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Abstract: In Ecuador and globally, cardiovascular diseases are the leading cause of mortality, 

accounting for a worrying 26.49% of deaths in 2019. An approach based on deep learning is applied 

to improve the capacity for early prediction and reduce its incidence. In this work, three different 

models were proposed and compared: deep neural networks (DNN), convolutional neural 

networks (CNN), and multilayer perceptron (MLP). Experiments were conducted in two scenarios: 

one using a dataset that included 12 variables, and another in which the variables were reduced to 

those most significantly correlated with cardiovascular disease, i.e., 4 variables; both scenarios with 

918 clinical records per variable. Using the Neutrosophic AHP-TOPSIS method for model selection, 

the CNN model trained with the original dataset was identified as the best-performing model 

among the proposed options. In specific terms, the evaluation metrics of the CNN model were as 

follows: an accuracy of 92.17%, a sensitivity of 94.51%, a specificity of 90.78%, an F1-Score of 93.30%, 

and an area under the ROC curve of 90.03%. 

Keywords: Heart Disease, Prediction, Convolutional Neural Network, Deep Neural Network, 

Multilayer Perceptron, Neutrosophic AHP-TOPSIS 

 

 

1. Introduction 

The concept of cardiovascular disease (CVD) refers to any condition that can affect the health of 

the heart and blood distribution in the human body. These conditions can result in lesions in the 

arterial vessels, which have the potential to cause difficulties in several essential organs [1]. 

According to the World Health Organisation (WHO), cardiovascular diseases constitute the most 

lethal set of conditions affecting the human population, being the leading cause of mortality globally. 

These pathologies account for more than 37% of all deaths worldwide, and this proportion is expected 

to continue to increase until 2030 [2]. In the context of Ecuador, statistics for 2019 revealed that these 

diseases alarmingly constituted 26.49% of all deaths registered in the country [3]. Data obtained from 

the 2018 STEPS survey sponsored by WHO provided an even more worrying perspective by showing 

that approximately one-quarter of the Ecuadorian population, i.e. around 25%, present three or more 

risk factors related to chronic non-communicable diseases [4].  
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Factors that increase the likelihood of developing cardiovascular disease include family history, 

smoking, elevated LDL cholesterol levels, hypertension, advanced age, and diabetes [5]. In addition, 

lifestyle behaviors and medical issues such as sedentary lifestyles, unhealthy diets, obesity, and 

excessive alcohol consumption also contribute significantly to risk [6]. Assessment of disease severity 

in patients is performed by a variety of methods, such as stress tests, chest X-rays, CT scans, cardiac 

MRI, coronary angiography, and electrocardiograms [7]. Accurate and early detection is essential in 

resource-limited settings to improve treatments and long-term outcomes [8]. Lack of specialists and 

errors in diagnosis and treatment pose risks, underlining the importance of early detection for 

effective care [1]. 

In this article, three different deep learning (DL) models were proposed and compared for 

assisting healthcare practitioners in the early detection of cardiovascular diseases: deep neural 

networks (DNN), convolutional neural networks (CNN), and multilayer perceptron (MLP). Datasets 

with patient medical history such as electrocardiogram information, and risk factors such as age, 

gender, blood pressure, and cholesterol level, among others, are analyzed. Through the process of 

training using historical patient data, the model can learn to recognize subtle patterns that may signal 

an individual's likelihood of developing cardiovascular disease in the future, which will support 

decision-making by doctors and specialists during the diagnosis and prescription of treatments of 

CVD.  

The rest of the paper is organized as follows. Section 2 summarizes works related to this study. 

In section 3, a brief explanation of the machine learning models to be applied is presented. Section 4 

shows the experimental evaluations and discussion of the results. Finally, Section 5 includes some 

final comments and directions for future work. 

 

2. Related works  

In recent years, there has been a growing interest in using predictive models based on deep 

learning techniques in the healthcare field [9]. These models offer a promising avenue for improving 

the accuracy of predictions, particularly in the context of cardiovascular diseases. Through their 

ability to decipher complex patterns in data, these models present a possible solution for improved 

diagnosis and prognosis.  

Miao et al. [10] explored the application of DNNs in the detection and prediction of coronary 

heart disease (CHD). Their approach was to improve diagnostic accuracy, especially in regions with 

limited resources and limited cardiology expertise. By incorporating regularisation techniques and 

random elimination mechanisms into its DNN architecture, the study yielded a diagnostic accuracy 

of 83.67%, sensitivity of 93.51%, and specificity of 72.86%, highlighting the feasibility of DNN models 

in the accurate diagnosis of CHD.  

