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ABSTRACT

The main goal of this paper is to studying a new numerical method for finding the refined neutrosophic
numerical solutions to some refined neutrosophic differential problems of high orders. We use high-degrees
refined neutrosophic polynomials to get the approximated solutions, where we apply our method on two
different refined neutrosophic boundary value problems with numerical tables to compare the novel findings

with classical ones.
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Introduction

The primary goal of numerical analysis is to provide simple algorithms and methods for finding numerical
solutions to differential equations, specifically those equations that are of higher order, because it is difficult to
find their solutions using traditional methods [1-2, 8]. We find in previous research works a broad discussion
of some high-order differential equations [3,9], where researchers have modeled many numerical methods with
the aim of finding the best approximate numerical solutions for these differential equations that are specialized
in describing many natural phenomena in many scientific fields such as physics, computer science, And even
chemistry. Neutrosophic logic is a revolutionary logic introduced by Smarandache [6] as a new generalization
of fuzzy logic that takes into account the idea of indeterminacy and uncertainty in measurements resulting from

natural phenomena. It has been used to study many traditional mathematical concepts, such as algebraic
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structures, analysis, and even computer science [14, 17-18]. In [10-11, 13], many numerical algorithms for
solving differential equations and numerically complex problems have been discussed by Neutrosophic sets,
and researchers have obtained many good approximate results. Recently Hatamleh and AL-Husban et al.,
Discussed the new structure of such a neutrosophic set and its application [19-39]. This has motivated
us to study a new numerical method for finding the refined neutrosophic numerical solutions to some refined
neutrosophic differential problems of high orders. We use high-degree refined neutrosophic polynomials to get
the approximated solutions, where we apply our method to two different refined neutrosophic boundary value
problems with numerical tables to compare the novel findings with classical ones.

Main Discussion
Refined Neutrosophic Approximations by Polynomials:
The main idea is to use the refined neutrosophic interval [a + cI; + ml,, b + dI; + nl,], as follows:

k=0,1,...,N ) xk=a+C[1+m12+k11+h12
where p = b —at+ @=L+ - m)IZ)/n step length.

Let's take P(X + YI; + Z1,) polynomial as an approximation for solving the problem wu(x + yI; + zI,) and

forevery x + ylI, + zI, € [xy + Vi Iy + 7, Iy , Xpi1 + Va1l + Zxa115] this approximation is given as:

P(X +y11 +le) =

17 i
Z (x +yl + zl, — (X + yiely + 2 13))" p®
- k

i!
i=0

n (x+yl +zl, — (X + yily + Zklz))ls C

18! k1
x +yly + zl, — (X + yily + 2 5))*°
+( yi 2 — (Xx + yicly kl2)) Cey +
19! 2
20 -
(x +yly +zI, — (xk +y. I+ zklz)) (x +yl, +zl, — (Xk +y 0y + Zklz))
Cios + Cra
20! 21!
22
(x +yly + zI, — (xk +y, 0+ Z}Jz))
+ Crs;k=01,....,N—1 (D

22!
Where PO = PO(X, + 1,1, + +2,1,) , (i = 0,1, ....,17)

The approximation P(X + Y1, + ZI,) satisfies the following conditions:
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o P (xy + yily + ziely) = u™ (x + yily + zily) ,k = 0,1,..,N — 1;m = 0,1,...,17

« pm I L) = P I L),k=01,...N—2m=
e Kiar + Yierrh + Zralz) = Pyt R + Viern s + Zgaa l2) fy PR ,m
01,..,17

We define five aggregation points in each partial domain as follows:
Xk+Zj = Xk + ykll + ZkIZ + hIl + ZjIZ ) (] = 1,2, ...,5), (2)
The given points are related by the relation (2) defined by the form:

0<z1+z;/' L +2,"L<zy+ 2,/ 1 + 2, [, < z3 + z3' [ + 23", <z, + 2,/ I, + 2," ],

< ZS + ZSII]_ + 25”12 = 1 + Il + 12 (3)
Numerical solution of the refined neutrosophic boundary value problem:

Assuming that u(x + ylI; + zI,) is asingle solution to the problem of boundary values, then this solution is
related to the solutions denoted by {W;(x + yI, + zI,)}__,, so that for seven real constants cy, c,, ..., c;,We
have:

u(x + yl + zI) = Wo(x + yI, + zI,) + 232, Wi (x + yI; + z1,) 4)

ngg)(x +yI, +zI,) + 218, q,(x +yI, + ZIZ)ngg_i)(x +yl, +zl,) = f(x + yl, +zI,), a+cl; +

ml, <x+yl,+zl, < b+dl, +nl,, (5)
W (a + Iy + ml) = a, WD (a+ cly +mly) =0, =0,,...,6 6)
Then,

ngg)(x +yly +z1,) + Xk q,(x + yl; + ZIZ)ngs_i)(x +yly+zl,)=0,a+cl <x+yl, +zl, <

b+dl, +nl,, )

