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Abstract: Artificial immune systems (AIS) draw inspiration from the mechanisms of the natural 

immune system. They extract ideas from the functioning of the natural immune system in order to 

use them to build computer models to solve real-world problems. While traditional AIS models 

mimic the biological immune system’s capacity to distinguish between self and non-self entities, 

they often face challenges in environments where data may be incomplete or ambiguous.  In this 

paper we introduce neutrosophic AIS that includes degrees of truthiness, falsehood and 

indeterminacy to better address ambiguity within pattern recognition tasks. Within this 

neutrosophic framework we discuss and redefine main AIS concepts, including self and non-self 

categorization, clonal selection, negative selection, and immunological memory. A numerical 

example, from the field of computer security, illustrates the application of the suggested approach 

in detecting non-self entities. With the addition of neutrosophic logic, the proposed model 

significantly enhances AIS’s adaptability and pattern recognition capabilities, addressing 

uncertainties inherent in real-world applications. 

Keywords: Neutrosophic logic; artificial immune system; self and non-self categorization; clonal 

selection; negative selection; immunological memory; pattern recognition. 

 

1. Introduction 

The human immune system is a complex system consisting of an intricate network of specialized 

tissues, organs, cells and chemical molecules [1]. The natural immune system recognizes, destroys 

and remembers an almost unlimited number of foreign particles and also protects the human body 

from cells that do not function normally in the body as it has the ability to distinguish (non-self or 

antigen) from self cells. When a pathogen (infectious foreign element) enters the body, it is detected 

and mobilized for elimination. The system is capable of “remembering” each infection, so that a 

second exposure to the same pathogen is dealt with more efficiently. 

Artificial Immune System (AIS) is an area of research that bridges the disciplines of 

immunology, computer science and engineering [2-4]. During the last two decades, the field of AIS 

is progressing slowly and steadily as a branch of Computational Intelligence (CI) amongst other 

methods such as neural networks and evolutionary computing. Inspired by the biological immune 

system’s ability to recognize and respond to foreign pathogens, AIS leverages these principles to 

develop algorithms capable of pattern recognition, anomaly detection, and adaptive learning. 

The properties of the natural immune system that the artificial immune system exploits are [5]: 

1. The natural immune system only needs to be aware of normal cells, 

2. The natural immune system can distinguish between normal and foreign cells, 

3. A foreign cell can be classified as harmful or non-harmful, 

4. Lymphocytes are cloned and post-cloned in order to attach themselves to the foreign cells 

that the body encounters, 

5. The natural immune system has a rapid response to antigens that the body has already 

encountered, which is due to memory cells. 

Taking into account the characteristics and models of the natural immune system, several 

models of artificial immune systems have been developed. These models are as follows: 
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1. Artificial immune systems based on the classical view of the immune system are: the 

negative selection algorithm [6-9] and evolutionary approaches [10-14] 

2. Artificial immune systems based on the clone selection theory are: dynamic clone selection 

[15-16] and multilayered artificial immune systems [17-18]. 

3. Artificial immune systems based on network theory are: artificial immune network [19], self-

stabilizing artificial immune systems [20], augmented artificial immune network [21], 

dynamic weighted B-Cell artificial immune systems [22] and aiNet model artificial and 

immune network [23]. 

4. Artificial immune systems based on danger theory [24-27]. 

 

AIS are being used in many applications such as anomaly detection [28-29], pattern recognition 

[30], data mining [31], computer security [32-36], adaptive control [37] and fault detection [38-39]. 

These applications highlight the flexibility and robustness of AIS, positioning it as a valuable 

approach in environments that require adaptability, real-time response, and handling of uncertain or 

variable data. 