A similar thread is presented in the work of Ibrahim et al. [11] where early identification of acute 

myocardial infarction (AMI) took center stage. Using a variety of DL models, including CNN, 

Recurrent Neural Networks (RNN), and XGBoost, the researchers achieved significant accuracy. 

Their results, with ROC curve values of 90.7%, 82.9%, and 96.5% respectively, underlined the efficacy 

of these models in the timely classification of AMI.  

Joo et al. [12] ventured into the realm of machine learning (ML) and big data in the context of 

cardiovascular disease prediction. Their approach incorporated attributes such as age, gender, blood 

pressure, cholesterol levels, smoking habits, and medical history. Using a variety of ML models, 

including logistic regression, deep neural networks, random forest, and lightGBM, the authors 

demonstrated that their methodology outperformed conventional approaches, emphasizing the 

importance of considering medication data.  

In a different approach, Zheng et al. [13] presented a pioneering approach based on DNN to 

predict major adverse cardiovascular events (MACE) in patients with non-ST-segment elevation 

myocardial infarction (NSTEMI). A comparative analysis with traditional ML algorithms supported 
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the superiority of the DNN model in terms of accuracy, sensitivity, F1 score, and area under the ROC 

curve was carried out.  

These trends were continued by Priya and Thilagamani [14]who used support vector machines 

(SVM), gated recurrent units (GRU), and CNN, along with pulse wave velocity measurements and 

features derived from optimization algorithms. Their approach, with area under the ROC curve 

values of 87.4%, 91.2%, and 88.6%, offered a compelling avenue to identify risk factors for arterial 

stiffness in diabetic patients.  

Sarra et al. [15] proposed an innovative ANN-based diagnostic system for cardiovascular 

diseases. By achieving a diagnostic accuracy of 93.44%, their ANN model outperformed conventional 

ML methods, pointing to the potential of ANN as an efficient tool for accurate disease diagnosis.  

Similarly, Kishor and Jeberson [16] proposed an LSTMS-DBN approach for predicting 

cardiovascular events with deep learning using information collected by IoT devices. In particular, 

Long Short-Term Memory was used to identify and prevent arterial events and Deep Belief Network 

(DBN) to represent and select more efficient features of the recorded dataset. The LSTM-DBN 

approach shows an 88.42% mean accuracy compared to other deep learning algorithms including 

simple RNN, GRU, CNN and Ensemble. 

In another work, Khanna et al. [17] presented an IoTDL-HDD model based on IoT and deep 

learning for the detection of cardiovascular diseases using biomedical electrocardiogram signals. The 

model uses the BiLSTM feature extraction technique, Artificial Flora optimization (AFO) as a 

hyperparameter optimizer and Fuzzy Deep Neural Network (FDNN) for disease classification. The 

IoTDL-HDD model achieves an accuracy of 9.452% in comparison with other models including Deep 

Neural Network (DNN), Fuzzy Support Vector Machine (FSVM), XGBoost, and others.  

Along the same line, Venkatesan et al. [18] designed a cardiac disease diagnosis approach that 

relies on fuzzy c-means neural network (FNN) and a deep convolutional neural network for 

improving the accuracy of prediction of the diseases. The results revealed an accuracy of 86.4% and 

an F1-score of 97 in comparison with convolutional neural network (CNN) and ensemble machine 

learning (EML).  

Likewise, Pan et al. [19] proposed an Enhanced Deep Learning approach assisted by a 

Convolutional Neural Network (EDCNN) to improve the diagnostics of heart disease. The model is 

implemented in an Internet of Medical Things Platform (IoMT) and achieved a precision rate of up 

to 99.1% in comparison with conventional approaches such as Artificial Neural Networks (ANN), 

DNN, and Recurrent Neural Networks (RNN) among others. 

In the same way, Shekhar [20] presented an IoT-centered Deep Learning Modified Neural 

Network (DLMNN) to assist healthcare practitioners in the effective diagnosis of heart diseases by 

relying on wearable IoT devices attached to the patient body. The outcome of the conducted 

experiments shows an improvement in terms of accuracy of 92.59% and security of 95.87% in 

comparison with existing algorithms. 

