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1. Introduction

1.1. Graph Grammar and Automata

Graph theory has been a subject of extensive research, leading to numerous applications
across various domains [19,39–41,78,122,179]. Among its diverse topics, Graph Automata and
Graph Grammar stand out as key areas of study within graph theory and its related concepts.
This paper addresses Automata and Graph Grammar.

Automata are mathematical models representing abstract machines that process input
sequences, transition between states, and generate outputs according to predefined rules
[18,33,82,110,131,132]. Extensive research has been conducted on automata, resulting in vari-
ous related concepts, including Finite Automata [35,124], Pushdown Automata [5,54,175,180],
Infinite Automata [123, 177, 178], Linear-Bounded Automata [116], and Weighted Automata
[42,43,113].

Graph Grammar is a formal system that defines transformation rules for modifying graph
structures, modeling dynamic changes by adding, deleting, or replacing vertices and edges. It
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has been extensively studied, with many related concepts explored [47,48,48,49,128]. Examples
include Triple Graph Grammars [101,103,134,135], Context-Free Graph Grammars [6,53,121,
181], NLC Graph Grammars [46,57,84,85], Apex Graph Grammars [51,52,100], and Attributed
Graph Grammars [75,129].

1.2. Uncertain concepts

Various concepts for handling uncertainty are continuously being researched to address the
unpredictability of the world [7–11, 13, 149, 151, 152, 160, 165, 168, 170–172]. Among them,
this paper focuses on fuzzy sets and neutrosophic sets. A fuzzy set assigns each element
a membership degree between 0 and 1, representing partial membership [37, 44, 45, 87, 176,
188, 191, 192]. A neutrosophic set assigns three values—truth, indeterminacy, and falsity—to
each element, with values ranging from 0 to 1 [14, 28, 50, 117, 149, 150, 172, 182]. A Turiyam
Neutrosophic set assigns four values: truth, indeterminacy, falsity, and liberal state, all within
the [0,1] range [69,145–147]. These set concepts play significant roles in modeling uncertainty
across various fields [61,63,64].

Concepts for handling uncertainty have been proposed not only in set theory but also in other
fields. For example, in graph theory, various concepts have been explored, such as fuzzy graphs
[115,127], neutrosophic graphs [12,15,29,60,80,83,90,130,159,169], vague graphs [27,126,133],
Turiyam Neutrosophic graphs [69–71], and Plithogenic graphs [58, 102, 109]. Based on these
points, research on Uncertain concepts is essential.

1.3. Our contribution

Based on the above, research on Graph Grammar and Automata is both significant and
valuable. There remains considerable scope for further exploration, especially regarding un-
certain concepts within Graph Grammar and Automata. Therefore, this paper will examine
the concepts of Graph Grammar and Automata in the contexts of Fuzzy, Neutrosophic, Vague,
Turiyam Neutrosophic, and Plithogenic frameworks.

This paper’s structure is briefly outlined as follows. Section 2 examines Uncertain Automata,
Section 3 explores Graph Grammar, and Section 4 discusses future perspectives.

2. Automata

Automata are mathematical models that represent computational machines or systems,
processing input sequences to change states and produce outputs [18, 33, 82, 110, 131, 132]. In
this section, we examine the concepts of Automata in the contexts of Fuzzy, Neutrosophic,
Vague, Turiyam Neutrosophic, and Plithogenic frameworks.
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2.1. Fuzzy general finite Automata

Fuzzy General Finite Automata are a fuzzy variant of General Finite Automata, widely
explored in various studies [2,21,34]. In the context of automata theory and its application to
fuzzy concepts, several other models have been developed, including Universal Fuzzy Automata
[107], Fuzzy Rough Automata [119,186], LB-valued General Fuzzy Automata [4], BL-General
Fuzzy Automata [1,3,139], Intuitionistic General Fuzzy Automata [142], Vector General Fuzzy
Automata [140, 141], Fuzzy Cellular Automata [16, 23, 73], Circular Fuzzy Cellular Automata
[24], and Fuzzy Tree Automata [106]. The definitions and theorems, including related concepts,
are provided below.

Definition 2.1. (cf. [82]) A Finite Automaton (FA) is defined as a 5-tuple:

A = (Q,Σ, δ, q0, F ),

where:

• Q is a finite set of states.
• Σ is a finite alphabet of input symbols.
• δ : Q × Σ → Q is the state transition function, mapping a state and input symbol to

a new state.
• q0 ∈ Q is the start state.
• F ⊆ Q is the set of accepting (or final) states.

An FA processes an input string w = a1a2 · · · an from Σ∗ as follows:

(1) Begin in the start state q0.
(2) For each symbol ai in w, compute the new state qi+1 = δ(qi, ai).
(3) If the computation ends in a state q ∈ F , the automaton accepts w; otherwise, it rejects

w.

Definition 2.2. [188,189] A fuzzy set τ in a non-empty universe Y is a mapping τ : Y → [0, 1].
A fuzzy relation on Y is a fuzzy subset δ in Y × Y . If τ is a fuzzy set in Y and δ is a fuzzy
relation on Y , then δ is called a fuzzy relation on τ if

δ(y, z) ≤ min{τ(y), τ(z)} for all y, z ∈ Y.
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Example 2.3. Let Y = {1, 2, 3, 4, 5} be a finite universe, and consider the following fuzzy set
τ defined on Y :

τ(y) =



0.8 if y = 1,

0.6 if y = 2,

0.4 if y = 3,

0.2 if y = 4,

0.0 if y = 5.

Now, consider a fuzzy relation δ defined on Y × Y :

δ(y, z) =



0.5 if (y, z) = (1, 2) or (2, 1),

0.4 if (y, z) = (2, 3) or (3, 2),

0.2 if (y, z) = (3, 4) or (4, 3),

0.0 otherwise.

We can verify that δ is a fuzzy relation on τ by checking the condition:

δ(y, z) ≤ min{τ(y), τ(z)}.

For instance:

• For (y, z) = (1, 2), δ(1, 2) = 0.5 and min{τ(1), τ(2)} = min{0.8, 0.6} = 0.6, so 0.5 ≤
0.6.
• For (y, z) = (2, 3), δ(2, 3) = 0.4 and min{τ(2), τ(3)} = min{0.6, 0.4} = 0.4, so 0.4 ≤
0.4.
• For (y, z) = (3, 4), δ(3, 4) = 0.2 and min{τ(3), τ(4)} = min{0.4, 0.2} = 0.2, so 0.2 ≤
0.2.

Thus, δ is a valid fuzzy relation on τ .

Definition 2.4. [2, 21, 34] A General Fuzzy Automaton (GFA) is defined as an eight-tuple
machine:

F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2),

where:

• Q is a finite set of states, Q = {q1, q2, . . . , qn}.
• Σ is a finite set of input symbols, Σ = {a1, a2, . . . , am}.
• R̃ is the set of fuzzy start states, R̃ ⊆ P̃ (Q), where P̃ (Q) is the fuzzy power set of Q.
• Z is a finite set of output symbols, Z = {b1, b2, . . . , bk}.
• δ̃ : (Q× [0, 1])×Σ×Q

F1(µ,δ)−−−−→ [0, 1] is the augmented fuzzy transition function, where
µ is the membership value of a predecessor state, and δ is the transition weight.
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• ω : Q→ Z is the non-fuzzy output function.
• F1 : [0, 1]× [0, 1]→ [0, 1] is the membership assignment function, with common forms

such as F1(µ, δ) = max(µ, δ), min(µ, δ), or µ+δ
2 .

• F2 : [0, 1]∗ → [0, 1] is the multi-membership resolution function, used to resolve simul-
taneous transitions to the same state.

Definition 2.5. The membership value of the state qj at time t+ 1 is given by:

µt+1(qj) = δ̃((qi, µt(qi)), ak, qj) = F1(µt(qi), δ(qi, ak, qj)),

where:

• µt(qi) is the membership value of state qi at time t.
• δ(qi, ak, qj) is the transition weight from qi to qj on input ak.

Definition 2.6. If there are multiple transitions to the active state qj , the membership values
vi from different transitions are combined using F2:

µt+1(qj) = F2 ({vi}ni=1) = F2 ({F1(µt(qi), δ(qi, ak, qj))}ni=1) ,

where:

• n is the number of simultaneous transitions to state qj at time t+ 1.

Proposition 2.7. A General Fuzzy Automaton (GFA) is a generalization of a Finite Automa-
ton (FA).

Proof. Let A = (Q,Σ, δ, q0, F ) be a finite automaton. Define a GFA F̃ as follows:

• Use the same set of states: QGFA = QFA.
• Use the same alphabet: ΣGFA = ΣFA.
• Set the fuzzy start state: R̃ = {q0 7→ 1, q 7→ 0 for all q 6= q0}.
• Define the fuzzy transition function:

δ̃((q, 1), a, q′) =

1 if δ(q, a) = q′,

0 otherwise.

• Use a trivial output function: ω(q) = b0 for some fixed b0 ∈ Z.
• Define F1(µ, δ) = δ, treating δ as a deterministic transition.
• Use F2 as the identity function to avoid multi-membership conflicts.

With these definitions:

(1) Any deterministic transition in A is encoded as a transition with membership degree
1 in F̃ .
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(2) The computation of F̃ simulates the state changes of A exactly, as F1 and F2 are
designed to preserve deterministic behavior.

Thus, any FA is a special case of a GFA where the fuzzy parameters are restricted to deter-
ministic values. Therefore, F̃ generalizes A.

2.2. Neutrosophic general finite automata

Neutrosophic General Finite Automata represent a Neutrosophic adaptation of General
Finite Automata, extensively studied in various works [99]. Within the scope of automata
theory and its application to Neutrosophic concepts, several models have emerged, including
Composite Neutrosophic Finite Automata [98], Reverse Neutrosophic Automata [97], Single-
Valued Neutrosophic Automata [94, 95, 112], and Interval Neutrosophic Automata [91–93, 96,
97]. The definitions and theorems, including related concepts, are provided below.

Definition 2.8. [149] Let X be a given set. A Neutrosophic Set A on X is characterized by
three membership functions:

TA : X → [0, 1], IA : X → [0, 1], FA : X → [0, 1],

where for each x ∈ X, the values TA(x), IA(x), and FA(x) represent the degree of truth,
indeterminacy, and falsity, respectively. These values satisfy the following condition:

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2.9. (cf. [94,95,99,112]) A General Neutrosophic Automaton (GNA) is defined as
an eight-tuple machine:

F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2),

where:

• Q, Σ, Z, and ω are defined as in the GFA.
• R̃ = {(q, µ0

1(q), µ
0
2(q), µ

0
3(q)) | q ∈ R} is the set of neutrosophic start states, where:

– µ0
1(q) is the initial truth-membership value of state q,

– µ0
2(q) is the initial indeterminacy-membership value of state q,

– µ0
3(q) is the initial falsity-membership value of state q.

• δ̃ : (Q× [0, 1]× [0, 1]× [0, 1])× Σ×Q
F1(µ,δ)−−−−→ [0, 1]× [0, 1]× [0, 1] is the neutrosophic

augmented transition function, where µ = (µ1, µ2, µ3) and δ = (δ1, δ2, δ3) represent the
truth, indeterminacy, and falsity components.
• F1 = (F∧

1 , F
∧∨
1 , F∨

1 ), where:
– F∧

1 (µ1, δ1) represents the truth-membership assignment,
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– F∧∨
1 (µ2, δ2) represents the indeterminacy-membership assignment,

– F∨
1 (µ3, δ3) represents the falsity-membership assignment.

• F2 = (F∧
2 , F

∧∨
2 , F∨

2 ) is the multi-membership resolution function, resolving truth, in-
determinacy, and falsity components.

Definition 2.10. The neutrosophic membership values of state qj at time t+1 are calculated
as:

µ1,t+1(qj) = δ̃1((qi, µ1,t(qi)), ak, qj) = F∧
1 (µ1,t(qi), δ1(qi, ak, qj)),

µ2,t+1(qj) = δ̃2((qi, µ2,t(qi)), ak, qj) = F∧∨
1 (µ2,t(qi), δ2(qi, ak, qj)),

µ3,t+1(qj) = δ̃3((qi, µ3,t(qi)), ak, qj) = F∨
1 (µ3,t(qi), δ3(qi, ak, qj)),

where:

• µ1,t(qi), µ2,t(qi), and µ3,t(qi) represent the truth, indeterminacy, and falsity member-
ship values of state qi at time t.

Definition 2.11. The simultaneous transitions to the same state qj are resolved by F2:

µ1,t+1(qj) = F∧
2

(
{F∧

1 (µ1,t(qi), δ1(qi, ak, qj))}ni=1

)
,

µ2,t+1(qj) = F∧∨
2

(
{F∧∨

1 (µ2,t(qi), δ2(qi, ak, qj))}ni=1

)
,

µ3,t+1(qj) = F∨
2

(
{F∨

1 (µ3,t(qi), δ3(qi, ak, qj))}ni=1

)
.

Proposition 2.12. A General Neutrosophic Automaton (GNA) is a generalization of a Gen-
eral Fuzzy Automaton (GFA).

Proof. Let F̃GFA = (Q,Σ, R̃, Z, δ̃, ω, F1, F2) be a General Fuzzy Automaton. Define a GNA
F̃GNA = (Q,Σ, R̃N, Z, δ̃N, ω, F

N
1 , FN

2 ) as follows:

• Use the same set of states, input symbols, and output symbols: QGNA = QGFA,
ΣGNA = ΣGFA, ZGNA = ZGFA.
• Define the neutrosophic start states:

R̃N = {(q, µ1, µ2, µ3) | q ∈ Q,µ1 = µ, µ2 = 0, µ3 = 1− µ for µ ∈ R̃}.