In AIS related literature, it is observed that most methods utilize binary or fuzzy logic based to 

categorize between self and non-self entities. But in this case, the aforesaid methods are not always 

reliable when dealing with uncertain data or irregular conditions in real world applications, such as 

in cybersecurity or anomaly detection. From this point of view, we propose a new methodology that 

integrates neutrosophic logic in classic AIS concepts. Neutrosophic logic which is a new branch of 

logic is considered more flexible than other classical or fuzzy methods as it takes into account 

indeterminacy membership - the uncertainty and indeterminacy that frequently occur and 

characterize many (if not, all) real-world applications. 

The main objective of current research is to present a more robust AIS framework by integrating 

neutrosophic logic. Rather than categorizing decisions as simply true or false, the main idea is to 

constitute AIS more adaptable and capable of handling uncertainty. To illustrate how this integration 

works, we provide a numerical example and demonstrate how our approach improves AIS 

performance in complex and unpredictable real-world scenarios. This research work marks a critical 

advancement in leveraging AIS for complex, dynamic environments, as demonstrated through its 

application to cybersecurity challenges. 

The structure of this article is as follows: In Section 2, we define and explain the neutrosophic 

mathematical framework needed to formulate the proposed neutrosophic AIS (n-AIS) model. Next, 

in Section 3, we highlight the applicability of the suggested n-AIS model in an illustrative example 

from the field of cybersecurity. In Section 4, through this case study, we highlight the system's ability 

to assess and process various types of uncertainty, such as ambiguous threat classifications or 

incomplete attack vectors, leveraging the suggested n-AIS model.  Lastly, the "Conclusions" section 

wraps up the key points of our study and proposes potential research work. 

2. Materials and Methods  

Definition 1 [40] Consider X to be a space of points (objects) and x to be a generic element in X. 

A truth membership function  𝑻𝑨 , an indeterminacy membership function 𝑰𝑨 , and a falsity 

membership function 𝑭𝑨 characterize a single-valued neutrosophic set (SVNs) A in X. For each point 

x in X, 𝑻𝑨(𝒙), 𝑰𝑨(𝒙), 𝑭𝑨(𝒙) ∈ [0, 1]. Then, a simplification of the neutrosophic set A is denoted by A 

= {〈𝒙, 𝑻(𝒙), 𝑰(𝒙), 𝑭(𝒙)〉 |x ∈ X} with 0 ≤ 𝑻𝑨(𝒙)+𝑰𝑨(𝒙)+ 𝑭𝑨(𝒙) ≤ 3. 

In traditional binary systems, T(x) and F(x) are binary (0 or 1), but in a neutrosophic system, each 

value can vary continuously, allowing for nuanced classifications. 

In AIS, entities are classed as "self" (belonging to the system and harmless) or "non-self" (foreign 

and possibly harmful). Inspired by the biological immune system, this categorization allows AIS to 

recognize and respond to abnormal patterns, similar to finding diseases in a biological environment. 

Definition 2 Let S denote the set of self-entities and N the set of non-self entities. An entity x is 

categorized based on thresholds for T, I, and F as follows: 



Neutrosophic Sets and Systems, {Special Issue: Advances in SuperHyperStructures 

and Applied Neutrosophic Theories)}, Vol. 74, 2024      

 

 

Paraskevas and Smarandache, A neutrosophic framework for artificial immune systems 

204 

Self: if T(x) > 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and F(x) < 𝐹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                         (1) 

Non-Self: if F(x) >  𝐹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and T(x) <  𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                          (2) 

Indeterminate if I(x) >  𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                                  (3) 

representing cases where it’s unclear whether x is self or non-self. 

The process of cloning is most commonly known as clone selection which is the proliferation of 

lymphocytes that recognize antigens [5]. Learning in the immune system occurs by a process known 

as affinity maturation. 