Notably, Hussain et al. [21] proposed a unique 1D CNN architecture to improve patient 

classification, obtaining an impressive training accuracy of 98.9% and testing accuracy of 90.32%, 

while Sharma et al. [22] moved into the realm of risk prediction for patients, achieving an accuracy 

of 71.4% when classifying patients with diabetes and hypertension, two key risk factors for heart 

disease. 

In summary, these studies follow a logical sequence of advances in the use of ML and DL models 

for the detection and prediction of cardiovascular disease. Each research builds on the previous one, 

showing how these advanced techniques are transforming medical care towards a more precise and 

personalized approach. While challenges remain to be addressed, these advances demonstrate a 

promising path toward a more effective medical future. 
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3. Method  

This section breaks down the process into two parts. The first subsection details the systematic 

procedure used to process the clinical information used during the training and testing phase of the 

cardiovascular disease predictive model. The second subsection outlines the proposed architectures 

under the predictive models by leveraging the scikit-learn and Keras libraries and describes the 

methods used for the collection and thorough evaluation of the performance of each model. 

 

3.1. Experimental setup 

3.1.1. Data 

A dataset hosted on the Kaggle platform was used to train the model. This dataset consists of a 

total of 918 records and 12 columns corresponding to parameters related to cardiovascular disease 

risk factors [23].  These factors are used to assess heart diseases in patients and determine their 

presence and risk. As mentioned above, the dataset consists of 12 attributes and each of them has a 

different data type. Table 1 describes in detail the attributes of the dataset used. 

Given that there were some categorical variables in the dataset used, it was decided to use the 

mapping process to obtain descriptive statistics for the categorical columns. In this process, a unique 

numerical value is assigned to each category or label present in an object-type variable.  

In summary the features present in the dataset were as follows: the average age of the 

individuals is around 53.51 years; information on the gender of the individuals is included; the 

attribute "Chest Pain Type" is categorized into levels (ASY:0, ATA:1, NAP:2, TA:3); the resting blood 

pressure averages around 132.40 mmHg; the average cholesterol level is around 198.80 mg/dL; the 

variable "Fasting Glucose" is binary (0 or 1) and denotes if fasting blood glucose exceeds 120 mg/dL; 

the "Resting Electrocardiogram" results are recorded in three types (LVH:0, Normal:1 and ST:2); the 

maximum heart rate reached during exercise averages about 136.81 beats per minute; the presence of 

"Exercise Induced Angina" is indicated; the attribute "ST Segment Depression" is measured relative 

to rest, with an average of about 0.89; the "ST Segment Slope" reflects its variation during exercise 

(Up:0, Flat:1 and Down:2); finally, the target variable "Heart Disease" indicates whether there is 

presence or absence of heart disease. 

 

Table 1. The twelve attributes and descriptions used for the development of the Deep Learning-based models. 

 

Attribute Type Description 

Age Numeric Patient's age in years 

Sex Categorical Sex of patient (M: Male, F: Female) 

ChestPainType Categorical Type of chest pain (TA: Typical Angina, ATA: Atypical 

Angina, NAP: Non-Anginal Pain, ASY: Asymptomatic) 

RestingBP Numeric Resting blood pressure in mm Hg 

Cholesterol Numeric Serum cholesterol level in mm/dl 

FastingBS Numeric Fasting blood sugar level (1: if > 120 mg/dl, 0: otherwise) 

RestingECG Categorical Resting electrocardiogram results (Normal, ST, LVH) 

MaxHR Numeric Maximum heart rate reached (numerical value between 60 

and 202) 

ExerciseAngina Categorical Exercise-induced angina (Y: Yes, N: No) 

Oldpeak Numeric ST-segment depression (numeric value) 

ST_Slope Categorical ST-segment slope (Up: Ascending, Flat: Flat, Down: 

Descending) 

HeartDisease Numeric Diagnosis of heart disease (1: Sick, 0: Healthy) 

 

Based on the correlation matrix presented in Figure 1, it can be seen there are strongly correlated 

variables. On the one hand, variables such as ExerciseAngina, Oldpeak, and ST_Slope show moderate 
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to strong positive correlations concerning the presence of heart disease. This suggests that when these 

values increase, there is a greater likelihood that the patient has heart disease. On the other hand, 

variables such as MaxHR, ChestPainType, and Sex show moderate negative correlations with heart 

disease, indicating that higher values for these variables are associated with a lower likelihood of 

heart disease.  