• Extend the fuzzy transition function δ̃ to the neutrosophic transition function δ̃N:

δ̃N((q, µ1, µ2, µ3), a, q
′) =

(δ̃(q, a, q′), 0, 1− δ̃(q, a, q′)) if δ̃(q, a, q′) 6= 0,

(0, 0, 1) otherwise.

• Define FN
1 to operate component-wise:

FN
1 ((µ1, µ2, µ3), (δ1, δ2, δ3)) = (F1(µ1, δ1), 0, 1− F1(µ1, δ1)).
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• Use FN
2 as a component-wise extension of F2:

FN
2 ({(µ1,i, µ2,i, µ3,i)}) = (F2({µ1,i}), 0, 1− F2({µ1,i})).

By construction, F̃GNA reproduces the behavior of F̃GFA when restricted to the fuzzy case,
where indeterminacy is always 0 and falsity is the complement of truth. Thus, GNA generalizes
GFA.

Proposition 2.13. A General Neutrosophic Automaton (GNA) is a generalization of a Finite
Automaton (FA).

Proof. Let A = (Q,Σ, δ, q0, F ) be a finite automaton. Define a GNA F̃GNA as follows:

• Use the same set of states and input symbols: QGNA = QFA, ΣGNA = ΣFA.
• Define the neutrosophic start state:

R̃N = {(q, 1, 0, 0) if q = q0, (q, 0, 0, 1) otherwise.}.

• Define the neutrosophic transition function:

δ̃N((q, µ1, µ2, µ3), a, q
′) =

(1, 0, 0) if δ(q, a) = q′,

(0, 0, 1) otherwise.

• Use trivial membership assignment and resolution functions:

FN
1 ((µ1, µ2, µ3), (δ1, δ2, δ3)) = (δ1, 0, 1− δ1),

FN
2 ({(µ1,i, µ2,i, µ3,i)}) = (1, 0, 0).

Under this construction:

(1) Each state in A maps to a neutrosophic state in F̃GNA, with truth membership 1 and
falsity membership 0 when active.

(2) The deterministic transitions of A are captured by the neutrosophic transition function
with truth membership 1.

Thus, F̃GNA reproduces the behavior of A as a special case where indeterminacy is always
0, truth is binary, and falsity is the complement of truth. Therefore, GNA generalizes FA.

2.3. Turiyam Neutrosophic general finite automata

Turiyam Neutrosophic general finite automata represent a Turiyam Neutrosophic adaptation
of General Finite Automata. The definitions and theorems, including related concepts, are
provided below.

Definition 2.14. [69, 145] For Turiyam Neutrosophic sets µ and ν on E:
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• Order Relation: µ ≤ ν if for all e ∈ E:

Tµ(e) ≤ Tν(e), Iµ(e) ≥ Iν(e), Fµ(e) ≥ Fν(e), Lµ(e) ≥ Lν(e).

• Maximum (Join):

(µ ∨ ν)(e) = (max{Tµ(e), Tν(e)}, min{Iµ(e), Iν(e)}, min{Fµ(e), Fν(e)}, min{Lµ(e), Lν(e)}) .

• Minimum (Meet):

(µ ∧ ν)(e) = (min{Tµ(e), Tν(e)}, max{Iµ(e), Iν(e)}, max{Fµ(e), Fν(e)}, max{Lµ(e), Lν(e)}) .

• Support of µ:

supp(µ) = {e ∈ E : Tµ(e) > 0}.

• Minimal Truth-Membership Value:

mT (µ) = min{Tµ(e) : e ∈ supp(µ)}.

Definition 2.15. A Turiyam Neutrosophic General Finite Automaton (TGFA) is an eight-
tuple machine defined as:

F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2),

where:

(1) States:
• Q is a finite set of states:

Q = {q1, q2, . . . , qn}.

(2) Input Symbols:
• Σ is a finite set of input symbols:

Σ = {a1, a2, . . . , am}.

(3) Turiyam Neutrosophic Start States:
• R̃ is the set of Turiyam Neutrosophic start states:

R̃ =
{(

q, µ0
1(q), µ

0
2(q), µ

0
3(q), µ

0
4(q)

) ∣∣ q ∈ R
}
,

where:
– R ⊆ Q is the set of initial states.

Takaaki Fujita and Florentin Smarandache, Uncertain Automata and Uncertain Graph
Grammar

Angel
Texto tecleado
Neutrosophic Sets and Systems, {Special Issue: Advances in SuperHyperStructures                                                          136
and Applied Neutrosophic Theories)}, Vol. 74, 2024



– µ0
1(q) is the initial truth-membership value of state q.

– µ0
2(q) is the initial indeterminacy-membership value of state q.

– µ0
3(q) is the initial falsity-membership value of state q.

– µ0
4(q) is the initial liberal state-membership value of state q.

(4) Output Symbols:
• Z is a finite set of output symbols:

Z = {b1, b2, . . . , bk}.

(5) Turiyam Neutrosophic Transition Function:
• δ̃ : (Q×[0, 1]4)×Σ×Q→ [0, 1]4 is the augmented Turiyam Neutrosophic transition

function, defined by:

δ̃ ((qi, µt(qi)), ak, qj) =
(
δ̃1, δ̃2, δ̃3, δ̃4

)
,

where:
– µt(qi) = (µ1,t(qi), µ2,t(qi), µ3,t(qi), µ4,t(qi)) represents the Turiyam Neutro-

sophic membership values of state qi at time t.
– δ(qi, ak, qj) = (δ1(qi, ak, qj), δ2(qi, ak, qj), δ3(qi, ak, qj), δ4(qi, ak, qj)) are the

Turiyam Neutrosophic transition weights.
– The components are computed using the membership assignment functions:

δ̃1 = F∧
1 (µ1,t(qi), δ1(qi, ak, qj)) ,

δ̃2 = F∧∨
1 (µ2,t(qi), δ2(qi, ak, qj)) ,

δ̃3 = F∨
1 (µ3,t(qi), δ3(qi, ak, qj)) ,

δ̃4 = FL
1 (µ4,t(qi), δ4(qi, ak, qj)) .

(6) Output Function:
• ω : (Q× [0, 1]4)→ Z is the non-fuzzy output function.

(7) Membership Assignment Functions:
• F1 =

(
F∧
1 , F

∧∨
1 , F∨

1 , F
L
1

)
, where:

– F∧
1 : [0, 1]× [0, 1]→ [0, 1] assigns the truth-membership value.

– F∧∨
1 : [0, 1]× [0, 1]→ [0, 1] assigns the indeterminacy-membership value.

– F∨
1 : [0, 1]× [0, 1]→ [0, 1] assigns the falsity-membership value.

– FL
1 : [0, 1]× [0, 1]→ [0, 1] assigns the liberal state-membership value.

(8) Multi-Membership Resolution Functions:
• F2 =

(
F∧
2 , F

∧∨
2 , F∨

2 , F
L
2

)
, where:

– Each F2 component resolves multiple membership values when there are
simultaneous transitions to the same state.
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Definition 2.16. The Turiyam Neutrosophic membership values of state qj at time t+ 1 are
calculated as:

µ1,t+1(qj) = δ̃1 ((qi, µ1,t(qi)), ak, qj) = F∧
1 (µ1,t(qi), δ1(qi, ak, qj)) ,

µ2,t+1(qj) = δ̃2 ((qi, µ2,t(qi)), ak, qj) = F∧∨
1 (µ2,t(qi), δ2(qi, ak, qj)) ,

µ3,t+1(qj) = δ̃3 ((qi, µ3,t(qi)), ak, qj) = F∨
1 (µ3,t(qi), δ3(qi, ak, qj)) ,

µ4,t+1(qj) = δ̃4 ((qi, µ4,t(qi)), ak, qj) = FL
1 (µ4,t(qi), δ4(qi, ak, qj)) .

Definition 2.17. If there are multiple transitions to the same state qj , the membership values
are resolved using F2:

µ1,t+1(qj) = F∧
2

({
F∧
1 (µ1,t(qi), δ1(qi, ak, qj))

}n

i=1

)
,

µ2,t+1(qj) = F∧∨
2

({
F∧∨
1 (µ2,t(qi), δ2(qi, ak, qj))

}n

i=1

)
,

µ3,t+1(qj) = F∨
2

({
F∨
1 (µ3,t(qi), δ3(qi, ak, qj))

}n

i=1

)
,

µ4,t+1(qj) = FL
2

({
FL
1 (µ4,t(qi), δ4(qi, ak, qj))

}n

i=1

)
,

where:

• n is the number of simultaneous transitions to state qj at time t+ 1.
• qi ∈ Q are the predecessor states.

Theorem 2.18. A Turiyam Neutrosophic General Finite Automaton (TGFA) can be trans-
formed into a Fuzzy General Finite Automaton (GFA) or a Neutrosophic General Finite
Automaton (GNA) by appropriately redefining its transition and membership functions.

Proof. Let F̃ T be a Turiyam Neutrosophic General Finite Automaton defined as:

F̃ T = (Q,Σ, R̃, Z, δ̃T , ω, F T
1 , F T

2 ),

where:

• δ̃T : (Q× [0, 1]4)×Σ×Q→ [0, 1]4 is the augmented Turiyam Neutrosophic transition
function.
• F T

1 and F T
2 are the membership assignment and resolution functions, respectively, with

four components: truth, indeterminacy, falsity, and liberal state.

We consider Transformation to a Fuzzy General Finite Automaton. A Fuzzy General Finite
Automaton F̃F is defined as:

F̃F = (Q,Σ, R̃F , Z, δ̃F , ω, FF
1 , FF

2 ),

where:
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• The fuzzy start states R̃F are obtained from R̃ in the TGFA by retaining only the
truth-membership component:

R̃F = {(q, µ0
1(q)) | (q, µ0

1(q), µ
0
2(q), µ

0
3(q), µ

0
4(q)) ∈ R̃}.

• The fuzzy transition function δ̃F is derived from the truth component of δ̃T :

δ̃F ((qi, µ1,t(qi)), ak, qj) = δ̃1 ((qi, µ1,t(qi)), ak, qj) .

• The membership assignment function FF
1 corresponds to the truth-assignment compo-

nent F∧
1 of the TGFA:

FF
1 (µ, δ) = F∧

1 (µ, δ).

• The multi-membership resolution function FF
2 is defined as:

FF
2 ({vi}) = F∧

2 ({vi}) ,

where vi are the truth-membership values from simultaneous transitions.

Thus, the TGFA F̃ T reduces to a GFA F̃F , retaining only the truth-membership component
and the corresponding fuzzy transition and resolution functions.

Next, we consider Transformation to a Neutrosophic General Finite Automaton. A Neutro-
sophic General Finite Automaton F̃N is defined as:

F̃N = (Q,Σ, R̃N , Z, δ̃N , ω, FN
1 , FN

2 ),

where:

• The neutrosophic start states R̃N are obtained from R̃ in the TGFA by retaining the
truth, indeterminacy, and falsity components:

R̃N = {(q, µ0
1(q), µ

0
2(q), µ

0
3(q)) | (q, µ0

1(q), µ
0
2(q), µ

0
3(q), µ

0
4(q)) ∈ R̃}.

• The neutrosophic transition function δ̃N is derived from the first three components of
δ̃T :

δ̃N ((qi, µt(qi)), ak, qj) =
(
δ̃1, δ̃2, δ̃3

)
.

• The membership assignment function FN
1 is defined by the truth, indeterminacy, and

falsity components of the TGFA:

FN
1 =

(
F∧
1 , F

∧∨
1 , F∨

1

)
.

• The multi-membership resolution function FN
2 is defined as:

FN
2 =

(
F∧
2 , F

∧∨
2 , F∨

2

)
.
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Thus, the TGFA F̃ T reduces to a GNA F̃N , retaining the truth, indeterminacy, and falsity
components, along with their corresponding neutrosophic transition and resolution functions.

By appropriately redefining the start states, transition functions, membership assignment,
and resolution functions, a Turiyam Neutrosophic General Finite Automaton (TGFA) can be
transformed into either a Fuzzy General Finite Automaton (GFA) or a Neutrosophic General
Finite Automaton (GNA).

2.4. Vague General Finite Automata

Vague general finite automata represent a Vague adaptation of General Finite Automata.
The definitions and theorems, including related concepts, are provided below.

Definition 2.19. (cf. [30, 32, 56, 72, 111, 125, 184]) A Vague Set (VS) A on a set X is defined
as:

A = (tA, fA),

where:

• tA : X → [0, 1] is the truth-membership function.
• fA : X → [0, 1] is the falsity-membership function.

For any element x ∈ X, the following condition holds:

0 ≤ tA(x) + fA(x) ≤ 1.

Definition 2.20. A Vague General Finite Automaton (VGFA) is defined as an eight-tuple:

F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2),

where:

(1) States:
• Q is a finite set of states:

Q = {q1, q2, . . . , qn}.

(2) Input Symbols:
• Σ is a finite set of input symbols:

Σ = {a1, a2, . . . , am}.