Definition 3 Let P(x) be the population of cloned cells associated with entity x. Each clone 

𝒄𝒊∈P(x) has a neutrosophic vector (T(𝒄𝒊),I(𝒄𝒊),F(𝒄𝒊)), where mutation adjusts these values based on 

exposure to new information. Mutation can be defined as: 

T′(𝒄𝒊)=T(𝒄𝒊)+ΔT                                              (4) 

I′(𝒄𝒊)=I(𝒄𝒊)+ΔI                                            (5) 

F′(𝒄𝒊)=F(𝒄𝒊)+ΔF                                               (6) 

where ΔT, ΔI and ΔF are changes based on mutation rates influenced by exposure to uncertain 

patterns. 

In AIS, the fitness function is a measure used to evaluate each clone’s effectiveness or "fitness" 

in identifying and responding to patterns or threats. 

Definition 4 The fitness function of a clone 𝒄𝒊  can be mathematically defined using a 

neutrosophic similarity measure that considers the degrees of truth (T), indeterminacy (I), and falsity 

(F). The fitness score Fitness(𝒄𝒊) can be represented as:  

Fitness( 𝒄𝒊)=αT(𝒄𝒊)−βF(𝒄𝒊)−γI(𝒄𝒊)                                      (7) 

where α,β,γ are weighting factors that determine the relative importance of truth, falsity, and 

indeterminacy in evaluating fitness. 

A higher fitness score indicates that the clone 𝑐𝑖 has a closer alignment with the desired 

characteristics and is thus prioritized in the AIS for further replication or retention. 

For over 50 years immunologists have been based their thoughts, experiments, and clinical 

treatments on the idea that the immune system functions by making a distinction between self 

(related to belonging molecules in the organism) and non-self (related to foreign molecules in the 

organism). AIS are based on the human immune system's ability to recognize practically any 

pathogenic agent. According to the Self-Nonself hypothesis, the body recognizes itself by 

discriminating its own cells and molecules from alien ones. 

Definition 5 Negative Selection in a n-AIS framework involves identifying and eliminating clones 

that are likely to react against self-entities by measuring their similarity to known self-patterns. 

Define the neutrosophic distance 𝑑𝑠𝑒𝑙𝑓(x,y) between a clone x and any self-entity y as: 

𝑑𝑠𝑒𝑙𝑓(x,y) = ∣T(x)−T(y)∣+∣I(x)−I(y)∣+∣F(x)−F(y)∣                        (8) 

If 𝑑𝑠𝑒𝑙𝑓 (x,y) < 𝝐  (where 𝝐  is a threshold), and T(x)≈T(y), clone x is eliminated due to high 

likelihood of being self-reactive. 

Immunological memory could be defined as a stimulus-specific change of immune reactivity 

that persists in the absence of the stimulus. In neutrosophic AIS, memory cells store the neutrosophic 

vector (T,I,F) of each recognized non-self entity. 

Definition 6 Immunological memory in a n-AIS model refers to the system's ability to retain 

information about previously identified non-self entities (patterns or threats) by storing their 

neutrosophic values—truth (𝑇), indeterminacy (𝐼), and falsity (F)—to improve future responses. Each 

memory cell m corresponds to a previously identified non-self entity and is represented by a 

neutrosophic vector: 

m = (T(m), I(m), F(m))                              (9) 

where T(m), I(m), and F(m) denote the truth, indeterminacy, and falsity values associated with the 

stored pattern. 

When a new non-self entity (𝑥) is detected with neutrosophic values (T(x), I(x), F(x)), the system 

compares it to existing memory cells. If 𝑥 matches an existing memory cell based on a neutrosophic 

similarity measure, the memory cell 𝑚 m is updated to integrate the new values of 𝑥 as follows: 
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T(m)=λT(m)+(1−λ)T(x)                         (10) 

I(m)=λI(m)+(1−λ)I(x)                         (11) 

F(m)=λF(m)+(1−λ)F(x)                          (12) 

where λ ∈ [0,1] is a decay factor that controls the weight given to past values versus the new 

observation. 