Based on the analysis of the correlation matrix [24], it was recommended to create a new dataset 

using the original dataset, named "Dataset B", including only the variables ExerciseAngina, Oldpeak, 

ST_Slope and the target variable (HeartDisease). This action sought to reduce dimensionality and 

focus on the most influential characteristics for the analysis. Comparing the performance of the 

models on both datasets provided a clearer perspective on whether dimensionality reduction 

negatively affected predictive ability, which was a crucial step in ensuring the robustness and 

effectiveness of the model in line with the objectives of the analysis. 

In terms of the training, validation, and testing process, it was considered due to the importance 

of splitting the dataset into separate sets to avoid over-fitting the model and to assess its performance 

in real-life situations. This was achieved through a function called "train_val_test_split", which 

partitioned the data into training (70%), validation (15%), and testing (15%) [25]. The training set 

allowed the model to learn patterns, while the validation set was used to adjust hyperparameters and 

avoid overfitting. The test set, which contained previously unseen data, evaluated the final 

effectiveness of the model. 

Another crucial aspect was featuring scaling, which was carried out using the technique of 

scaling by standardization [26]. Using the StandardScaler method, numerical features were given a 

mean of zero and a standard deviation of one. This process is applied to each attribute of the dataset.  

 

 
Figure 1. Correlation matrix of the variables of the dataset analyzed. 

 

3.1.2. Model features and target 

The experimental design addresses a multivariate issue in both cases using the original dataset 

and dataset B. The case of the original dataset is characterized by eleven input variables and one 
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output variable. The case of dataset B is characterized by three input variables and one output 

variable. In both cases, the output variable takes binary predictive values to classify the diagnosis of 

heart disease. 

 

3.1.3. Problem definition  

In the current scientific paper, the problem definition is the following: based on age, sex, 

chestPainType, restingBP, cholesterol, fastingBS, restingECG, maxHR, exerciseAngina, oldpeak, 

ST_Slope; can it be determined whether he/she has heart disease? 

 

3.1.4. Hyperparameters  

Refers to parameters external to the model itself, and their values typically can't be derived from 

the training data. These values are set by the model designer to fine-tune the learning algorithms. In 

this study, a grid search algorithm has been employed to optimize the models. This involved an 

iterative process where hyperparameters were adjusted to identify configurations that resulted in the 

best generalization on the test dataset. The grid search procedure explored all possible combinations 

of hyperparameters and selected the most effective subset. This procedure will be applied to the best 

model selected during the validation. 

   

3.1.5. Model evaluation. 

Evaluation models are applied using the following procedure:  

Training procedure is applied to estimate model performance quickly.  

K-fold cross-validation is applied to get a more robust estimate of how the model generalizes. 

K=5 partitions are considered.  

The selected model resulting from the above processes is applied hyperparameters tuning to 

improve performance metrics.  

 

3.1.6. Performance evaluation 

In literature reviews focusing on binary classification performance, the evaluation of models 

often involves the use of several standard metrics. These metrics include the false negative rate (FNR), 

false positive rate (FPR), true negative rate (TNR), true positive rate (TPR), positive predictive value 

(PPV), and accuracy (ACC). These metrics are commonly employed to assess and select models with 

the lowest predictive errors [27]. To compute these metrics, the following equations are used: 

 

𝐹𝑁𝑅 =
FN

TP + FN
 

 

(1) 

𝐹𝑃𝑅 =
FP

FP + TN
 

 

(2) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑅 =
TN

FP + TN
 

 

(3) 

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑅 =
𝑇𝑃

TP + FN
 

 

(4) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃𝑃𝑉 =
𝑇𝑃

TP + FP
 

 

(5) 

𝐹1 = 2 ∗
precision ∗ recall

precision + recall
 

 

(6) 

𝑎𝑐𝑐 =
TP + TN

TP + TN + FP + FN
 

 

(7) 
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Where TP is the true positive, TN is the true negative, FP is the false positive, and FN is the false 

negative. 

3.2. Model design 

The definition of model architecture was a fundamental step in this work. Three main models 

were selected to be used and compared to obtain the best performance in cardiovascular disease 

prediction. Based on state-of-the-art information and analysis, the following models were chosen: 

Deep Neural Network (DNN), Multilayer Perceptron (MLP), and Convolutional Neural Network 

(CNN). These models are widely recognized for their effectiveness in classification problems and 

have distinctive characteristics. 

 

3.2.1. Deep Neural Network (DNN) 

The DNN is a DL architecture that incorporates multiple hidden layers. Each layer contains 

neurons that process and transmit information through the network [28], ultimately arriving at the 

output layer as shown in Figure 2(a).  