(3) Vague Start States:
• R̃ is the set of vague start states:

R̃ =
{(

q, µ0
t (q), µ

0
f (q)

) ∣∣ q ∈ R
}
,

where:
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– R ⊆ Q is the set of initial states.
– µ0

t (q) is the initial truth-membership value of state q.
– µ0

f (q) is the initial falsity-membership value of state q.
– For all q ∈ R:

0 ≤ µ0
t (q) + µ0

f (q) ≤ 1.

(4) Output Symbols:
• Z is a finite set of output symbols:

Z = {b1, b2, . . . , bk}.

(5) Vague Transition Function:
• δ̃ : (Q × [0, 1]2) × Σ × Q → [0, 1]2 is the augmented vague transition function,

defined by:

δ̃ ((qi, µt(qi), µf (qi)), ak, qj) =
(
δ̃t, δ̃f

)
,

where:
– µt(qi) and µf (qi) are the truth and falsity membership values of state qi.
– δ(qi, ak, qj) = (δt(qi, ak, qj), δf (qi, ak, qj)) are the transition weights.
– The components are computed using the membership assignment function

F1:
δ̃t = F∧

1 (µt(qi), δt(qi, ak, qj)) ,

δ̃f = F∨
1 (µf (qi), δf (qi, ak, qj)) .

(6) Output Function:
• ω : Q→ Z is the output function.

(7) Membership Assignment Functions:
• F1 = (F∧

1 , F
∨
1 ), where:

– F∧
1 : [0, 1]× [0, 1]→ [0, 1] assigns the truth-membership value.

– F∨
1 : [0, 1]× [0, 1]→ [0, 1] assigns the falsity-membership value.

– Common forms for F∧
1 and F∨

1 include:

F∧
1 (µt, δt) = min(µt, δt), F∨

1 (µf , δf ) = max(µf , δf ).

(8) Multi-Membership Resolution Function:
• F2 = (F∧

2 , F
∨
2 ), where:

– F∧
2 : [0, 1]n → [0, 1] resolves multiple truth-membership values.

– F∨
2 : [0, 1]n → [0, 1] resolves multiple falsity-membership values.

– Common forms include:

F∧
2

(
{µi

t}ni=1

)
= max

i
µi
t, F∨

2

(
{µi

f}ni=1

)
= min

i
µi
f .
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The membership values of the state qj at time t+ 1 are calculated as:

µt
t+1(qj) = F∧

2

({
F∧
1

(
µt
t(qi), δt(qi, ak, qj)

)}n

i=1

)
,

µf
t+1(qj) = F∨

2

({
F∨
1

(
µf
t (qi), δf (qi, ak, qj)

)}n

i=1

)
,

where:

• n is the number of transitions leading to qj at time t+ 1.
• µt

t(qi) and µf
t (qi) are the truth and falsity membership values of state qi at time t.

• δt(qi, ak, qj) and δf (qi, ak, qj) are the transition truth and falsity weights.

Theorem 2.21. A Neutrosophic General Finite Automaton (GNA) can be transformed into
a Vague General Finite Automaton (VGFA) by appropriately redefining its transition and
membership functions.

Proof. Let F̃N be a Neutrosophic General Finite Automaton defined as:

F̃N = (Q,Σ, R̃, Z, δ̃N , ω, FN
1 , FN

2 ),

where:

• δ̃N : (Q × [0, 1]3) × Σ × Q → [0, 1]3 is the neutrosophic transition function, which
includes truth, indeterminacy, and falsity components.
• FN

1 and FN
2 are the membership assignment and resolution functions, respectively,

with three components: truth, indeterminacy, and falsity.

A Vague General Finite Automaton F̃ V is defined as:

F̃ V = (Q,Σ, R̃V , Z, δ̃V , ω, F V
1 , F V

2 ),

where:

• Vague Start States: The vague start states R̃V are obtained from the neutrosophic
start states R̃N by combining the truth and falsity components, while ignoring the
indeterminacy component:

R̃V = {(q, µ0
t (q), µ

0
f (q)) | (q, µ0

1(q), µ
0
2(q), µ

0
3(q)) ∈ R̃N},

where:

µ0
t (q) = µ0

1(q),

µ0
f (q) = µ0

3(q).

• Vague Transition Function: The vague transition function δ̃V is derived from the
neutrosophic transition function δ̃N by retaining only the truth and falsity components:

δ̃V ((qi, µt(qi), µf (qi)), ak, qj) =
(
δ̃t, δ̃f

)
,
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where:

δ̃t = δ̃1 ((qi, µt(qi)), ak, qj) ,

δ̃f = δ̃3 ((qi, µf (qi)), ak, qj) .

• Membership Assignment Function: The vague membership assignment function F V
1 is

defined by the truth and falsity components of the neutrosophic membership assign-
ment function FN

1 :

F V
1 =

(
F∧
1 , F

∨
1

)
,

where:

F∧
1 (µt, δt) = F∧

1 (µ1, δ1),

F∨
1 (µf , δf ) = F∨

1 (µ3, δ3).

• Multi-Membership Resolution Function: The vague multi-membership resolution func-
tion F V

2 is derived from the neutrosophic resolution function FN
2 , retaining only the

truth and falsity components:

F V
2 =

(
F∧
2 , F

∨
2

)
,

where:

F∧
2

(
{vit}

)
= F∧

2

(
{vi1}

)
,

F∨
2

(
{vif}

)
= F∨

2

(
{vi3}

)
.

By appropriately redefining the start states, transition functions, membership assignment,
and resolution functions, a Neutrosophic General Finite Automaton (GNA) can be transformed
into a Vague General Finite Automaton (VGFA).

Theorem 2.22. A Vague General Finite Automaton (VGFA) is a generalization of a General
Fuzzy Automaton (GFA).

Proof. Let F̃GFA = (Q,Σ, R̃, Z, δ̃, ω, F1, F2) be a General Fuzzy Automaton. Define a VGFA
F̃VGFA = (Q,Σ, R̃V, Z, δ̃V, ω, F

V
1 , FV

2 ) as follows:

• Use the same set of states, input symbols, and output symbols:

QVGFA = QGFA, ΣVGFA = ΣGFA, ZVGFA = ZGFA.

• Define the vague start states:

R̃V =
{
(q, µ, 1− µ) | µ ∈ R̃

}
.
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• Extend the fuzzy transition function δ̃ to the vague transition function δ̃V:

δ̃V((q, µt, µf ), a, q
′) =

(δ̃(q, a, q′), 1− δ̃(q, a, q′)) if δ̃(q, a, q′) 6= 0,

(0, 1) otherwise.

• Define FV
1 to operate on truth and falsity components:

FV
1 ((µt, µf ), (δt, δf )) = (min(µt, δt),max(µf , δf )) .

• Use FV
2 to resolve multi-membership values:

FV
2 ({(µt,i, µf,i)}) =

(
max

i
µt,i,min

i
µf,i

)
.

By construction, F̃VGFA reproduces the behavior of F̃GFA when the falsity membership is
the complement of truth membership. Thus, VGFA generalizes GFA.

Theorem 2.23. A Vague General Finite Automaton (VGFA) is a generalization of a Finite
Automaton (FA).

Proof. Let A = (Q,Σ, δ, q0, F ) be a finite automaton. Define a VGFA F̃VGFA =

(Q,Σ, R̃V, Z, δ̃V, ω, F
V
1 , FV

2 ) as follows:

• Use the same set of states and input symbols:

QVGFA = QFA, ΣVGFA = ΣFA.

• Define the vague start states:

R̃V = {(q, 1, 0) if q = q0, (q, 0, 1) otherwise.}.

• Define the vague transition function:

δ̃V((q, µt, µf ), a, q
′) =

(1, 0) if δ(q, a) = q′,

(0, 1) otherwise.

• Use trivial membership assignment functions:

FV
1 ((µt, µf ), (δt, δf )) = (δt, δf ).

• Define FV
2 as follows:

FV
2 ({(µt,i, µf,i)}) =

(
max

i
µt,i,min

i
µf,i

)
.

Under this construction:

(1) Each state in A maps to a vague state in F̃VGFA, with truth membership 1 and falsity
membership 0 when active.

(2) The deterministic transitions of A are captured by the vague transition function with
truth membership 1.
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Thus, F̃VGFA reproduces the behavior of A as a special case where truth and falsity mem-
bership values are binary. Therefore, VGFA generalizes FA.

2.5. Plithogenic General Finite Automaton

Plithogenic General Finite Automaton represent a Plithogenic adaptation of General Finite
Automata. The definitions and theorems, including related concepts, are provided below.

Definition 2.24. [156, 157] Let S be a universal set, and P ⊆ S. A Plithogenic Set PS is
defined as:

PS = (P, v, Pv, pdf, pCF )

where:

• v is an attribute.
• Pv is the range of possible values for the attribute v.
• pdf : P × Pv → [0, 1]s is the Degree of Appurtenance Function (DAF).
• pCF : Pv × Pv → [0, 1]t is the Degree of Contradiction Function (DCF).

These functions satisfy the following axioms for all a, b ∈ Pv:

(1) Reflexivity of Contradiction Function:

pCF (a, a) = 0

(2) Symmetry of Contradiction Function:

pCF (a, b) = pCF (b, a)

Example 2.25. (cf. [61]) Here, s, t ∈ {1, 2, 3, 4}.

• When s = t = 1, PS is called a Plithogenic Fuzzy Set and is denoted by PFS.
• When s = 2, t = 1, PS is called a Plithogenic Intuitionistic Fuzzy Set and is denoted

by PIFS.
• When s = 3, t = 1, PS is called a Plithogenic Neutrosophic Set and is denoted by
PNS.
• When s = 4, t = 1, PS is called a Plithogenic Turiyam Neutrosophic Set and is denoted

by PTuS.

Definition 2.26. A Plithogenic General Finite Automaton (PGFA) is defined as an eight-
tuple:

F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2),

where:
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(1) States:
• Q is a finite set of states:

Q = {q1, q2, . . . , qn}.

(2) Input Symbols:
• Σ is a finite set of input symbols:

Σ = {a1, a2, . . . , am}.

(3) Plithogenic Start States:
• R̃ is the set of plithogenic start states:

R̃ = {(q, vq,DAFR(q, vq)) | q ∈ R} ,

where:
– R ⊆ Q is the set of initial states.
– vq ∈ V is the attribute value of state q.
– DAFR(q, vq) ∈ [0, 1]s is the Degree of Appurtenance Function (DAF) for

state q.
(4) Output Symbols:

• Z is a finite set of output symbols:

Z = {b1, b2, . . . , bk}.

(5) Plithogenic Transition Function:
• δ̃ : (Q × V × [0, 1]s) × Σ × Q → [0, 1]s is the augmented plithogenic transition

function, defined by:

δ̃ ((qi, vqi , µ(qi)), ak, qj) = DAFδ

(
(qi, qj), (vqi , vqj ), ak

)
,

where:
– µ(qi) is the Degree of Appurtenance of state qi.
– vqi , vqj ∈ V are the attribute values of states qi and qj .
– DAFδ is determined using the Degree of Contradiction Function (DCF) and

the DAF of the states.
(6) Output Function:

• ω : Q→ Z is the output function.
(7) Membership Assignment Function:

• F1 : [0, 1]s × [0, 1]s → [0, 1]s assigns the degree of appurtenance for transitions,
considering the DAF and DCF.

(8) Multi-Membership Resolution Function:
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• F2 : ([0, 1]s)n → [0, 1]s resolves multiple degrees of appurtenance when there are
simultaneous transitions to the same state.

The degree of appurtenance of state qj at time t+ 1 is calculated as:

µt+1(qj) = F2

({
F1

(
µt(qi),DAFδ

(
(qi, qj), (vqi , vqj ), ak

))}n

i=1

)
,

where:

• n is the number of transitions leading to qj at time t+ 1.
• µt(qi) is the degree of appurtenance of state qi at time t.
• DAFδ

(
(qi, qj), (vqi , vqj ), ak

)
incorporates the attribute values and degrees of contradic-

tion.

Theorem 2.27. A Plithogenic General Finite Automaton (PGFA) can be transformed into a
Neutrosophic General Finite Automaton (GNA), a Vague General Finite Automaton (VGFA),
a Fuzzy General Finite Automaton (GFA), and a Turiyam Neutrosophic General Finite Au-
tomaton (TGFA) by appropriately selecting the parameters s and t in the Plithogenic set and
redefining its transition and membership functions accordingly.

Proof. A Plithogenic General Finite Automaton is defined using Plithogenic sets, which gen-
eralize various types of fuzzy sets by introducing an attribute with possible values and corre-
sponding degrees of appurtenance and contradiction. By specializing the parameters s and t

in the Plithogenic set, we can obtain different types of automata.
A Plithogenic Set PS is defined as:

PS = (P, v, Pv,DAF,DCF),

.
By choosing specific values for s and t, the Plithogenic set reduces to various fuzzy sets:

• s = t = 1: Plithogenic Fuzzy Set (PFS).
• s = 2, t = 1: Plithogenic Intuitionistic Fuzzy Set (PIFS).
• s = 3, t = 1: Plithogenic Neutrosophic Set (PNS).
• s = 4, t = 1: Plithogenic Turiyam Neutrosophic Set (PTuS).
• s = 2, t = 1 with additional constraints: Vague Set.

A Plithogenic General Finite Automaton (PGFA) is defined as an eight-tuple:

F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2),

with states, input symbols, plithogenic start states, output symbols, plithogenic transition
function, output function, membership assignment function, and multi-membership resolution
function.
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We will show that by selecting appropriate values of s and t and redefining functions, a
PGFA can be transformed into each of the other automata.