The memory cell m is updated only if the neutrosophic distance between x and m satisfies: 

𝑑𝑚𝑒𝑚𝑜𝑟𝑦(x,m) <  𝝐                          (13) 

where 𝝐 is a predefined similarity threshold and it determines the maximum allowable "distance" 

between the neutrosophic values of the new input 𝒙 and the existing memory cell 𝒎 for them to be 

considered similar enough. 

The neutrosophic distance 𝑑𝑚𝑒𝑚𝑜𝑟𝑦 (x,m) is defined and calculated as in equation (8). This 

neutrosophic immunological memory architecture enables the AIS to dynamically adapt to changing 

patterns by updating memory cells with new data, hence improving the system's ability to recognize 

and respond to non-self entities in unpredictable circumstances. 

3. Results  

Network security systems face continuous streams of data from diverse sources, which may vary 

in nature and threat level. In this section we will examine a system equipped with n-AIS that needs 

to evaluate incoming network traffic to determine whether it represents a "self" (normal traffic) or 

"non-self" (potentially malicious traffic) entity. The goal is to enhance threat detection in a dynamic 

environment where traffic patterns might be unpredictable or unclear. 

When the n-AIS system first encounters an incoming traffic pattern x, it evaluates its 

characteristics against predefined rules or thresholds. 

A memory cell m has previously stored a recognized malicious traffic pattern with values (Eq. 

9): m = (0.2, 0.5, 0.7)                               (14) 

We set a similarity threshold ϵ=0.3 for updating the memory cell based on new incoming 

patterns. In this way, the system stays adaptive without over-reacting to every minor fluctuation, 

hence boosting its resilience and flexibility in tracking new harmful tendencies. 

Suppose an incoming traffic sample x has the following neutrosophic values: 

x = (0.3, 0.4, 0.6)                    (15) 

By applying Eq. (8), we get: 

𝑑𝑚𝑒𝑚𝑜𝑟𝑦(x,m) = |T(x) – T(m)| + | I(x) – I(m)| + |F(x) – F(m)| = 0.3           (16) 

The system considers incoming traffic similar enough to the recorded pattern in memory cell, as 

𝑑𝑚𝑒𝑚𝑜𝑟𝑦(x,m) = 0.3, which equals threshold value 𝜖 . The system can update 𝑚 with values from, 

allowing it to adapt to variations in malicious traffic patterns. 

The memory cell 𝑚 is updated by merging old and new values from 𝑥. A weighted average is 

used to determine how much weight is given to new versus old data. 

Next, we need to define a value for decay factor λ ∈ [0,1]. The choice of λ is based on the desired 

memory cell sensitivity and stability. Higher λ values (0.7 or 0.8) provide more weight to previous 

values in memory cells, making the system less susceptible to new inputs and allowing for longer 

retention of old knowledge. Lower λ levels (e.g., 0.4 or 0.5) increase the system's responsiveness to 

new data by influencing memory cells more substantially. In this case study the decay factor is set to 

λ = 0.7. 

Now by applying Eq. (10) – (12), the memory cell m now has: m = (0.23, 0.47, 0.67)        (17) 

In the case study explained previously, the n-AIS framework showcases its adaptability to new 

but similar patterns which occur over time, highlighting a steady learning process for identifying 

malicious traffic. By comparing each new incoming pattern against stored patterns in its memory 

cells, the n-AIS refines its understanding of what constitutes “malicious” activity in network traffic. 

This can be achieved with the usage of appropriate neutrosophic measures (distance measure) along 

with the similarity threshold which allows the n-AIS to selectively update memory cells only when a 
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new pattern closely aligns with a previously stored one. In this way unnecessary changes are 

minimized and system stability is preserved. 

When an incoming traffic pattern fulfils the similarity requirement, the n-AIS makes use of a 

proper operator (neutrosophic immunological memory operator) that controls the weight given to 

past values versus the new observation to update the memory cell values. The latter procedure, which 

is regulated by a decay factor, enables the system to respond to modest behavioral changes without 

significantly affecting its memory cells. Within this framework, the n-AIS stays alert to new and 

changing threats in network traffic but also keeps its core ability to recognize harmful patterns it’s 

already familiar with. During the course of time the n-AIS makes small and careful advancements so 

that it can better adapt more precisely to changes in network traffic patterns while lowering the 

likelihood of false positives and missed detections. 