W (a+cl, +ml) =0,W,(a+cl +ml,) =1,V¥ (@) =0,j=12,..6 ©)

ngg)(x +yl, +z1) + X8, q,(x +yl; + zlz)ngs_i)(x +yl,+zl,) =0,a+cl; +ml, < x+ vyl +

zI, <b+dl, +nl,, ©)
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WP (a+cly +mly) =0, WP (a+cly +ml,) =1,j =041, ....,13,

Jj*3 (10)

ngs)(x +yly +z1,) + X2 q,(x + yI, + zlz)ngs_i)(x +yl; +2z1,) =0,a+cl; + ml, <x+yl, +

212Sb+d11+n12, (11)

So that
WP+, +mly) =0, W (a+cl, +ml) =1,j=0,1,..,17
3 1 2/ — ) 3 1 2) — '] — YUy dy ey ) (12)

WP+ g1y + 21) + B8 q (e + vl + 2)WS) (et yl +21) = 0, a+ el +miy < x4yl +

zl, <b+dl, +nl,, (13)

W (a + cly +mly) = 0,W (a+ cly +mly) =1,j=01,..,17, (14)

WEH)(x +yl +zL) + X q(x + vl + zIZ)WgH_i)(x +yl, +2zI,) =0,a+cl; +ml, <x+yl +

zl, < b+ dl; +nl,, (15)

And So on.

Now we will prove that the function u(x + yI, + zI,) = Vo(x + yI; + zI,) + Y18, ¢, Vi (x + yI; + zI,) is
the only solution to the problem of the boundary value for the real constants

¢; for all possible values of i we have:

ul® (x + yI, + z1,)

= ngs) (x + vl + zI,)

7 18
+ Z ckW,(Cls) = —z q,(x +yl; + ZIZ)W(()IB)(x +yly +zl,) + f(x + yl, + zI,])
k=1 i=1

7 18
+ Z Cie [— Z qi(x +yl, + ZIZ)Wk(ls_i)(x +yl, + zI,)
k=1 ;

=1
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18 18
= —Z q;(x + yl, + zI,) [Wo(lg_i)(x +yl) + Z Cka(lg_i)(x +yl +z)|+ fx + v + zI,)
i=1 k=1

18

=— Z qi(x + yly + zL)[u D (x + yI, + zI,) + f(x + yI; + zI,)

i=1

Where: u'(x + yI; + zl,) = W(()i)(x +yl, +z1,) + Y18, ckW,(f)(x +yD,i=0,1,....,17

u® (a + cl, + ml,)

= W(()Zj)(a + cl; + mly)

18 18
+ Z ckW,EZj)(a +cly +mly) = a; + Z (0)=a;, (j=0,...,12)
k=1 =1
18
u® (a + cly + ml,) = Wgzj)(a +cl; + ml,) + Z ckW,EZj)(a +cly +mly) =a;,( =0,..,12)
=1

And to achieve the rest of the conditions (2) at the end of the domain, we put the following system of

equations:

u® (b + dI, + nl,)

18
=W (b +dl, +nly) + 2 Wb +dly +nl) =4, (=01,..16), (16)

k=1

By solving the system of linear equations (16),we get:

C=Ww;B.

The derivatives as a sum of solutions of elementary value problems as follows:

P(i)(Xk + ykll + ZkIZ) = P(()i)(xk + ykll + ZkIZ) + Z}il CjP](i)(Xk + ykll + ZkIZ) ,i = 0,1, ,13, k =

01,...,N. 17)
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Existence of the numerical solution:

Let's take the eighteenth-order differential equation in the following case:

(18)

u® e+ yIy + 21,) = Flx + Iy + 21y, ulx + yI; + z1,) ,G(x + yI + z15) .., 07 (x + yI; + z1,)]
W@ =y, j=01..,13

Assuming that F:[a + cI; + mI,1, b + dI, + nl,] X Cla+ cl; + ml,, b+ dI; + nl,] X ..xCY[a+cl; +
ml,, b + dI; + nl,] - R(I, I,) is a sufficiently smooth function, the function F is said to satisfy the
Lipschitz condition if the following Lipschitz inequality holds:

17
|F(x +yly + zl, , ug, Uq, o, Ugy) — F(x +yly +z215,5,,9, y17)| < LZlul— - yl|

i=0
V(x + vl + zl, ug, Uq, ., Ugy) , (x + Y + 215, Vo, V1, -, Y17) € la + cly + mly, b + dI] X R(DY

Where L is called the Lipschitz constant of the function F.