We consider Transformation to a Fuzzy General Finite Automaton (GFA). Set s = t = 1.
The Plithogenic set becomes a Plithogenic Fuzzy Set (PFS). The Degree of Appurtenance
Function (DAF) and Degree of Contradiction Function (DCF) reduce to functions with a
single value.

• States: Remain the same.
• Start States: The DAF now assigns a single membership degree µ(q) ∈ [0, 1] to each

state q.
• Transition Function: The DAF for transitions assigns a single membership degree to

each transition, similar to the transition weights in a GFA.
• Membership Assignment Function F1: Becomes F1 : [0, 1]× [0, 1]→ [0, 1].
• Multi-Membership Resolution Function F2: Becomes F2 : [0, 1]

n → [0, 1].

Thus, the PGFA reduces to a GFA, with the fuzzy membership degrees being the degrees
of appurtenance from the Plithogenic set.

We consider Transformation to a Neutrosophic General Finite Automaton (GNA). Set s = 3,
t = 1. The Plithogenic set becomes a Plithogenic Neutrosophic Set (PNS).

• States: Remain the same.
• Start States: The DAF assigns a vector (µT (q), µI(q), µF (q)) ∈ [0, 1]3 to each state q,

representing truth, indeterminacy, and falsity membership degrees.
• Transition Function: The DAF for transitions assigns a vector of degrees to each

transition.
• Membership Assignment Function F1: Becomes F1 : [0, 1]

3 × [0, 1]3 → [0, 1]3, handling
the neutrosophic components.
• Multi-Membership Resolution Function F2: Becomes F2 : ([0, 1]

3)n → [0, 1]3.

Thus, the PGFA reduces to a GNA, with the neutrosophic membership degrees derived
from the degrees of appurtenance in the Plithogenic set.

We consider Transformation to a Vague General Finite Automaton (VGFA). Set s = 2,
t = 1, and ensure that for each element x:

0 ≤ µT (x) + µF (x) ≤ 1.

This corresponds to a Vague Set.

• States: Remain the same.
• Start States: The DAF assigns a pair (µT (q), µF (q)) ∈ [0, 1]2 to each state q, repre-

senting truth and falsity membership degrees.
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• Transition Function: The DAF for transitions assigns pairs of degrees to each transi-
tion.
• Membership Assignment Function F1: Becomes F1 : [0, 1]

2 × [0, 1]2 → [0, 1]2.
• Multi-Membership Resolution Function F2: Becomes F2 : ([0, 1]

2)n → [0, 1]2.

Thus, the PGFA reduces to a VGFA, with the vague membership degrees obtained from
the degrees of appurtenance in the Plithogenic set.

We consider Transformation to a Turiyam Neutrosophic General Finite Automaton (TGFA).
Set s = 4, t = 1. The Plithogenic set becomes a Plithogenic Turiyam Neutrosophic Set (PTuS).

• States: Remain the same.
• Start States: The DAF assigns a vector (µT (q), µI(q), µF (q), µL(q)) ∈ [0, 1]4 to each

state q, representing truth, indeterminacy, falsity, and liberal membership degrees.
• Transition Function: The DAF for transitions assigns a vector of degrees to each

transition.
• Membership Assignment Function F1: Becomes F1 : [0, 1]

4 × [0, 1]4 → [0, 1]4.
• Multi-Membership Resolution Function F2: Becomes F2 : ([0, 1]

4)n → [0, 1]4.

Thus, the PGFA reduces to a TGFA, with the Turiyam Neutrosophic membership degrees
derived from the degrees of appurtenance in the Plithogenic set.

By selecting appropriate values for s and t in the Plithogenic set and redefining the functions
accordingly, a Plithogenic General Finite Automaton can be transformed into a Neutrosophic,
Vague, Fuzzy, or Turiyam Neutrosophic General Finite Automaton.

3. Graph Grammar

Graph Grammar is a formal framework that defines rules for graph transformations, en-
abling the representation of dynamic changes in graph structures.We explore the concepts of
Graph Grammar within the contexts of Fuzzy, Neutrosophic, Vague, Turiyam, and Plithogenic
frameworks. First, we present the fundamental definitions of Graph Grammar. The definitions
are provided below.

Definition 3.1 (Graph). [41] A graph G is a mathematical structure that represents rela-
tionships between objects. It consists of a set of vertices V (G) and a set of edges E(G), where
each edge connects a pair of vertices. Formally, a graph is represented as G = (V,E), where
V is the set of vertices and E is the set of edges.

Definition 3.2 (Degree). [41] Let G = (V,E) be a graph. The degree of a vertex v ∈ V ,
denoted deg(v), is defined as the number of edges connected to v. For undirected graphs, the
degree is given by:

deg(v) = |{e ∈ E | v ∈ e}|.
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For directed graphs, the in-degree deg−(v) refers to the number of edges directed towards v,
while the out-degree deg+(v) represents the number of edges directed away from v.

Definition 3.3. (cf. [137]) An empty graph G = (V,E) is a graph with a non-empty set of
vertices V and an empty set of edges E. Formally:

G = (V, ∅),

where V 6= ∅ and E = ∅.

Definition 3.4. A null graph G = (V,E) is a graph with an empty vertex set V and conse-
quently an empty edge set E. Formally:

G = (∅, ∅).

Definition 3.5 (Graph Grammar). (cf. [48, 48, 128]) Graph Grammar is a formal framework
for representing dynamic transformations of graph structures. It defines a set of rules for graph
rewriting and consists of the following components:

(1) Vertex and Edge Labels:
• Vertex label set: ΣV = NV ∪ TV , where:

– NV : Non-terminal labels.
– TV : Terminal labels.

• Edge label set: ΣE = NE ∪ TE , where:
– NE : Non-terminal labels.
– TE : Terminal labels.

(2) Start Graph: The start graph GS serves as the initial graph for transformations.
(3) Production Rules: A finite set of production rules P defines the transformations, where

each rule p ∈ P is represented as:

p : GL
l←− H

r−→ GR,

where:
• GL: Left-hand side graph, representing the pattern to match.
• GR: Right-hand side graph, representing the replacement graph.
• H: Interface graph, representing the common subgraph used for gluing GL and
GR.

(4) Isomorphic Mappings: The interface graph H is associated with the following label-
preserving isomorphisms:

φL : H ′ → φL(H) ⊆ GL, φR : H ′ → φR(H) ⊆ GR,

where:
• φL: Maps H to GL.
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• φR: Maps H to GR.

Remark 3.6. A production rule p searches for a subgraph in G isomorphic to GL. Upon
matching, it replaces GL with GR, preserving the common structure H by gluing GR at the
interface defined by H.

Example 3.7 (Simple Graph Grammar). Consider a simple Graph Grammar GG =

(T,G0,Rule):

• Type Graph T :
– Vertex labels: ΣV = {A,B}.
– Edge labels: ΣE = {a}.

• Start Graph G0:
– Vertices: V = {v1} with label A.
– Edges: None.

• Production Rule p:
p : GL

l←− H
r−→ GR,

where:
– GL:

∗ Vertices: {v} with label A.
∗ Edges: None.

– GR:
∗ Vertices: {v1, v2} with labels A,B, respectively.
∗ Edges: {e} connecting v1 to v2 with label a.

– H:
∗ Vertices: {v} with label A.
∗ Edges: None.

– Mappings:
∗ l : H → GL, identity on v.
∗ r : H → GR, maps v to v1.

Applying the production rule p to G0 results in a graph with one A-labeled vertex connected
by an a-labeled edge to a new B-labeled vertex.

Theorem 3.8. Graph Grammar can represent both the empty graph and the null graph.

Proof. Graph Grammar provides a framework for defining graph structures and their trans-
formations through a set of rules. We show that both the empty graph and the null graph can
be represented using Graph Grammar.

The empty graph G = (V,E) is defined as having a non-empty vertex set V and an empty
edge set E = ∅. Using Graph Grammar, we can construct G as follows:
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(1) Type Graph T : Define a vertex label set ΣV = {A} and an edge label set ΣE = ∅.
(2) Start Graph GS: Initialize GS with vertices V = {v1, v2, . . . , vn}, where n > 0, and

E = ∅.
(3) Production Rules: No rules are needed, as the empty graph does not include any

edges or transformations.

Thus, GS itself represents the empty graph.
The null graph G = (∅, ∅) is defined as having no vertices and no edges. Using Graph

Grammar, we can construct G as follows:

(1) Type Graph T : Define an empty vertex label set ΣV = ∅ and an edge label set
ΣE = ∅.

(2) Start Graph GS: Initialize GS = (∅, ∅).
(3) Production Rules: No rules are needed, as the null graph is static and requires no

transformations.

Thus, GS = (∅, ∅) directly represents the null graph.
Graph Grammar can represent both the empty graph and the null graph by appropriately

defining the vertex and edge label sets, the start graph, and the (optional) production rules.

3.1. Fuzzy Graph Grammar

Fuzzy Graph Grammar is an extension of Graph Grammar with added fuzzy conditions,
and it has been explored in several studies [22, 79, 118, 120, 183]. The definitions, including
related concepts, are provided below.

Definition 3.9. [127] A fuzzy graph G is defined as:

G = ((VG,pertV ), (EG,pertE), sourceG, targetG) ,

where:

• VG is a fuzzy set of vertices with a membership function pertV : VG → [0, 1], which
assigns a membership degree to each vertex.
• EG is a fuzzy set of edges with a membership function pertE : EG → [0, 1], which

assigns a membership degree to each edge.
• sourceG : EG → VG is the source mapping of edges.
• targetG : EG → VG is the target mapping of edges.

The membership degrees pertV (v) and pertE(e) indicate the presence or influence of vertices
v ∈ VG and edges e ∈ EG, respectively.
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Definition 3.10. [22] Let

G = ((VG,pertV ), (EG,pertE), sourceG, targetG)

and
H =

(
(VH ,pert′V ), (EH ,pert′E), sourceH , targetH

)
be two fuzzy graphs. A fuzzy graph morphism f : G → H is a pair of fuzzy set morphisms
(fV , fE) such that:

fV ◦ sourceG = sourceH ◦ fE and fV ◦ targetG = targetH ◦ fE ,

where:

• fV : VG → VH maps vertices from G to H.
• fE : EG → EH maps edges from G to H.
• The mappings fV and fE must preserve the source and target of edges, as well as the

membership degrees.

Definition 3.11. [22] A typed fuzzy graph GT is defined as a tuple:

GT = (G, tG, T ),

where:

• G is a fuzzy graph.
• T is a fuzzy type graph that characterizes the types of vertices and edges allowed in the

grammar.
• tG : G → T is a total fuzzy graph morphism, ensuring that each fuzzy graph in the

grammar conforms to the fuzzy type graph T .

Definition 3.12. [22] A fuzzy rule p in FGG is defined as a tuple:

p : L
l←− K

r−→ R,

where:

• L,K,R are fuzzy graphs typed over the fuzzy type graph T .
• l and r are total fuzzy graph morphisms, representing the left-hand side, interface, and

right-hand side of the rule, respectively.

The following sets are associated with the application of a fuzzy rule:

• Deleted vertices: RuleDelpV = VL \ rng(lV ).
• Deleted edges: RuleDelpE = EL \ rng(lE).
• Preserved vertices: RulePrespV = VL \ RuleDelpV .
• Preserved edges: RulePrespE = EL \ RuleDelpE .
• Created vertices: RuleCreatedp

V = VR \ rng(rV ).
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• Created edges: RuleCreatedp
E = ER \ rng(rE).

Definition 3.13. [22] A Typed Fuzzy Graph Grammar (FGG) is defined as a tuple:

FGG = (T,G0,Rule),

where:

• T is the fuzzy type graph.
• G0 is the initial fuzzy graph typed over T , representing the initial state of the system.
• Rule is a set of fuzzy rules that describe the state transitions allowed within the system.

The behavior of a fuzzy graph grammar is determined by the application of these fuzzy
rules, enabling the transition from one fuzzy graph to another by modifying vertices and edges
according to the specified rules.

Example 3.14 (Fuzzy Graph Grammar). Consider a Fuzzy Graph Grammar FGG =

(T ′, G′
0,Rule′):

• Type Graph T ′:
– Vertices with membership functions pertV :

∗ Vertex A with pertV (A) = 1.
∗ Vertex B with pertV (B) = 1.

– Edges with membership functions pertE :
∗ Edge a with pertE(a) = 1.

• Start Graph G′
0:

– Vertices: V = {v1} with label A and pertV (v1) = 0.8.
– Edges: None.

• Fuzzy Production Rule p′:

p′ : L
l←− K

r−→ R,

where:
– L:

∗ Vertices: {v} with label A and pertV (v) = α.
∗ Edges: None.

– R:
∗ Vertices: {v1, v2} with labels A,B and pertV (v1) = α, pertV (v2) = β.
∗ Edges: {e} connecting v1 to v2 with label a and pertE(e) = γ.

– K:
∗ Vertices: {v} with label A and pertV (v) = α.
∗ Edges: None.

– Mappings:
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∗ l : K → L, identity on v.
∗ r : K → R, maps v to v1.

Applying the fuzzy production rule p′ to G′
0 results in:

• The original vertex v1 retains its membership degree pertV (v1) = 0.8.
• A new vertex v2 with label B and membership degree pertV (v2) = 0.6 (assuming
β = 0.6).
• A new edge e connecting v1 and v2 with membership degree pertE(e) = 0.7 (assuming
γ = 0.7).