In order to test the efficiency of proposed model we conducted the following an experimental 

test. The objective of the test is to compare the n-AIS model with traditional AIS methods (e.g., clonal 

selection algorithm) using publicly available datasets that contain various features related to network 

intrusion for classification tasks. To achieve this, we utilized the KDD Cup 99 dataset [41] for 

evaluation and tested the performance of our model against the traditional AIS model based on the 

following metrics: 1) accuracy, 2) false positive rate, and 3) execution time. For more technical details 

on the environment used for the test, please refer to Appendix B. 

The results obtained are depicted in the following table: 

Table 1. Summary of results between n-AIS and traditional AIS model. 

Metric n-AIS (%) AIS (%) Improvement (%) 

Accuracy 96.2 93.2 +3.0 

False positive rate 3.2 5.1 -1.9 

Execution time (seconds) 24.3 20.1 +4.2 

 

From the above results it is shown that the n-AIS model outperforms AIS in all metrics used for 

the experiment indicating a favorable trade-off for practical applications. This improvement 

underlines the practical advantages of integrating neutrosophic logic into AIS, enabling improved 

adaptability and robustness in handling uncertainty and ambiguity within real-world applications. 

5. Conclusions   

The field of artificial immune systems (AIS) is one of the most recent natural computing 

approaches to emerge from engineering, computer science and theoretical immunology. Using the 

immune system as inspiration has proved very useful when trying to address many computational 

problems. These computational techniques have many potential applications, such as in distributed 

and adaptive control, machine learning, pattern recognition, fault and anomaly detection, computer 

security, optimization, and distributed system design. By suggesting a hybrid AIS model which 

integrates neutrosophic logic, we achieve a flexible framework to handle uncertain data. In this light, 

we introduce a novel n-AIS model which redefines the main concepts and operators of AIS in order 

to help the system deal better with ambiguous patterns. This capacity stems from the utilization of 

proper neutrosophic measures and concepts that “mimic” AIS operators such as negative selection 

and immunological memory, ensuring enhanced efficiency in proposed model. For example, cell 

memory updates only when this is necessary, keeping things stable while adapting to new patterns. 

The case study examined demonstrates that suggested method works effectively in dynamic contexts 

like cybersecurity, where data is subject to change and unpredictable. It shows its capacity in 

detecting malicious activity without raising many false alarms. 

As this research serves as an initial step towards this research direction, future work could 

examine the use of the n-AIS model in other fields, such as fault detection in industrial systems, 

financial fraud detection, or medical diagnostics, where data uncertainty is also common. 
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Furthermore, different neutrosophic similarity measurements might be explored to increase the 

model's capacity to recognize subtle patterns. 
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Appendix A 

Since this paper is intended for the general public, in order for the paper to be self-contained, 

we provide below dictionary definitions of principal immune systems terms. 

Immune system: the bodily system that protects the body from foreign substances, cells, and 

tissues by producing the immune response and that includes especially the thymus, spleen, lymph 

nodes, special deposits of lymphoid tissue (as in the gastrointestinal tract and bone marrow), 

macrophages, lymphocytes including the B cells and T cells, and antibodies; https://www.merriam-

webster.com/dictionary/allele. Accessed 18/11/2024. 

Antigen: any substance (such as an immunogen or a hapten) foreign to the body that evokes an 

immune response either alone or after forming a complex with a larger molecule (such as a protein) 

and that is capable of binding with a product (such as an antibody or T cell) of the immune response; 

https://www.merriam-webster.com/dictionary/allele. Accessed 18/11/2024. 