We apply the approximate polynomial (5) and its derivatives with summation points (7)-(6) to the problem of

differential equations (18), we obtain the following set of algebraic equations:

(hzj)z (hzj)3

Cr1+ Cpaly + Gy + (hzj)( Cirz + Cioly + Cyoly) + T(Cks + Cp3ly + Cisly) + T(Cks
4
(hz))
+ Cys3ly + Cy3ly) + T(Ck,s + Cysly + Cysly) =

F (Xk+z]- + Yk+z]-11 + Yk+zj12 P (Xk+zj + Yk+z]-11 + Yk+z]-12) P (Xk+z]- + Yk+z]-11 + Yk+zj12) . (Xk+z]- +

Vicrzyhy + ykﬂjIz)) j=12..5 k=01,..,N—1, (19)
PO(a+cly +mly) =P;,i=01,..,17. (20)
We rewrite the sentence of equations (19) in the Matrix formula as follows:

AC, = F . (21)

Where: Xk+zj + yk+zj11 + yk+zj12 =F [Xk+zj + yk+21-11 + yk+zj12 , P (Xk+zj + yk+zj[1 + yk+zj12) P (Xk+zj +

a7
yk+zj11 + yk+zj12) y e, P (Xk+zj + yk+zj11 + yk+zj12)] )
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J=12,..5

Ci1 + Craly + Craly
h(Cyz + Cy2l1 + Cpaly)
Cp = h?(Chz + Craly + Crslz)
h®(Ciea + Craly + Craly)
h*(Cis + Cisly + Ciesl)

Firy,,(1+1; + 1)
Fry,,A+11 +13)
,ﬁk = Fk+Z3(1 +11 + 12)
Firy,,(1+ 11+ 1)
Frpi(Q+1 + 1)

A

4

2
Z
A+0L+1) z0+1L +1) —
2
Z3
(1+11+12) Zz(1+11+12) -

2

> +A+1L+1)

z

z;

Z

Zq
+A+L+L) —+Q+1+]
6 ( 1 2) 24 ( 1 2)

4
2

R
24 ( 1 2

4

3
Zy Z

Z
A+1,+1,) z,(1+1,+1,) ?4+(1+11+12) 24

A+L+1) A+L+1) % +A+L+1) %+(1+11+12) 2—14+(1+11+12)

Numerical tests:

We test the technique proposed in this research by applying it to find numerical solutions to some problems

Problem 1: let's take the question of the Linear Differential Equation of the following 14th order [9]:
u® (x + yI, + z1,) = exp(—(x + yI; + zI,)) u(x + yl, + zI,), 0<x+yl, +zl, <1,

According to the limiting conditions:

u®(0) = 1,u® (1) =e,i=01,..6

In Table (1) we compare the numerical solutions of our proposed method with the cubic slide methods [9]
using step h=0.1, and in Table (2) we compare the absolute errors |u((x + yI, + z1,),) —

P((x + yI; + zl,),)| in the numerical solution of our proposed method with the two slide methods in [9].
Table (1): comparisons of numerical solutions of our proposed method with two methods in [9] with a step

h=0.1

Cubic Poly.Sol

exact solution Our method

0. | 1.10517+1.561,+1.889651, 1.21109807+1,+1,
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1.2214027581+1.223761,+1.3477646

1.2214020778+1.098761,+1,

1.11377894+1,+1,

51,

1.3498588075+1.523761,+1.8810015 1.209114987+1, +
P I
1.491824697+1.10032561,+1.213896 | 1.4918236132+1.0983871,+1, 1.333255673+1,+
51, I

1.6487212702+1.55568341,+1.22136

1.1100134761128+

I, I+,
1.822118800390509+1.98871,+1.546 | 1.8221176295+1.1201871,+ 1.78541009432+1,
41, 1.866571, +1,
2.0137527074704766+2.120203011, + 2.0112743866+1,+
2sas00r, | I
2.225540928492468+2.4059861,+2.9 | 2.2255400739+2.2355791401, + 2.225400982684+
09861, 2.600981651, I,+1,
2.45960311115695+2.3466871,+2.10 2.23114583+1,+1,

30560651,

Table (2): comparisons of absolute errors in the numerical solution of our method with two methods in [9].

Cubic Poly. Sol. Cubic Non — Poly.Sol.