The membership degrees represent the uncertainty or partial presence of vertices and edges
in the fuzzy graph. This example illustrates how Fuzzy Graph Grammar extends Graph
Grammar by incorporating fuzzy membership values.

Theorem 3.15. A Fuzzy Graph Grammar generalizes a Graph Grammar by allowing vertices
and edges to have membership degrees between 0 and 1. A standard Graph Grammar is a
special case of a Fuzzy Graph Grammar where all membership degrees are either 0 or 1.

Proof. Let GG = (T,G0,Rule) be a Graph Grammar, where:

• Vertices and edges are unweighted (membership degrees of 1 for existing elements, and
implicitly 0 for non-existing elements).
• T is the type graph, G0 is the initial graph, and Rule is the set of production rules.

We can construct a corresponding Fuzzy Graph Grammar FGG = (T ′, G′
0,Rule′) as follows:

• For each vertex v in T , set pertV (v) = 1 in T ′.
• For each edge e in T , set pertE(e) = 1 in T ′.
• Similarly, define G′

0 and Rule′ by assigning membership degrees of 1 to all vertices and
edges present in G0 and Rule.

In this construction, the fuzzy membership functions pertV and pertE take only values in
{0, 1}. Therefore, the behavior of FGG replicates that of GG, demonstrating that Graph
Grammar is a special case of Fuzzy Graph Grammar. Hence, Fuzzy Graph Grammar general-
izes Graph Grammar by allowing membership degrees in the interval [0, 1].

Theorem 3.16. A Fuzzy Graph Grammar can represent both the empty graph and the null
graph.

Proof. Fuzzy Graph Grammar extends Graph Grammar by allowing vertices and edges to have
membership degrees in the interval [0, 1]. We demonstrate how a Fuzzy Graph Grammar can
represent both the empty graph and the null graph.

The empty graph G = (V,E) has a non-empty vertex set V and an empty edge set E = ∅.
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Using Fuzzy Graph Grammar, we define:

(1) Type Graph T : Define a vertex label set ΣV = {A} and an edge label set ΣE = ∅.
(2) Initial Fuzzy Graph G0: Initialize G0 with:

• A fuzzy vertex set VG = {v1, v2, . . . , vn} with membership function pertV (vi) = 1

for all vi.
• A fuzzy edge set EG = ∅.

(3) Production Rules: No rules are needed, as the empty graph contains no edges or
transformations.

Since the membership function assigns pertE(e) = 0 for all edges e, the resulting fuzzy
graph G0 represents the empty graph.

The null graph G = (∅, ∅) has both an empty vertex set and an empty edge set.
Using Fuzzy Graph Grammar, we define:

(1) Type Graph T : Define an empty vertex label set ΣV = ∅ and an edge label set
ΣE = ∅.

(2) Initial Fuzzy Graph G0: Initialize G0 with:
• VG = ∅.
• EG = ∅.

(3) Production Rules: No rules are needed, as the null graph is static.

Since VG = ∅ and EG = ∅, the resulting fuzzy graph G0 directly represents the null graph.
Fuzzy Graph Grammar can represent both the empty graph and the null graph by appro-

priately defining the type graph, the initial fuzzy graph, and the membership functions. This
demonstrates the expressiveness of Fuzzy Graph Grammar in capturing these fundamental
graph structures.

3.2. Neutrosophic Graph Grammar

Neutrosophic Graph Grammar is an extension of Graph Grammar with added Neutrosophic
conditions. The definitions and theorems, including related concepts, are provided below.

Definition 3.17. [169] A Neutrosophic Graph G is defined as a quadruple:

G = (V,E, σ, µ),

where:

• V is a finite set of vertices.
• E is a set of edges, where each edge connects two vertices in V .
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• σ : V → [0, 1]3 assigns to each vertex v ∈ V a triple σ(v) = (σT (v), σI(v), σF (v)),
representing the truth-membership, indeterminacy-membership, and falsity-membership
degrees, respectively.
• µ : E → [0, 1]3 assigns to each edge e ∈ E a triple µ(e) = (µT (e), µI(e), µF (e)).

These membership degrees satisfy the condition for all v ∈ V and e ∈ E:

0 ≤ σT (v) + σI(v) + σF (v) ≤ 3, 0 ≤ µT (e) + µI(e) + µF (e) ≤ 3.

Additionally, for every edge e = (vi, vj) ∈ E:

µT (e) ≤ min{σT (vi), σT (vj)}.

Definition 3.18. Let G = (VG, EG, σG, µG) and H = (VH , EH , σH , µH) be two neutrosophic
graphs. A Neutrosophic Graph Morphism f : G→ H is a pair of functions (fV , fE) where:

• fV : VG → VH maps vertices of G to vertices of H.
• fE : EG → EH maps edges of G to edges of H.
• The mappings preserve the incidence relations:

fV (sourceG(e)) = sourceH(fE(e)), fV (targetG(e)) = targetH(fE(e)), ∀e ∈ EG.

• The membership degrees satisfy:

σG(v) ≤ σH(fV (v)), µG(e) ≤ µH(fE(e)), ∀v ∈ VG, e ∈ EG.

Definition 3.19. A Typed Neutrosophic Graph GT is a triple:

GT = (G, tG, T ),

where:

• G is a neutrosophic graph.
• T is a Neutrosophic Type Graph specifying allowed types and membership degrees for

vertices and edges.
• tG : G→ T is a total neutrosophic graph morphism, ensuring that G conforms to the

type graph T .

Definition 3.20. A Neutrosophic Rule p is defined as:

p : L
l←− K

r−→ R,

where:

• L,K,R are neutrosophic graphs typed over the neutrosophic type graph T .
• l and r are total neutrosophic graph morphisms.

The following sets are associated with the rule p:

• Deleted Vertices: DelpV = VL \ Im(lV ).
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• Deleted Edges: DelpE = EL \ Im(lE).
• Preserved Vertices: PrespV = Im(lV ).
• Preserved Edges: PrespE = Im(lE).
• Created Vertices: CrepV = VR \ Im(rV ).
• Created Edges: CrepE = ER \ Im(rE).

Definition 3.21. A Typed Neutrosophic Graph Grammar (NGG) is a triple:

NGG = (T,G0,Rule),

where:

• T is the neutrosophic type graph.
• G0 is the initial neutrosophic graph typed over T .
• Rule is a set of neutrosophic rules.

The grammar defines the possible transformations of neutrosophic graphs through the appli-
cation of rules, modeling the dynamic behavior of systems with neutrosophic uncertainty.

Theorem 3.22. A Neutrosophic Graph Grammar generalizes a Fuzzy Graph Grammar by al-
lowing vertices and edges to have truth, indeterminacy, and falsity membership values, whereas
a Fuzzy Graph Grammar is limited to truth-membership only.

Proof. Let FGG = (T,G0,Rule) be a Fuzzy Graph Grammar where:

• Vertices and edges have fuzzy membership values pertV : V → [0, 1] and pertE : E →
[0, 1].

Define a corresponding Neutrosophic Graph Grammar NGG = (T,G0,Rule) where:

• Each vertex v ∈ V and edge e ∈ E is assigned neutrosophic membership values σ(v) =
(σT (v), σI(v), σF (v)) and µ(e) = (µT (e), µI(e), µF (e)), satisfying:

0 ≤ σT (v) + σI(v) + σF (v) ≤ 3, 0 ≤ µT (e) + µI(e) + µF (e) ≤ 3.

When σI(v) = 0 and σF (v) = 0 for all v ∈ V , and similarly µI(e) = 0 and µF (e) = 0 for
all e ∈ E, the NGG reduces to the FGG. Therefore, NGG generalizes FGG by introducing
indeterminacy and falsity memberships, enabling richer representation of uncertainty.

Corollary 3.23. A Neutrosophic Graph Grammar can represent both the empty graph and
the null graph.

Proof. The proof follows almost the same method as for the Fuzzy Graph Grammar.
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3.3. Turiyam Neutrosophic Graph Grammar

Turiyam Neutrosophic Graph Grammar is an extension of Graph Grammar with added
Turiyam Neutrosophic conditions. The definitions and theorems, including related concepts,
are provided below.

Definition 3.24 (Turiyam Neutrosophic Graph). [69–71,144] A Turiyam Neutrosophic Graph
GT is defined as:

GT = (V T , ET ),

where:

• V T is the set of vertices with Turiyam Neutrosophic membership functions.
• ET is the set of edges with Turiyam Neutrosophic membership functions.

For each vertex v ∈ V T , there are mappings:

T (v), I(v), F (v), L(v) : V T → [0, 1],

where:

• T (v) is the truth-membership degree.
• I(v) is the indeterminacy-membership degree.
• F (v) is the falsity-membership degree.
• L(v) is the liberal state-membership degree.

These degrees satisfy:

0 ≤ T (v) + I(v) + F (v) + L(v) ≤ 4, ∀v ∈ V T .

Similarly, for each edge e = (vi, vj) ∈ ET , there are mappings:

T (e), I(e), F (e), L(e) : ET → [0, 1],

satisfying:

0 ≤ T (e) + I(e) + F (e) + L(e) ≤ 4, ∀e ∈ ET .

Definition 3.25. Let G = (V T
G , ET

G) and H = (V T
H , ET

H) be two Turiyam Neutrosophic graphs.
A Turiyam Neutrosophic Graph Morphism f : G→ H is a pair of functions (fV , fE) where:

• fV : V T
G → V T

H .
• fE : ET

G → ET
H .

• The mappings preserve the incidence relations:

fV (sourceG(e)) = sourceH(fE(e)), fV (targetG(e)) = targetH(fE(e)), ∀e ∈ ET
G.
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• The Turiyam Neutrosophic membership degrees satisfy:

TG(v) ≤ TH(fV (v)), IG(v) ≥ IH(fV (v)),

FG(v) ≥ FH(fV (v)), LG(v) ≥ LH(fV (v)), ∀v ∈ V T
G ,

TG(e) ≤ TH(fE(e)), and similarly for I, F, L.

Definition 3.26. A Typed Turiyam Neutrosophic Graph GT
T is a triple:

GT
T = (GT , tG, T

T ),

where:

• GT is a Turiyam Neutrosophic graph.
• T T is a Turiyam Neutrosophic Type Graph specifying allowed types and Turiyam Neu-

trosophic membership degrees.
• tG : GT → T T is a total Turiyam Neutrosophic graph morphism.

Definition 3.27. A Turiyam Neutrosophic Rule p is defined as:

p : LT l←− KT r−→ RT ,

where:

• LT ,KT , RT are Turiyam Neutrosophic graphs typed over the Turiyam Neutrosophic
type graph T T .
• l and r are total Turiyam Neutrosophic graph morphisms.

Definition 3.28. A Typed Turiyam Neutrosophic Graph Grammar (TGG) is a triple:

TGG = (T T , GT
0 ,Rule),

where:

• T T is the Turiyam Neutrosophic type graph.
• GT

0 is the initial Turiyam Neutrosophic graph typed over T T .
• Rule is a set of Turiyam Neutrosophic rules.

The grammar defines transformations of Turiyam Neutrosophic graphs, capturing systems with
Turiyam Neutrosophic uncertainty involving truth, indeterminacy, falsity, and liberal states.

Theorem 3.29. A Turiyam Neutrosophic Graph Grammar (TGG) can be transformed into a
Neutrosophic Graph Grammar (NGG) and a Fuzzy Graph Grammar (FGG) by appropriately
redefining the membership functions to match the specific requirements of each grammar type.

Proof. Turiyam Neutrosophic Graph Grammar extends the conventional graph grammar by
incorporating four membership components: truth, indeterminacy, falsity, and liberal state.
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By selectively adjusting or omitting these components, we can transform a TGG into either
an NGG or an FGG.

A Turiyam Neutrosophic Graph GT is defined as:

GT = (V T , ET ),

where:

• V T is the set of vertices with Turiyam Neutrosophic membership functions.
• ET is the set of edges with Turiyam Neutrosophic membership functions.

For each vertex v ∈ V T , there are mappings:

T (v), I(v), F (v), L(v) : V T → [0, 1].

Similarly, for each edge e = (vi, vj) ∈ ET , there are mappings:

T (e), I(e), F (e), L(e) : ET → [0, 1].

These membership degrees satisfy:

0 ≤ T (v) + I(v) + F (v) + L(v) ≤ 4, 0 ≤ T (e) + I(e) + F (e) + L(e) ≤ 4.

We will show how a TGG can be transformed into an NGG or an FGG by redefining the
membership functions and adjusting the grammar rules accordingly.

We consider Transformation to a Neutrosophic Graph Grammar (NGG). To transform a
TGG into an NGG, we set the liberal state membership degree to zero:

L(v) = 0, L(e) = 0, ∀v ∈ V T , e ∈ ET .

The Turiyam Neutrosophic graph GT becomes a Neutrosophic Graph G, where each vertex
v and edge e is represented by a triple of membership degrees:

σ(v) = (T (v), I(v), F (v)), µ(e) = (T (e), I(e), F (e)).

• The truth-membership, indeterminacy-membership, and falsity-membership compo-
nents are preserved.
• The conditions for a Neutrosophic Graph are satisfied:

0 ≤ σT (v) + σI(v) + σF (v) ≤ 3, 0 ≤ µT (e) + µI(e) + µF (e) ≤ 3.