Antibody: any of a large number of proteins of high molecular weight that are produced 

normally by specialized B cells after stimulation by an antigen and act specifically against the antigen 

in an immune response, that are produced abnormally by some cancer cells, and that typically consist 

of four subunits including two heavy chains and two light chain; https://www.merriam-

webster.com/dictionary/allele. Accessed 18/11/2024. 

Self and Non-Self: In immunology, "self" refers to the body's own cells and molecules, which 

are usually recognized and ignored by the immune system. "Non-self" refers to foreign substances 

(antigens) that the immune system recognizes as potentially harmful and targets for destruction; 

Lymphocyte: any of the colorless weakly motile cells originating from stem cells and 

differentiating in lymphoid tissue (as of the thymus or bone marrow) that are the typical cellular 

elements of lymph, include the cellular mediators of immunity, and constitute 20 to 30 percent of the 

white blood cells of normal human blood; https://www.merriam-webster.com/dictionary/allele. 

Accessed 18/11/2024. 

Clonal selection: a procedure whereby specialised immune cells (such T-cells or B-cells) that are 

able to identify a given antigen are chosen to proliferate, expanding the number of immune cells that 

are prepared to react to that antigen; https://en.wikipedia.org/wiki/Clonal_selection. Accessed 

18/11/2024. 

Negative Selection:  the process of eliminating any developing T or B lymphocytes that are 

autoreactive, i.e. reactive to the body itself; https://en.wikipedia.org/wiki/Central_tolerance. 

Accessed 18/11/2024. 

Immunological Memory: the ability of the immune system to quickly and specifically recognize 

an antigen that the body has previously encountered and initiate a corresponding immune response. 

https://en.wikipedia.org/wiki/Immunological_memory. Accessed 18/11/2024. 

 

Appendix B 

• Software configuration  

Python Version: Python 3.8  

Integrated Development Environment (IDE): Visual Studio Code (VS Code) 

Package Manager: pip or conda (for package installation) 

Libraries and Frameworks: 

NumPy: Version 1.21.2 for numerical operations 

https://www.merriam-webster.com/dictionary/allele.%20Accessed%2018/11/2024
https://www.merriam-webster.com/dictionary/allele.%20Accessed%2018/11/2024
https://www.merriam-webster.com/dictionary/antibody
https://www.merriam-webster.com/dictionary/allele.%20Accessed%2018/11/2024
https://www.merriam-webster.com/dictionary/antigen
https://www.merriam-webster.com/dictionary/allele.%20Accessed%2018/11/2024
https://www.merriam-webster.com/dictionary/allele.%20Accessed%2018/11/2024
https://www.merriam-webster.com/dictionary/lymphoid
https://www.merriam-webster.com/dictionary/lymph
https://www.merriam-webster.com/dictionary/allele.%20Accessed%2018/11/2024
https://www.merriam-webster.com/dictionary/allele.%20Accessed%2018/11/2024
https://en.wikipedia.org/wiki/Clonal_selection
https://en.wikipedia.org/wiki/T_cell
https://en.wikipedia.org/wiki/B_cell
https://en.wikipedia.org/wiki/Reactive_lymphocyte
https://en.wikipedia.org/wiki/Central_tolerance
https://en.wikipedia.org/wiki/Immune_system
https://en.wikipedia.org/wiki/Antigen
https://en.wikipedia.org/wiki/Immune_response
https://en.wikipedia.org/wiki/Immunological_memory.%20Accessed%2018/11/2024
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Pandas: Version 1.3.3 for data manipulation and analysis 

Scikit-learn: Version 0.24.2 for machine learning model training and evaluation 

• Dataset Details 

Dataset Used: KDD Cup 1999 Dataset (subset of 10% of the full dataset, used for experiment) 

Number of Records: Approximately 494,000 records 

Number of Features: 41 features, including categorical and continuous attributes 

Target Variable: "Attack Type" (denoted as "class" in the dataset) 
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