The model structure starts with a flattening layer to transform the input data into a one-

dimensional shape. Dropout layers are applied at a rate of 20% to avoid overfitting by randomly 

deactivating neurons during training. The model incorporates dense layers, also called fully 

connected layers, which employ the ReLU activation function, and a "he_normal" weight 

initialization designed for ReLU. The model consists of three dense layers, with different numbers of 

units (300, 100, and 10), allowing the network to learn more complex representations. Between each 

dense layer, a dropout layer is used to regularize the model and prevent overfitting. The last dense 

layer has a single unit and a sigmoid activation function, suitable for binary classification. 

 

3.2.2. Multilayer Perceptron (MLP) 

It is a neural network architecture that includes multiple hidden layers [29]commonly used in 

regression and classification problems in ML [30]. This model, designed as a sequential network is 

specifically adapted to binary classification. Its structure comprises a flattening layer, followed by 

two dense layers with ReLU activation, each preceded by dropout layers (20%). The last layer, dense 

and with sigmoid activation, consists of a single output unit as shown in Figure 2(b). 

 

2.2.3. Convolutional Neural Network (CNN) 

An initial two-dimensional architecture was chosen for a CNN, using 3x3 cores. Performance 

improvements were then sought through a more parameter and computationally efficient structure. 

The final architecture is shown in Figure 2(c). 

The proposed architecture for the CNN includes several key layers: the first, a reshape layer, 

transforms the input data from (11,) to (11, 1), adding an extra dimension common in sequential data; 

then, two 1D convolutional layers follow this reshape layer, the first with 40 filters and size 5 

convolutions along with ELU activation function, and the second with 8 filters and also ELU 

activation, allowing the network to learn important features in the sequential data; a flattening layer 

converts the output data from the convolutional layers to one-dimensional format, ready to be 

processed by the dense layers; the last two layers are dense, the first with 80 units and ELU activation, 

and the last one is an output dense layer with a single unit and sigmoidal activation, thus setting up 

the model for binary classification and prediction of probability of belonging to the positive or 

negative classes. 
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Figure 2. The architecture of the models considered: a) DNN model, b) MLP model, and c) CNN model. 

 

4. Results and Discussion 

This section presents a detailed analysis of the results obtained by validating and optimizing the 

proposed models for cardiovascular disease prediction. The model selection was based on a 

comprehensive comparison of the performance of three different models: DNN, MLP, and CNN. The 

models were evaluated on two different datasets, designated as the original dataset and B (reduced 

variable dataset).  

 

4.1. DNN model 

The compilation and training of the DNN models were carried out by configuring the Adam 

optimizer with a learning rate of 0.001. For the loss function "binary_crossentropy" was chosen, 

suitable for binary classification, a batch size of 32 (batch_size) and 50 epochs were determined to 

process the data.  

The training results were evaluated using the confusion matrix, showing how the model 

classified the samples. The matrix reflected a higher number of correctly identified records in the 

original dataset compared to dataset B. A characteristic of the ROC curve is that if it is very close to 

the upper left corner, it implies a good performance of the model. Figure 3 shows the Classification 

DNN model's false positive and true positive rates using the ROC plot. 

 
Figure 3. ROC of scores of DNN model 

 

Once the metrics have been evaluated with the corresponding DNN model, the following Table 

2 is obtained: 
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Table 2. DNN Evaluation Metrics 

 

Metrics Original Dataset 

[%] 

Dataset B [%] 

acc 91.30 83.33 

precision 94.93 84.88 

sensitivity 90.36 87.95 

specificity 92.72 76.36 

F1 92.59 86.39 

 

The previous table shows that the DNN Classification model obtained an accuracy percentage 

of 91.30% by correctly classifying 75 data as negative cases, representing 92.72% specificity. As 

positive cases, 51 were obtained, representing 90.36% sensitivity. It is noteworthy that in this model 

analyzed, better results have been achieved using the original dataset.  

 

4.2. MLP model 

With a learning setting of 0.01, the model compiler was set up using the Adam optimizer. The 

loss function "binary_crossentropy" was chosen, which is suitable for the evaluation of predictions in 

this type of task. Following the same approach, a batch size of 32 samples and 50 epochs was set for 

the training process.  