• The rules and morphisms of the Turiyam Neutrosophic graph grammar are adjusted
by ignoring the liberal state component, resulting in the structure of an NGG.
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We consider Transformation to a Fuzzy Graph Grammar (FGG). To transform a TGG into
an FGG, we retain only the truth-membership component:

I(v) = 0, F (v) = 0, L(v) = 0, ∀v ∈ V T ,

I(e) = 0, F (e) = 0, L(e) = 0, ∀e ∈ ET .

The Turiyam Neutrosophic graph GT becomes a Fuzzy Graph G, where each vertex v and
edge e is represented by a single membership degree:

pertV (v) = T (v), pertE(e) = T (e).

• The truth-membership degree serves as the fuzzy membership degree for vertices and
edges.
• The conditions for a Fuzzy Graph are satisfied:

0 ≤ pertV (v) ≤ 1, 0 ≤ pertE(e) ≤ 1.

• The rules and morphisms of the Turiyam Neutrosophic graph grammar are adjusted to
include only the truth-membership component, resulting in the structure of an FGG.

By redefining the membership components and adjusting the grammar rules, a Turiyam
Neutrosophic Graph Grammar can be transformed into either a Neutrosophic Graph Grammar
or a Fuzzy Graph Grammar, depending on which components are retained or omitted.

Corollary 3.30. A Turiyam Neutrosophic Graph Grammar can represent both the empty
graph and the null graph.

Proof. The proof follows almost the same method as for the Fuzzy Graph Grammar.

3.4. Vague Graph Grammar

Vague Graph Grammar is an extension of Graph Grammar with added Vague conditions.

Definition 3.31. [81, 190] A Vague Set (VS) A on a set X is defined as:

A = (tA, fA),

where:

• tA : X → [0, 1] is the truth-membership function.
• fA : X → [0, 1] is the falsity-membership function.

For any element x ∈ X, the following condition holds:

0 ≤ tA(x) + fA(x) ≤ 1.
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Definition 3.32. (cf. [104,143,185]) A Vague Graph (VG) is defined as a pair:

G = (A,B),

where:

• A = (tA, fA) is a vague set on the vertices V , representing the vertices’ truth and
falsity degrees.
• B = (tB, fB) is a vague set on the edges E ⊆ V ×V , representing the edges’ truth and

falsity degrees.

For each edge ab ∈ E, the following conditions hold:

(1) Truth Membership Condition:

tB(ab) ≤ min(tA(a), tA(b)).

(2) Falsity Membership Condition:

fB(ab) ≥ max(fA(a), fA(b)).

Definition 3.33. Let G = (A,B) and H = (A′, B′) be two vague graphs. A Vague Graph
Morphism f : G→ H consists of functions fV : V → V ′ and fE : E → E′ such that:

• For all v ∈ V :

tA(v) ≤ tA′(fV (v)), fA(v) ≥ fA′(fV (v)).

• For all e = (u, v) ∈ E:

fE(e) = (fV (u), fV (v)),

tB(e) ≤ tB′(fE(e)),

fB(e) ≥ fB′(fE(e)).

Definition 3.34. A Typed Vague Graph GT is a triple:

GT = (G, tG, T ),

where:

• G is a vague graph.
• T is a vague type graph.
• tG : G→ T is a total vague graph morphism.

Definition 3.35. A Vague Rule p is defined as:

p : L
l←− K

r−→ R,

where:

• L,K,R are typed vague graphs over the vague type graph T .
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• l and r are total vague graph morphisms.

Definition 3.36. A Vague Graph Grammar (VGG) is a triple:

VGG = (T,G0,Rule),

where:

• T is the vague type graph.
• G0 is the initial typed vague graph over T .
• Rule is a set of vague rules.

Theorem 3.37. A Neutrosophic Graph Grammar (NGG) can be transformed into a Vague
Graph Grammar (VGG) by appropriately redefining the neutrosophic membership functions to
match the vague membership conditions.

Proof. Neutrosophic Graph Grammar (NGG) extends conventional graph grammar by incor-
porating three membership components: truth, indeterminacy, and falsity. To transform an
NGG into a VGG, we need to adjust the membership components, reducing the indeterminacy
component to zero while retaining the truth and falsity components.

A Neutrosophic Graph G is defined as:

G = (V,E, σ, µ).

The membership degrees satisfy the following conditions for all vertices v ∈ V and edges
e ∈ E:

0 ≤ σT (v) + σI(v) + σF (v) ≤ 3, 0 ≤ µT (e) + µI(e) + µF (e) ≤ 3.

To transform a Neutrosophic Graph Grammar into a Vague Graph Grammar, we redefine
the membership functions by eliminating the indeterminacy component and retaining only the
truth and falsity components.

We consider Vague Graph Transformation.

(1) Vertex Transformation:
For each vertex v ∈ V , we define the vague membership functions as:

tA(v) = σT (v), fA(v) = σF (v).

The indeterminacy component is set to zero:

σI(v) = 0.

(2) Edge Transformation:
For each edge e ∈ E, we define the vague membership functions as:

tB(e) = µT (e), fB(e) = µF (e).
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Similarly, the indeterminacy component is set to zero:

µI(e) = 0.

With these transformations, the vague graph G = (A,B) is formed, where:

• A = (tA, fA) represents the vague membership degrees for vertices.
• B = (tB, fB) represents the vague membership degrees for edges.

We consider Vague Membership Conditions. The conditions for a Vague Graph are satisfied
as follows:

(1) For each vertex v ∈ V :

0 ≤ tA(v) + fA(v) ≤ 1,

since σT (v) + σF (v) ≤ 1 holds for all vertices in the Neutrosophic Graph.
(2) For each edge ab ∈ E, the vague truth and falsity conditions hold:

tB(ab) ≤ min(tA(a), tA(b)),

fB(ab) ≥ max(fA(a), fA(b)).

We consider Vague Graph Grammar Structure. The transformed vague graph G conforms
to the structure of a Vague Graph Grammar (VGG):

• The type graph, initial graph, and rules in the NGG are modified by ignoring the
indeterminacy component.
• The VGG is defined as:

VGG = (T,G0,Rule),

where:
– T is the vague type graph.
– G0 is the initial typed vague graph over T .
– Rule is a set of vague rules.

By setting the indeterminacy components to zero and preserving the truth and falsity com-
ponents, a Neutrosophic Graph Grammar can be effectively transformed into a Vague Graph
Grammar.

Corollary 3.38. A Vague Graph Grammar can represent both the empty graph and the null
graph.

Proof. The proof follows almost the same method as for the Fuzzy Graph Grammar.
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3.5. Plithogenic Graph Grammar

Plithogenic Graph Grammar is an extension of Graph Grammar with added Plithogenic
conditions.

Definition 3.39. [156,157,174] A Plithogenic Graph PG is defined as:

PG = (PM,PN),

where:

(1) Plithogenic Vertex Set PM = (M, l,Ml, adf, aCf):
• M ⊆ V is the set of vertices.
• l is an attribute associated with the vertices.
• Ml is the set of possible attribute values.
• adf : M×Ml→ [0, 1]s is the Degree of Appurtenance Function (DAF) for vertices.
• aCf : Ml × Ml → [0, 1]t is the Degree of Contradiction Function (DCF) for

vertices.
(2) Plithogenic Edge Set PN = (N,m,Nm, bdf, bCf):

• N ⊆ E is the set of edges.
• m is an attribute associated with the edges.
• Nm is the set of possible attribute values.
• bdf : N ×Nm→ [0, 1]s is the Degree of Appurtenance Function (DAF) for edges.
• bCf : Nm × Nm → [0, 1]t is the Degree of Contradiction Function (DCF) for

edges.

The Plithogenic Graph PG must satisfy:

(1) Edge Appurtenance Constraint:
For all (x, a), (y, b) ∈M ×Ml:

bdf ((xy), (a, b)) ≤ min{adf(x, a), adf(y, b)},

where xy ∈ N .
(2) Contradiction Function Constraint:

For all (a, b), (c, d) ∈ Nm×Nm:

bCf ((a, b), (c, d)) ≤ min{aCf(a, c), aCf(b, d)}.
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(3) Reflexivity and Symmetry of Contradiction Functions:

aCf(a, a) = 0, ∀a ∈Ml,

aCf(a, b) = aCf(b, a), ∀a, b ∈Ml,

bCf(a, a) = 0, ∀a ∈ Nm,

bCf(a, b) = bCf(b, a), ∀a, b ∈ Nm.

Definition 3.40. Let PG = (PM,PN) and PG′ = (PM ′, PN ′) be two plithogenic graphs.
A Plithogenic Graph Morphism f : PG→ PG′ consists of functions:

• fV : M →M ′ mapping vertices.
• fE : N → N ′ mapping edges.

The mappings satisfy:

• Preservation of incidence relations: if e = xy ∈ N , then fE(e) = fV (x)fV (y) ∈ N ′.
• Attributes and degrees of appurtenance and contradiction are appropriately mapped

and preserved.

Definition 3.41. A Typed Plithogenic Graph PGT is a triple:

PGT = (PG, tPG, TPG),

where:

• PG is a plithogenic graph.
• TPG is a plithogenic type graph specifying allowed types and attribute values.
• tPG : PG→ TPG is a total plithogenic graph morphism.

Definition 3.42. A Plithogenic Rule p is defined as:

p : L
l←− K

r−→ R,

where:

• L,K,R are typed plithogenic graphs over the plithogenic type graph TPG.
• l and r are total plithogenic graph morphisms.

Definition 3.43. A Plithogenic Graph Grammar (PGG) is a triple:

PGG = (TPG,PG0,Rule),

where:

• TPG is the plithogenic type graph.
• PG0 is the initial typed plithogenic graph over TPG.
• Rule is a set of plithogenic rules.
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Theorem 3.44. A Plithogenic Graph Grammar (PGG) can be transformed into a Neutrosophic
Graph Grammar (NGG), a Vague Graph Grammar (VGG), a Fuzzy Graph Grammar (FGG),
and a Turiyam Neutrosophic Graph Grammar (TGG) by appropriately selecting the parameters
s and t in the Plithogenic set and redefining its functions accordingly.

Proof. A Plithogenic Graph Grammar is defined using Plithogenic sets, which generalize vari-
ous types of fuzzy sets by introducing attributes with possible values and corresponding degrees
of appurtenance and contradiction. By specializing the parameters s and t in the Plithogenic
set, we can obtain different types of graph grammars.

A Plithogenic Set PS is defined as:

PS = (P, v, Pv,DAF,DCF),

.
A Plithogenic Graph Grammar (PGG) is defined as:

PGG = (TPG,PG0,Rule),

where:

• TPG is the plithogenic type graph.
• PG0 is the initial typed plithogenic graph over TPG.
• Rule is a set of plithogenic rules.

We will show that by selecting appropriate values of s and t and redefining functions, a
PGG can be transformed into each of the other graph grammars.

We consider Transformation to a Fuzzy Graph Grammar (FGG). Set s = t = 1. The
Plithogenic set becomes a Plithogenic Fuzzy Set (PFS). The Degree of Appurtenance Function
(DAF) and Degree of Contradiction Function (DCF) reduce to functions with a single value.

• Vertices and Edges: The plithogenic vertex set PM = (M, l,Ml, adf, aCf) reduces to
a fuzzy vertex set, where adf : M ×Ml → [0, 1] assigns a single membership degree
µ(v) ∈ [0, 1] to each vertex v.
• The plithogenic edge set PN = (N,m,Nm, bdf,bCf) reduces similarly for edges.
• Membership Assignment: The attributes l and m can be considered constants or omit-

ted since they do not affect the fuzzy membership degrees.
• Rules and Morphisms: The rules and morphisms simplify accordingly, with member-

ship degrees represented by single values.

Thus, the PGG reduces to a Fuzzy Graph Grammar (FGG), with the fuzzy membership
degrees derived from the degrees of appurtenance in the Plithogenic set.

We consider Transformation to a Neutrosophic Graph Grammar (NGG). Set s = 3, t = 1.
The Plithogenic set becomes a Plithogenic Neutrosophic Set (PNS).
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• Vertices and Edges: The DAF assigns a vector (µT (v), µI(v), µF (v)) ∈ [0, 1]3 to each
vertex v, representing truth, indeterminacy, and falsity membership degrees.
• Edges: Similar assignments are made for edges.
• Membership Constraints: The degrees satisfy 0 ≤ µT (v) + µI(v) + µF (v) ≤ 3, which

aligns with the neutrosophic membership conditions.
• Rules and Morphisms: The rules and morphisms are adjusted to handle the neutro-

sophic components, mapping vectors of degrees instead of single values.

Thus, the PGG reduces to a Neutrosophic Graph Grammar (NGG), with the neutrosophic
membership degrees derived from the degrees of appurtenance in the Plithogenic set.

We consider Transformation to a Vague Graph Grammar (VGG). Set s = 2, t = 1, and
impose the constraint that for each element x:

0 ≤ µT (x) + µF (x) ≤ 1.

This corresponds to a Vague Set.

• Vertices and Edges: The DAF assigns a pair (µT (v), µF (v)) ∈ [0, 1]2 to each vertex v,
representing truth and falsity membership degrees.
• Membership Constraints: The sum of the degrees does not exceed 1, matching the

conditions of a Vague Set.
• Edges: Similar assignments and constraints apply to edges.
• Rules and Morphisms: Adjusted to handle the pair of membership degrees.

Thus, the PGG reduces to a Vague Graph Grammar (VGG), with the vague membership
degrees obtained from the degrees of appurtenance in the Plithogenic set.