X; Our method

01 | 4.23189 E-18+I,+I,
0.2 3.71E-04+1,+1, 6.80E-07+1,+1, 2.66785 E-18+1,+1,
03 | 0 e e 2.22316 E-18+1,+1,
0.4 5.92E-04+1,+1, 1.08E-06+1,+1, 2.5665 E-18+1,+1,
05 | e e 2.12145 E-18+I,+1,
0.6 6.35E-04+1,+I, 1.17E-06+1,+1, 4.22341 E-20+1,+I,
L A e 6.6678593 E-20+1,+I,
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0.8 4.59E-04+1,+1, 8.54E-07+1,+1, 8.1001231 E-20+1,+1,

09 | e e 8.320193 E-20+1,+1,

Problem 2: let's take the question of the nonlinear differential equation of the following 18th order:
ul® (x + yI, + z1,) + ulx + yI, + zL)u® (x + yI, + z1,) — u(x + yl, + zI,)u (x + yl, + z1,) =
3/2 + x* + 14 cos(x + ylI, + zI,) — 3/2 cos(2(x + yI; + zI,)) — (x + yI, + zI,) sin(x + yI, + zI,),0 < x + yI; + zI, <
According to the initial conditions:
u(0)=0,2(0)=0,u (0)=2,u (0)=0,u®0)=—-4,u®0)=0,u®0) =6,
u(0) = 0,u®(0) = -8,u®(0) = 0,u(0) = 10,uP(0) = 0,u*D(0) = —12,u™®(0) = 0

We put in Table (3) some values of the numerical solution of our proposed method in the domain [0, 5] using
the step h=0.1, and also we put in Table (4) the absolute errors in the numerical solution and the derivatives of

the solution of our proposed method.

Table (3): the numerical solution of our proposed method with the exact solution in step h=0.1

X; exact solution Numerical solution by our proposed
method

0.5 0.23886541015+0.211431;,+1, 0.23443259+0.13001591,+0.113232591,

1.0 0.8433255+0.84110011,+0.1120981, 0.81366948078966+1,+1,

15 1.4962376+1.5564011,+1.0922131, 1.492319060816+1,+1,

2.0 1.8185948536513634+1.09776551,+1.098087151, 1.8185948536513+1,+1,

25 1.496180360259891+1.039817351,+I, 1.496180360259892+1,+1,

3.0 0.4233600241796016+1.01156151,+I, 0.42853651363417962+1,+1,

35 -1.2277412969136694+1.66981, +1, -1.2277066709134+1,+1,

4.0 -3.027209981231713+1.02142151,+1, -3.0272099812302096+1,+1,

45 -4.3988855294929365+1.06670321+1, -4.3363484593+1, +1,

50 -4.794621373315692+1.445793011,+I, -4.70667077071+1,+1,
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Table (4): absolute errors in the numerical solution and derivatives of the solution of our proposed method.

i |u(xi) - P(xi)l

05 | 8.32667 E-17+1,+1,

|u”(xi) - Pﬂ(xi)l

6. 36334 E-119+1,+1,

|7:¢(xi) - P(xl)l

1.11022 E-18+1,+1,

1.0 | 1.11022 E-16+1,+1, 4.44089 E-18+1,+], | 6.38378 E-18+1,+1,

24329301 E-16+1,+1, 3.41120985 E- 1.00855252 E-

15

18+1,+1, 18+1,+1,

20 | 4.44089 E-16+1,+1, 5.27356 E-18+1,+], | 3.55271E-17+I,+I,

1.111209302 E-
25 9.10383 E-17+1,+1,
15+1,+1,

5.06262 E-15+1,+1,

2.29301 E-14+1,+1, 5.03855221 E-

3.0 1.10578 E-17+I,+I,
15+, +1,
35 | 2.930495 E-13+],+I, | 8.9112096 E-17+I,+I, | 3.46878 E-15+1,+I,
40 | 1593024 E-12+1,+1, 5.4694 E-15+1,+], | 1.852363 E-13+,+],
8.3493055 E-12+1,+1, 2.61120946 E-
45 8.1185522 E-13+1,+1,
3.86216 E-11+1,+1, 1.11120998 E-
5.0 3.038363 E-13+1,+1,

Conclusion

In this paper is we studied a new numerical method for finding the refined neutrosophic numerical solutions to
some refined neutrosophic differential problems of high orders. We used high-degrees refined neutrosophic
polynomials to get the approximated solutions, where we applied our method on two different refined

neutrosophic boundary value problems with numerical tables to compare the novel findings with classical ones.
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