The training results of the MLP model were analyzed through the confusion matrix. In this MLP 

model, it is still maintained that better results are obtained with the original dataset. Figure 4 and 

Table 3 corroborate this observation, although the ROC curve and the performance metrics showed 

that the model had high accuracy.  

 

 
Figure 4. ROC of scores of MLP model 

 

Table 3. MLP Evaluation Metrics 

 

Metrics Original Dataset [%] Dataset B [%] 

acc 90.5 83.33 

precision 94.8 87.95 

sensitivity 89.1 87.95 

specificity 92.7 76.36 

F1 91.92 86.39 

 

The previous table shows that the MLP Classification model obtained an accuracy percentage of 

90.50% by correctly classifying 74 data as negative cases, representing 92.70% specificity. As positive 
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cases, 51 were obtained, representing 89.1% sensitivity. However, it can be noted that if we compare 

the DNN model and the MLP model, slightly better results are achieved with the DNN model. That 

is, preliminarily some neural network complexity contributes to slightly better prediction results. 

 

4.3 CNN model 

The optimizer is defined using the Adam algorithm with a learning rate of 0.0001. The model is 

then compiled using the loss function "binary_crossentropy", which is effective in minimizing loss 

during training. The model is trained for 50 epochs with the training data and evaluated with the 

validation set to get a complete picture of its performance.  

The training results of the CNN model were analyzed through the confusion matrix. In this CNN 

model, it is still corroborated that better results are obtained with the original dataset. Figure 5 and 

Table 4 confirmed this observation, although the ROC curve and the performance metrics showed 

that the model had high accuracy.  

 
Figure 5. Confusion matrix of CNN training stage 

 

Table 4. CNN Evaluation Metrics 

 

Metrics Original Dataset 

[%] 

Dataset B [%] 

acc 88.40 81.88 

precision 93.50 84.52 

sensitivity 86.74 85.54 

specificity 90.90 76.36 

F1 90.00 85.02 

 

The previous table shows that the CNN classification model obtained an accuracy percentage of 

88.40% by correctly classifying 72 data as negative cases, representing 90.90% specificity. As positive 

cases, 50 were obtained, representing 86.74% sensitivity. The evaluation metrics in Table 4 indicate 

good binary classification performance, with high precision, specificity, and F1 Score.  

 

4.4. Selecting the best model 

Table 5 provides a comprehensive overview of the performance of the three implemented 

models on two different datasets, designated as A and B, where A refers to the original dataset and 

B to the reduced dataset of variables. These results were obtained by applying K-fold cross-validation 

with K=5 partitions. 

For each model and dataset, binary classification performance metrics are evaluated to measure 

its prediction ability with the heart disease variable. In terms of precision and accuracy, the best 

results with the CNN model are obtained using the original dataset (A), indicating its ability to 

predict positive cases with a low margin of error. 
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Table 5. Model selection using cross-validation 

 

Model Dataset Accuracy Precision Recall Specificity F1-S Roc-Auc 

DNN A 84.88% 84.09% 88.93% 80.21% 86.33% 91.82% 

B 85.17% 83.99% 90.69% 79.90% 87.17% 89.94% 

MLP A 83.80% 82.60% 88.35% 78.51% 85.32% 91.21% 

B 85.17% 83.66% 91.27% 79.24% 87.26% 90.07% 

CNN A 85.20% 85.18% 87.73% 82.51% 86.35% 88.82% 

B 83.32% 81.58% 89.14% 76.69% 85.10% 80.95% 

 

The analysis highlights that dataset B benefits the sensitivity and F1-score of the MLP model, 

while the CNN model exhibits superior performance on most metrics compared to the DNN and 

MLP models. However, the choice of the optimal model must consider the context of the problem. A 

key point to note in Figure 6 is that the DNN and MLP models achieve a slightly higher value in true 

positives, with 51 positive values according to the confusion matrix, in contrast to the 50 positive 

values of the CNN model. 