We consider Transformation to a Turiyam Neutrosophic Graph Grammar (TGG). Set s = 4,
t = 1. The Plithogenic set becomes a Plithogenic Turiyam Neutrosophic Set (PTuS).

• Vertices and Edges: The DAF assigns a vector (µT (v), µI(v), µF (v), µL(v)) ∈ [0, 1]4 to
each vertex v, representing truth, indeterminacy, falsity, and liberal state membership
degrees.
• Membership Constraints: The degrees satisfy 0 ≤ µT (v) + µI(v) + µF (v) + µL(v) ≤ 4.
• Edges: Similar assignments and constraints apply to edges.
• Rules and Morphisms: Adjusted to handle the four-component membership degrees.

Thus, the PGG reduces to a Turiyam Neutrosophic Graph Grammar (TGG), with the
Turiyam Neutrosophic membership degrees derived from the degrees of appurtenance in the
Plithogenic set.

By selecting appropriate values for s and t in the Plithogenic set and redefining the functions
accordingly, a Plithogenic Graph Grammar can be transformed into a Neutrosophic Graph
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Grammar, a Vague Graph Grammar, a Fuzzy Graph Grammar, or a Turiyam Neutrosophic
Graph Grammar.

Corollary 3.45. A Plithogenic Graph Grammar can represent both the empty graph and the
null graph.

Proof. The proof follows almost the same method as for the Fuzzy Graph Grammar.

4. Future prospects

Future prospects are described below.

4.1. Soft Graph Grammar and Uncertain Hypergraph grammar

In the future, we plan to explore Soft Graph Grammar. A Soft Graph is a graph that
integrates the conditions of a Soft set, while Soft Graph Grammar extends this concept to
graph grammar. Numerous studies, including various extensions, have been conducted on Soft
sets [38,55,59,66,68,89,155,166,187]. Although still in the conceptual stage, the definition is
provided below.

Definition 4.1. [17, 108, 114] A soft set (F,C) over a universe U is a parameterized family
of subsets of U . It is defined as a mapping:

F : C → P (U),

where C is a non-empty subset of parameters E, and P (U) denotes the power set of U . For
each parameter c ∈ C, F (c) ⊆ U is called the set of c-approximate elements of the soft set
(F,C).

Definition 4.2. (cf. [86, 138]) A soft graph is defined as a 4-tuple G = (G′, S, T,A), where:

(1) G′ = (V,E) is a simple graph with vertex set V and edge set E.
(2) A is a non-empty set of parameters.
(3) (S,A) is a soft set over V , where S : A→ P (V ).
(4) (T,A) is a soft set over E, where T : A→ P (E).
(5) For each parameter a ∈ A, the pair F (a) = (S(a), T (a)) forms a subgraph of G′.

A soft graph can also be represented as:

G = (G′, S, T,A) = {F (a) : a ∈ A}.

We now define soft graph morphisms, which are mappings between soft graphs that preserve
the soft structure.
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Definition 4.3. Let G = (G′, S, T,A) and H = (H ′, S′, T ′, B) be two soft graphs. A soft
graph morphism f : G→ H consists of:

(1) A graph homomorphism fG : G′ → H ′, which consists of mappings:
• fV : V → V ′ between the vertex sets.
• fE : E → E′ between the edge sets, satisfying fE(e) = (fV (u), fV (v)) for all
e = (u, v) ∈ E.

(2) A function fA : A→ B between the parameter sets.

Such that for all a ∈ A:

(1) fV (S(a)) ⊆ S′(fA(a)).
(2) fE(T (a)) ⊆ T ′(fA(a)).

Definition 4.4. A typed soft graph is a triple GT = (G, tG, T ), where:

(1) G = (G′, S, T,A) is a soft graph.
(2) T = (G′

T , ST , TT , AT ) is a soft graph called the soft type graph.
(3) tG : G → T is a total soft graph morphism, meaning that tG maps G onto T while

preserving the soft graph structure.

Definition 4.5 (Soft Graph Grammar). A Soft Graph Grammar (SGG) is a triple:

SGG = (T,G0,Rule),

where:

• T : Soft type graph specifying permissible labels and parameters.
• G0: Initial soft graph typed over T .
• Rule: A set of soft rules, where each soft rule p is:

p : L
l←− K

r−→ R,

with L,K,R typed soft graphs over the same soft type graph T , and l, r being total
soft graph morphisms.

Theorem 4.6. Soft Graph Grammar generalizes Graph Grammar.

Proof. Let GG = (T,G0,Rule) be a Graph Grammar with:

• T : Type graph.
• G0: Initial graph.
• Rule: Set of production rules, p : GL

l←− H
r−→ GR.

To show that GG can be represented as an SGG, define:

• G′ = (V,E): Underlying graph structure of G0.
• A = {a}: Single parameter.
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• S(a) = V : Vertex set of G0 associated with the parameter a.
• T (a) = E: Edge set of G0 associated with the parameter a.
• F (a) = (S(a), T (a)) = (V,E): Subgraph corresponding to the parameter a.

Thus, G0 is represented as a soft graph G = (G′, S, T,A). Similarly, each production rule
p : GL

l←− H
r−→ GR is represented as:

p : L
l←− K

r−→ R,

where L,K,R are soft graphs with a single parameter a, and l, r are mappings preserving the
soft structure.

Since every component of GG can be translated into a corresponding component of an
SGG, it follows that GG is a special case of SGG with a single parameter. Therefore, SGG
generalizes GG.

Corollary 4.7. A Soft Graph Grammar can represent both the empty graph and the null graph.

Proof. The proof follows almost the same method as for the Fuzzy Graph Grammar.

Furthermore, in the future, we aim to explore Uncertain Hypergraph Grammar, which
extends the Uncertain Graph Grammar presented in this paper to hypergraphs (cf. [36,76,77,
88, 105, 136, 173]). In the future, we also intend to study Graph Grammar and Automata in
the context of Superhypergraphs (cf. [62, 67,74,159,164,167]).

4.2. Fuzzy off/over/under automata

In relation to Fuzzy Sets, the concepts of Fuzzy offset, Fuzzy overset, and Fuzzy underset
have been recently introduced [154]. Inspired by these notions, we aim to extend these ideas to
the domain of Fuzzy Automata and explore their implications. Although still in the conceptual
phase, the definitions are presented as follows.

Definition 4.8 (Fuzzy Overset). (cf. [154]) Let X be a universe of discourse. A Fuzzy Overset
Ã in X is defined as:

Ã = {(x, µÃ(x)) | x ∈ X, µÃ(x) ∈ [0,Ω]},

where Ω > 1 represents the Overlimit, allowing membership degrees greater than 1. There
exists at least one x ∈ X such that µÃ(x) > 1.

Definition 4.9 (Fuzzy Underset). (cf. [154]) Let X be a universe of discourse. A Fuzzy
Underset Ã in X is defined as:

Ã = {(x, µÃ(x)) | x ∈ X, µÃ(x) ∈ [Ψ, 1]},
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where Ψ < 0 is the Underlimit, allowing membership degrees below 0. There exists at least
one x ∈ X such that µÃ(x) < 0.

Definition 4.10 (Fuzzy Offset). (cf. [154]) Let X be a universe of discourse. A Fuzzy Offset
Ã in X is defined as:

Ã = {(x, µÃ(x)) | x ∈ X, µÃ(x) ∈ [Ψ,Ω]},

where Ω > 1 and Ψ < 0. There exist elements x, y ∈ X such that µÃ(x) > 1 and µÃ(y) < 0.

Definition 4.11 (Fuzzy Over General Finite Automata). A Fuzzy Over General Finite Au-
tomaton (FO-GFA) is an eight-tuple machine:

F̃over = (Q,Σ, R̃, Z, δ̃, ω, F1, F2),

where all components are defined as in a General Fuzzy Automaton (GFA), except:

• The membership functions of states and transitions, µ(q) and δ̃, map to [0,Ω], where
Ω > 1.
• There exists at least one state q ∈ Q or transition (qi, a, qj) such that µ(q) > 1 or
δ̃ > 1.

Definition 4.12 (Fuzzy Under General Finite Automata). A Fuzzy Under General Finite
Automaton (FU-GFA) is an eight-tuple machine:

F̃under = (Q,Σ, R̃, Z, δ̃, ω, F1, F2),

where all components are defined as in a General Fuzzy Automaton (GFA), except:

• The membership functions of states and transitions, µ(q) and δ̃, map to [Ψ, 1], where
Ψ < 0.
• There exists at least one state q ∈ Q or transition (qi, a, qj) such that µ(q) < 0 or
δ̃ < 0.

Definition 4.13 (Fuzzy Off General Finite Automata). A Fuzzy Off General Finite Automaton
(FOFF-GFA) is an eight-tuple machine:

F̃off = (Q,Σ, R̃, Z, δ̃, ω, F1, F2),

where all components are defined as in a General Fuzzy Automaton (GFA), except:

• The membership functions of states and transitions, µ(q) and δ̃, map to [Ψ,Ω], where
Ψ < 0 and Ω > 1.
• There exists at least one state q ∈ Q or transition (qi, a, qj) such that µ(q) > 1,
µ(q) < 0, δ̃ > 1, or δ̃ < 0.
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Theorem 4.14. A Fuzzy Off General Finite Automaton (FOFF-GFA) can be transformed
into a standard Fuzzy General Finite Automaton (GFA) by restricting its membership degrees
to the interval [0, 1].

Proof. Let F̃off = (Q,Σ, R̃off, Z, δ̃off, ω, F1, F2) be a FOFF-GFA. We construct a corresponding
GFA F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2) through the following steps:

Each state q ∈ Q in R̃off has a membership degree µoff(q) ∈ [Ψ,Ω], where Ψ < 0 and Ω > 1.
Transform µoff(q) to µ(q) ∈ [0, 1] as follows:

µ(q) = min(max(µoff(q), 0), 1).

The transformed values define the new set of fuzzy start states R̃.
For each transition in δ̃off, the membership value δ̃off((qi, µ(qi)), a, qj) ∈ [Ψ,Ω] is restricted

to [0, 1] as:

δ̃((qi, µ(qi)), a, qj) = min(max(δ̃off((qi, µ(qi)), a, qj), 0), 1).

This restriction ensures all transition membership values fall within the interval [0, 1].
The input alphabet Σ, output symbols Z, output function ω, and the membership assign-

ment F1 and resolution F2 functions remain unchanged, as they are already defined indepen-
dently of the interval boundaries.

The resulting automaton F̃ satisfies the definition of a standard GFA because all mem-
bership values—both for states and transitions—are now confined to [0, 1]. This ensures the
transformed automaton adheres to the constraints of a GFA.

Therefore, any FOFF-GFA F̃off can be equivalently represented as a GFA F̃ by applying
the above restrictions.

Theorem 4.15. A Fuzzy Off General Finite Automaton generalizes both the Fuzzy Over
General Finite Automaton and the Fuzzy Under General Finite Automaton.

Proof. This is evident.

Theorem 4.16. Every Finite Automaton can be represented as a Fuzzy Off Automaton.
Therefore, Fuzzy Off Automata generalize Finite Automata.

Proof. Let A = (Q,Σ, δ, q0, F ) be a Finite Automaton, where δ : Q× Σ→ Q.
We define a Fuzzy Off Automaton Ãoff = (Q,Σ, δ̃off, q0, F ) with the transition function:

δ̃off(q, a, q
′) =

1, if δ(q, a) = q′,

0, otherwise.
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Here, the membership degrees are within {0, 1}, which is a subset of [Ψ,Ω] with Ψ < 0 and
Ω > 1. This FOA behaves identically to the original FA, with crisp transitions represented by
membership degrees of 1 (existing transitions) or 0 (non-existing transitions).

Therefore, every FA can be viewed as a special case of an FOA, proving that FOA generalize
FA.

4.3. Single-Valued Neutrosophic off automata

The definition of the Single-Valued Neutrosophic OffSet is also included below [20,31,65,148,
153, 161–163]. We intend to further explore the concept by extending it to automata, specif-
ically by developing and studying the Single-Valued Neutrosophic Off General Neutrosophic
Automaton. Additionally, we aim to apply the principles of the Single-Valued Neutrosophic
OffSet to Graph Grammar, investigating its potential applications and implications.

Definition 4.17 (Single-Valued Neutrosophic OffSet). [163] A Single-Valued Neutrosophic
OffSet, denoted Aoff ⊆ Uoff, is a set within a universe of discourse Uoff in which certain elements
may possess neutrosophic degrees—truth, indeterminacy, or falsity—that extend beyond the
standard limits, either above 1 or below 0. It is formally defined as:

Aoff = {(x, 〈T (x), I(x), F (x)〉) | x ∈ Uoff,∃ (T (x) > 1 or F (x) < 0)} ,

where:

• T (x), I(x), and F (x) denote the truth-membership, indeterminacy-membership, and
falsity-membership degrees of each x ∈ Uoff.
• T (x), I(x), F (x) ∈ [Ψ,Ω], where Ω > 1 (termed the OverLimit) and Ψ < 0 (termed

the UnderLimit), allow the possibility for T (x), I(x), or F (x) to take values beyond
the conventional bounds of [0, 1].

