAiAiB xxxx  

))()(( iAiB xx  

iii) The  normalized Hamming distance is equal to

      



n

i
BiAiBiAiBiAiBiANs xxxxxxxx

n
BANH

1
1)()()()()()(

2

1
, 

iv) The  normalized Euclidean distance is equal to

             



n

i
iBiAiBiAiBiAiBiANs xxxxxxxx

n
BANE

1

2222
)()()()()()(

2

1
, 

5.2 Remark 
       It is easy to notice that for formulas i), ii), iii) and 

the following is valid: 

a)   nBAd Ns 2,0 

b)   2,0  BANH Ns

c)   nBAeNs 2,0 

d)   2,0  BANENs . 

5. from Images to Neutrosophic Sets, and
Entropy 
Given the definitions of the previous section several 

possible contributions are discussed. Neutrosophic sets 

may be used to solve some of the problems of data 

causes problems in the classification of pixels. Hesitancy 

in images originates from various factors, which in their 

majority are due to the inherent weaknesses of the 

acquisition and the imaging mechanisms. Limitations of 

the acquisition chain, such as the quantization noise, the 

suppression of the dynamic range, or the nonlinear 

behavior of the mapping system, affect our certainty on 

deciding whether a pixel is “gray” or “edgy” and 

therefore introduce a degree of hesitancy associated with 

the corresponding pixel. Therefore, hesitancy should 

encapsulate the aforementioned sources of indeterminacy 

that characterize digital images. Defining the 

membership component of the  A–NS that describes the 

brightness of pixels in an image, is a more 

straightforward task that can be carried out in a similar 

manner as in traditional fuzzy image processing systems. 

In the presented heuristic framework, we consider the 

membership value of a gray level g to be its normalized    
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intensity level; that 

is
x

A
L

g
g

1
)(


 where  1,...,0  Lg .It should be 

mentioned that any other method for 

calculating )(gA  can also be applied. 

In the image is A  being ),( yx  the coordinates of each 

pixel and the  ),( yxg  be the gray level of the pixel 

),( yx implies 1),(0  Lyxg . Each image pixel is 

associated with four numerical values: 

 A value representing the membership )(xA , 

obtained by means of membership function

associated with the set that represents the

expert’s knowledge of the image.

 A value representing the  indeterminacy )(xA ,

obtained by means of the

indeterminacy function associated with the set

that represents the ignorance

of the expert’s decision.

 A value representing the non-

membership )(xA , obtained by means of the 

non -membership function associated with the

set that represents the ignorance

of the expert’s decision.

 A value representing the hesitation

measure  xA , obtained by means of

the   )()()(3 xxxx AAAA  
.

 Let an image A of size NM  pixels having L gray 

levels ranging between 0 and L-1. The image in the 

neutrosophic domain is considered as an array of 

neutrosophic singletons. Here, each element denoted the 

degree of the membership, indeterminacy and non-

membership according to a pixel with respect to an 

image considered. An image A in neutrosophic set 

is   1,...,0,)(),(),(  LggggA ijijAijAijA 

where )(),(),( ijAijAijA ggg  denote the degrees of 

membership indeterminacy and non-membership of the 

thji ),(  pixel to the set A associated with an image 

property 
max

min)(
gg

gg
gA




 where ming and maxg are 

the minimum and the maximum gray levels of the image. 

Entropy plays an important role in image processing. In 

our further considertions on entropy for neutrosophic 

sets the concept of cardinality of a neutrosophic set will 

also be useful 

Definition 5.1 

 Let XxxxxA AAA  )),(),(),((   a 

neutrosophic set in X, first, we define two cardinalities 

of a neutrosophic set 

 The least (sure) cadinality of A  is equal to so is

called segma-count, and is called here the

    



11

)(min
i

iA
i

iA xxAcont 

 The bigesst cadinality of A , which is possible

due to  xA is equal to

    ))())(()(max
11

iA
i

iAiA
i

iA xxxxAcont    


and , clearly for cA we have 

    



11

)(min
i

iA
i

iA
c xxAcont  ,

    ))())(()(max
11

iA
i

iAiA
i

iA
c xxxxAcont    



. Then the cadinality of neutrosophic set is defined as 

the interval 

   )(max),(min)( AContAContACard

Definition 5.2   

An entropy on )(XNS  is a real-valued 

functional ]1,0[)(: XNSE ,  satisfying the following 

axiomatic requirements: 

E1: 0)( AE  iff A is a neutrosophic crisp set; that is 

0)( iA x  or 1)( iA x  for all .Xxi   

E2 : 1)( AE  iff )()()( iAiAiA xxx   for 

all .Xxi  that is cAA  . 

E3: )()( BEAE   if A  refine B ; i.e. BA  . 

E4:  )()( cAEAE 

Where a neutrosophic  entropy measure be define as 

 
 

 




n

i
c
ii

c
ii

AACount

AACount

n
AE

1 max

max1
)(  where 

)(XCardinaln     and iA  denotes the single-element 

A–NS corresponding to the ith element of the universe X 

and is described as 

 XxxxxA iiAiAiAi  )),(),(),((  . 

In other words, iA  is the ith “component” of A. 

Moreover,  )(max ACount   denotes the biggest 

cardinality of A and is given by : 

    ))())(()(max
11

iA
i

iAiA
i

iA xxxxAcont    


Conclusion 
Some of the properties of the neutrosophic sets, Distance 

measures, Hesitancy Degree, Cardinality and Entropy 

measures are briefed in this paper. These measures can 

be used effectively in image processing and pattern 

recognition. The future work will cover the application 

of these measures. 
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