For selecting the model, the integration Neutrosophic Hierarchical Analytical Process and 

TOPSIS (NAHP-TOPSIS) [31,32] methods are used. In this case single valued neutrosophic 

trapezoidal numbers are uses the single-valued trapezoidal neutrosophic number,, is a neutrosophic 

set on, whose truth, indeterminacy and falsehood membership functions are defined as follows, 

respectively [33, 34]: ã =  〈(a1, a2. a3, a4); αã, βã, γã〉ℝ 

 

Tã(x) =

{
 
 

 
 
α
ã(

x−a1
a2−a1

),     a1≤x≤a2

αã,                         a2≤x≤a3
α
ã(

a3−x

a3−a2
),     a3≤𝑥≤a4

0, otherwise

 

 

Iã(x) =

{
 
 

 
 

(a2−x+βã(x−a1))

a2−a1
,        a1 ≤ x ≤ a2

βã  ,                                         a2 ≤ x ≤ a3
(x−a2+βã(a3−x))

a3−a2
,      a3 ≤ x ≤ a4

1,                                otherwise

 

 

Fã(x) =

{
 
 

 
 

(a2−x+γã(x−a1))

a2−a1
,        a1 ≤ x ≤ a2

γã  ,                                         a2 ≤ x ≤ a3
(x−a2+γã(a3−x))

a3−a2
,      a3 ≤ x ≤ a4

1,                                        otherwise

 

 

Where, and. αã, βã, γã ∈ [0,1]  a1,  a2, a3, a4  ∈ ℝa1 ≤ a2 ≤ a3 ≤ a4 

For simplicity, we use the linguistic scale of trapezoidal neutrosophic numbers, see Table 1 and 

also compare with the scale defined in [35]. 

 

Table 6. Saaty's scale translated to a neutrosophic trapezoidal scale. 

  

Saaty's scale Definition Neutrosophic Triangular Scale 

1 Equally influential 1̃ =  〈(1, 1,1); 0.50,0.50, 0.50〉 

3 Slightly influential 3̃ =  〈(2, 3, 4); 0.30, 0.75, 0.70〉 

5 Strongly influential 5̃ =  〈(4, 5, 6); 0.80, 0.15, 0.20〉 

(8) 

(9) 

(10) 
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7 Very strongly influential 7̃ =  〈(6, 7, 8); 0.90, 0.10, 0.10〉 

9 Absolutely influential 9̃ =  〈(9, 9, 9); 1.00, 1.00, 1.00〉 

2, 4, 6, 8 

 

Sporadic values between two 

close scales 

2̃ =  〈(1, 2, 3); 0.40, 0.65, 0.60〉 

4̃ =  〈(3, 4, 5); 0.60, 0.35, 0.40〉 

6̃ =  〈(5, 6, 7); 0.70, 0.25, 0.30〉 

8̃ =  〈(7, 8, 9); 0.85, 0.10, 0.15〉 

Each metric with the others in terms of relative importance in the context of healthcare pair-wise 

comparison matrix is obtained. 

 

Table 7. Pairwise Comparison Matrix of Criteria 

 

 Accuracy Precision Recall Specificity F1-Score ROC-AUC 

Accuracy 1̃ 
1
2̃
⁄  3̃ 2̃ 1

4⁄  1̃ 

Precision 2̃ 1̃ 2̃ 
1
3̃
⁄  1

4̃
⁄  2 

Recall 1
3̃
⁄  1

2̃
⁄  1̃ 

1
2̃
⁄  1

2̃
⁄  1

3̃
⁄  

Specificity 1
2̃
⁄  3̃ 2̃ 1̃ 

1
2̃
⁄  1

2̃
⁄  

F1-Score 4̃ 4̃ 2̃ 2̃ 1̃ 4̃ 

ROC-AUC 1̃ 
1
2̃
⁄  3̃ 2̃ 

1
4̃
⁄  1̃ 

 

The weights derived from the AHP technique signify the significance of each parameter in the 

identification of cardiovascular disease. ROC-AUC (0.43) and F1-Score (0.35) possess the greatest 

significance, underscoring their essential functions in facilitating precise class differentiation and 

harmonizing precision with recall. Specificity (0.149) and Accuracy (0.143) underscore the necessity 

for dependable recognition of real negatives and overall precision. Meanwhile, Precision (0.141) and 

Recall (0.075) are of lesser significance yet are crucial for reducing diagnostic inaccuracies. These 

priorities correspond with the objective of attaining accurate and reliable forecasts in healthcare. 

For selectin the model the original dataset result “A” is used then TOPSIS methods is applied. 

Based on the TOPSIS analysis using the updated AHP weights, the models are ranked as follows: 

 

CNN (TOPSIS Score: 0.67), 

 

DNN (TOPSIS Score: 0.62), 

 

MLP (TOPSIS Score: 0.28). 

 

The CNN model ranks highest due to its strong performance in key metrics such as ROC-AUC 

and F1-Score, which carry the most weight in this context. These metrics highlight the model's ability 

to balance precision and recall while maintaining robust class discrimination, crucial for accurate 

cardiovascular disease detection. The DNN model closely follows competitive performance, whereas 

the MLP model, with a lower score, demonstrates less alignment with the prioritized metrics. 