Definition 4.18 (Single-Valued Neutrosophic Off General Neutrosophic Automaton). A
Single-Valued Neutrosophic Off General Neutrosophic Automaton (SVNO-GNA) is defined
as an eight-tuple machine:

F̃off = (Q,Σ, R̃off, Z, δ̃off, ω, F1, F2),

where:

• Q, Σ, Z, and ω are defined as in the General Neutrosophic Automaton (GNA).
• R̃off = {(q, T0(q), I0(q), F0(q)) | q ∈ R} is the set of off neutrosophic start states, where:

– T0(q) is the truth-membership degree of state q,
– I0(q) is the indeterminacy-membership degree of state q,
– F0(q) is the falsity-membership degree of state q,
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and at least one of T0(q) > 1 or F0(q) < 0.
• δ̃off : (Q × [Ψ,Ω]3) × Σ × Q → [Ψ,Ω]3 is the neutrosophic off augmented transition

function, where:
– [Ψ,Ω] allows membership degrees beyond conventional bounds, with Ψ < 0 and

Ω > 1.
– T (x) > 1, F (x) < 0, or both are possible for states or transitions.

• F1 and F2 are the membership assignment and resolution functions, adapted to handle
[Ψ,Ω] intervals.

Theorem 4.19. A Single-Valued Neutrosophic Off General Neutrosophic Automaton (SVNO-
GNA) can be transformed into a standard Neutrosophic General Neutrosophic Automaton
(GNA) by restricting its membership degrees within the interval [0, 1].

Proof. Let F̃off = (Q,Σ, R̃off, Z, δ̃off, ω, F1, F2) be an SVNO-GNA. We construct a correspond-
ing GNA F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2) by the following steps:

For each state q ∈ Q, let the truth-membership, indeterminacy-membership, and falsity-
membership degrees in R̃off be:

T0(q), I0(q), F0(q) ∈ [Ψ,Ω],

where Ψ < 0 and Ω > 1. Restrict these values to the interval [0, 1] as follows:

T (q) = min(max(T0(q), 0), 1),

I(q) = min(max(I0(q), 0), 1),

F (q) = min(max(F0(q), 0), 1).

The modified membership degrees T (q), I(q), F (q) define the set of neutrosophic start states
R̃.

For each transition δ̃off((qi, µ(qi)), a, qj) = (δT , δI , δF ), where:

δT , δI , δF ∈ [Ψ,Ω],

restrict the values to [0, 1] as follows:

δ′T = min(max(δT , 0), 1),

δ′I = min(max(δI , 0), 1),

δ′F = min(max(δF , 0), 1).

Define the restricted transition function δ̃ using these values.
The output function ω and the membership assignment and resolution functions F1, F2

remain unchanged, as they operate within the specified intervals.
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By restricting all membership degrees and transition values to [0, 1], F̃off is transformed into
a standard GNA F̃ without altering its structural or functional properties. Therefore, the
transformation is valid.

Theorem 4.20. Every Fuzzy Off Automaton can be represented as a Neutrosophic Off Au-
tomaton. Therefore, Neutrosophic Off Automata generalize Fuzzy Off Automata.

Proof. Let Ãoff = (Q,Σ, δ̃off, q0, F ) be a Fuzzy Off Automaton, where δ̃off : Q×Σ×Q→ [Ψ,Ω].
We construct a Neutrosophic Off Automaton ÃNO = (Q,Σ, δ̃NO, q0, F ) by defining the neu-

trosophic transition function δ̃NO as:

δ̃NO(q, a, q
′) = (µT (q, a, q

′), µI(q, a, q
′), µF (q, a, q

′)),

where:
µT (q, a, q

′) = δ̃off(q, a, q
′), µI(q, a, q

′) = 0, µF (q, a, q
′) = 0.

Since δ̃off maps to [Ψ,Ω], the truth-membership degree µT (q, a, q
′) also maps to [Ψ,Ω]. The

indeterminacy and falsity membership degrees are set to zero for all transitions.
Under this construction, the NOA ÃNO captures the behavior of Ãoff, with the fuzziness

represented in the truth-membership degrees. Thus, every FOA can be represented as a NOA,
demonstrating that NOA generalize FOA.

Similarly, the Single-Valued Neutrosophic Over General Neutrosophic Automaton and the
Single-Valued Neutrosophic Under General Neutrosophic Automaton can also be defined.

4.4. Finite Hyperautomaton

In recent years, the concept of a Finite Hyperautomaton has been introduced, known
as a generalization of the Finite Automaton. By applying the principles of Superhyper-
graphs [65, 158, 159], it is anticipated that this framework can be extended to define a Fi-
nite SuperhyperAutomaton, and their relationships can be explored. Additionally, there is
potential for defining structures such as General Fuzzy Hyperautomaton and General Neutro-
sophic Hyperautomaton, which merit further investigation. Below, we provide definitions and
theorems, including conceptual-level formulations.

Definition 4.21 (Finite Hyperautomaton). (cf. [25, 26]) A Finite Hyperautomaton (FH) is a
tuple

H = (Σ, X,Q,Q0, F, δ, α),

where:

• Σ is a finite alphabet of symbols.
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• X = {x1, x2, . . . , xk} is a finite set of word variables.
• Q is a finite set of states.
• Q0 ⊆ Q is the set of initial states.
• F ⊆ Q is the set of accepting states.
• δ ⊆ Q × (Σ ∪ {#})k × Q is the transition relation, where (Σ ∪ {#})k is the set of
k-tuples formed by elements of Σ padded with a special symbol #.
• α is a quantification condition over the variables in X, expressed as a sequence:

α = Q1x1Q2x2 . . . Qkxk,

where Qi ∈ {∀,∃} indicates whether xi is universally or existentially quantified.

Remark 4.22 (Key Components and Definitions). (cf. [25, 26])

(1) Hyperwords: A hyperword over Σ is a finite set of finite words over Σ. A hyperlanguage
is a set of hyperwords.

(2) Zipping Function: Let s = (w1, w2, . . . , wk) be a tuple of words in a hyperword, where
wi is a finite word over Σ. The zipping function zip(s) produces a word over (Σ∪{#})k,
defined as:

zip(s) = s1s2 . . . sdse,

where si[j] = wj [i] for i ≤ |wj |, and si[j] = # otherwise. Here, # is the padding
symbol, and dse is the length of the longest word in s.

(3) Unzipping Function: The unzipping function reverses the zipping process, mapping a
word over (Σ ∪ {#})k back to a tuple of words.

(4) Acceptance Condition: Let S be a hyperword and v : X → S be an assignment of
word variables to words in S. The hyperword S is accepted by H if it satisfies the
quantification condition α and the underlying automaton H∧ accepts zip(v).

Definition 4.23 (Acceptance Condition). (cf. [25, 26]) Let α be the quantification condition
and H∧ be the underlying automaton of H. The satisfaction relation S |= (α,H) is defined as
follows:

• If α = ε (empty quantification), then S |= (α,H) if H∧ accepts zip(v) for some
assignment v.
• If α = ∃xiα′, then S |= (α,H) if there exists w ∈ S such that S |= (α′,H) for the

assignment v[xi → w].
• If α = ∀xiα′, then S |= (α,H) if for all w ∈ S, it holds that S |= (α′,H) for the

assignment v[xi → w].

Definition 4.24 (Accepted Hyperlanguage). (cf. [25, 26]) The hyperlanguage of H, denoted
L(H), is the set of all hyperwords S such that S |= H.
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Theorem 4.25. A Finite Hyperautomaton (FH) is a generalization of a Finite Automaton
(FA).

Proof. Let AFA = (Σ, Q,Q0, F, δ) be a Finite Automaton, where:

• Σ is a finite alphabet.
• Q is a finite set of states.
• Q0 ⊆ Q is the set of initial states.
• F ⊆ Q is the set of accepting states.
• δ ⊆ Q× Σ×Q is the transition relation.

We construct a Finite Hyperautomaton HFH = (Σ, X,Q,Q0, F, δ
′, α) that simulates AFA,

as follows:

• Set X = {x}, a singleton set containing one word variable.
• The set of states Q, initial states Q0, accepting states F , and alphabet Σ are the same

as in AFA.
• The transition relation δ′ is adapted to operate on tuples over (Σ ∪ {#})1, which is

effectively Σ ∪ {#}. Since we have only one word variable, we can set δ′ = δ.
• The quantification condition is α = ∃x, indicating an existential quantification over

the word variable x.

In this configuration:

• The hyperwords S are sets of words over Σ.
• The hyperword S is accepted by HFH if there exists a word w ∈ S such that H∧ accepts

zip(w).
• Since zip(w) = w, the underlying automaton H∧ operates exactly like AFA.

Therefore, HFH accepts a hyperword S if and only if there exists a word w ∈ S such that
AFA accepts w. This demonstrates that every Finite Automaton can be represented as a Finite
Hyperautomaton with one word variable and an existential quantification condition.

Thus, the Finite Hyperautomaton generalizes the Finite Automaton.

Definition 4.26 (Finite Superhyperautomaton). A Finite Superhyperautomaton (FSH) is a
tuple

H = (Σ, X,Q,Q0,F , δ, α),

where:

• Σ is a finite alphabet of symbols.
• X = {x1, x2, . . . , xk} is a finite set of word variables.
• Q ⊆ P(Q) \ {∅} is the set of superstates, where Q is a finite universal set of states.
• Q0 ⊆ Q is the set of initial superstates.
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• F ⊆ Q is the set of accepting superstates.
• δ ⊆ Q× (Σ ∪ {#})k ×Q is the transition relation.
• α is a quantification condition over the variables in X, expressed as:

α = Q1x1 Q2x2 . . . Qkxk,

where Qi ∈ {∀,∃} indicates universal or existential quantification over variable xi.

Remark 4.27 (Key Components and Definitions). (1) Superstates:
• Each superstate S ∈ Q is a non-empty subset of the universal set of states Q.

(2) Hyperwords:
• A hyperword over Σ is a finite set of finite words over Σ.
• A hyperlanguage is a set of hyperwords.

(3) Zipping Function:
• For a tuple s = (w1, w2, . . . , wk) of words in a hyperword, where each wi is a finite

word over Σ, the zipping function zip(s) produces a word over (Σ∪{#})k, defined
as:

zip(s) = s1s2 . . . sdse,

where si[j] = wj [i] if i ≤ |wj |, and si[j] = # otherwise. Here, # is a padding
symbol, and dse is the length of the longest word in s.

(4) Acceptance Condition:
• Let S be a hyperword and v : X → S be an assignment of word variables to words

in S.
• The hyperword S is accepted by H if it satisfies the quantification condition α and

there exists a sequence of superstates in Q corresponding to the computation over
zip(v) according to the transition relation δ, starting from an initial superstate in
Q0 and ending in an accepting superstate in F .

Definition 4.28 (Acceptance Condition). Let α be the quantification condition and H be
the finite superhyperautomaton. The satisfaction relation S |= (α,H) is defined recursively as
follows:

• If α = ε (empty quantification), then S |= (α,H) if there exists an assignment v : X →
S and a computation in H over zip(v) that leads from an initial superstate in Q0 to
an accepting superstate in F .
• If α = ∃xiα′, then S |= (α,H) if there exists w ∈ S such that S |= (α′,H) with the

assignment v[xi → w].
• If α = ∀xiα′, then S |= (α,H) if for all w ∈ S, it holds that S |= (α′,H) with the

assignment v[xi → w].
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Theorem 4.29. The Finite Superhyperautomaton (FSH) generalizes both the Finite Hyper-
automaton (FH) and the Finite Automaton (FA).

Proof. To show that the FSH generalizes both FH and FA, we demonstrate that FH and FA
are special cases of FSH.
1. FSH Generalizes FH. Let HFH = (Σ, X,Q,Q0, F, δ, α) be a Finite Hyperautomaton. We
construct an FSH HFSH = (Σ, X,Q,Q0,F , δ′, α) as follows:

• Set the universal set of states Q of HFH as the universal set for HFSH.
• Define the set of superstates Q as the set of singleton subsets of Q:

Q = {{q} | q ∈ Q} .

• Similarly, define the initial superstates and accepting superstates as singleton subsets:

Q0 = {{q0} | q0 ∈ Q0} , F = {{f} | f ∈ F} .

• Define the transition relation δ′ by lifting the transition relation δ of HFH to operate
on singleton superstates:

δ′ =
{
({q}, a, {q′}) | (q, a, q′) ∈ δ

}
.

Under this construction, the behavior of HFH is preserved in HFSH because the superstates
are singleton sets, and transitions correspond directly to those in HFH. Therefore, FH is a
special case of FSH when the superstates are singleton subsets of Q.
2. FSH Generalizes FA. Let AFA = (Q,Σ, δ, q0, F ) be a Finite Automaton. We construct an
FSH HFSH = (Σ, X,Q,Q0,F , δ′, α) as follows:

• Let X = {x} be a singleton set of word variables.
• Set the universal set of states Q of AFA as the universal set for HFSH.
• Define the set of superstates Q as the set of singleton subsets of Q:

Q = {{q} | q ∈ Q} .

• Define the initial superstate and accepting superstates:

Q0 = {{q0}} , F = {{f} | f ∈ F} .

• Define the transition relation δ′ by lifting δ:

δ′ =
{
({q}, a, {q′}) | (q, a, q′) ∈ δ

}
.

• Set the quantification condition α = ∃x, indicating that we are interested in the exis-
tence of an accepting computation over some word.
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In this construction, HFSH accepts a hyperword S if there exists a word w ∈ S such that the
automaton AFA accepts w. Since the superstates are singleton sets, the transitions and states
correspond directly to those in AFA. Therefore, FA is a special case of FSH with singleton
superstates and existential quantification over a single word variable.
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