Aditionaly in this work, hyperparameters were optimized to improve the forecasting metrics. 
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Figure 6. Confusion matrix DNN, MLP, and CNN models 

 

4.5. Optimization of the best model 

Hyperparameter optimization involves modifying different values in the model, such as the 

learning_rate, the number of hidden_layers, and the batch_size, among others. These additional 

settings ensure that the chosen model is the most suitable for achieving the work objectives and 

obtaining accurate and reliable results [36]. For this task, the Keras tuner library was used, 

recommended for its usefulness in the automated search of hyperparameters. 

 

Table 6. Hyperparameters considered for the tuning of the CNN model 

 

Hyperparameters Values Description 

hp_units min_value=8, max_value=256, step=8 Number of neurons 

hp_layers min_value=1, max_value=5, step=1 Number of hidden layers 

hp_filters min_value=2, max_value=40, step=2 Number of filters 

hp_activation ['relu', 'sigmoid', 'tanh', 'softmax', 'elu']. Activation function 

hp_epochs min_value=10, max_value=50, step=10 Number of epochs 

hp_batch_size min_value=4, max_value=40, step=4 Lot size used 

hp_learning_rate values=[1e-1,1e-2,1e-3,1e-4] Learning rate 

 

Table 6 shows the hyperparameters considered for the fitting and evaluation of the CNN model. 

These include the number of neurons, hidden layers, filters, activation function, training epochs, 

batch size, and learning rate. All these hyperparameters were implemented in a single function, called 

"model_builder", which defines the architecture, and compiles and trains the model. 

During the configuration of the experimental design, CNN structures were executed, obtaining 

as the best topology the following model with hyperparameters: hp_units = 120, hp_layers = 2, 

hp_filters = 32, hp_activation = relu, hp_epochs = 50, hp_batch_size = 32 and hp_learning_rate = 

0.0001.  

Figure 7 and Table 7 show the contrast between the selected CNN model and the CNN model 

with its tuned hyperparameters. A considerable improvement is evident with the CNN model whose 

hyperparameters were adjusted to the original dataset. The confusion matrix shows an improvement 

in the prediction of negative cases of heart disease and a reduction of false negatives.  
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Figure 7. Comparison of the confusion matrix CNN and CNN Tuning 

 

Table 7. Model selection by hyperparameter adjustment. 

 

Model Accuracy Precision Recall Specificity F1-Score Roc-Auc 

CNN 85.20% 85.18% 87.73% 82.51% 86.35% 88.82% 

CNN + Tuning 92.85% 92.17% 94.51% 90.78% 93.30% 90.03% 

 

The prediction of positive cases is maintained in both models. In the model with optimized 

hyperparameters all classification performance metrics exceed 90%, the highest of all with 94.51% 

being the sensitivity metric, i.e., the true positive rate. 

 

5.  Conclusions 

This study applied deep learning models to predict whether a patient has heart disease. 

Experiments were conducted using two datasets with several cardiovascular disease risk factors. The 

original dataset with eleven risk factors and the reduced dataset with three risk factors considered 

statistical correlation were used. DNN, MLP, and CNN models were set up, trained, validated, and 

tested. Binary classification performance was used to select the best model for each type of 

architecture.   

In all the models analyzed, the best results were obtained using the attributes and data from the 

original dataset, i.e., reducing the dataset by considering the statistical correlation of variables had 

no major influence on the results for this particular case study. 

The best result in the general context of the binary forecasting metrics was achieved by the CNN 

model. This was ratified by applying an optimization with the hyperparameters of the model, 

achieving metrics that exceeded 90% performance. 

The results of this study could serve as a baseline for other studies with machine learning models 

and recurrent neural networks, to further explore the binary forecasting performance of 

convolutional neural networks, which are generally used for image and video engineering problems. 

Another future study could consider the use of a dataset with a greater length and data density to 

test the incidence of the dataset size and number of variables considering reduction techniques 

applied in this area of health. Finally, future work would be to integrate the proposed model into a 

web or mobile app to support doctors in the diagnosis of cardiovascular. Moreover, future studies 

could explore the broader application of neutrosophic logic in the model selection process to handle 

uncertainty and indeterminacy more effectively, potentially enhancing decision-making in similar 

healthcare applications.  
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