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Abstract. This paper introduces an extension to the Python Neutrosophic Sets (PYNS) framework, originally

detailed in [13], with the addition of the NSfamily class for constructing and manipulating neutrosophic

topologies. Building on existing classes like NSuniverse and NSset, the NSfamily class enables the definition

and testing of neutrosophic families as basis and sub-basis for neutrosophic topological spaces. This extension

provides tools for verifying closure properties under union and intersection, and for determining whether a given

family constitutes a neutrosophic topology. Through implemented algorithms, the framework automates the

generation of topologies from families of neutrosophic sets, offering an efficient tool for advancing research in

neutrosophic topology. Practical applications are demonstrated with detailed examples, showcasing how this

class enhances the scope and flexibility of neutrosophic modeling within the PYNS framework.
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—————————————————————————————————————————

1. Introduction

The theory of neutrosophic sets, introduced by Smarandache in 1999 [25], generalizes both

fuzzy sets [29] and Atanassov’s intuitionistic fuzzy sets [1] by providing three distinct param-

eters—truth, indeterminacy, and falsity—for each element. This generalization offers a more

flexible and nuanced model for representing uncertainty and incomplete information, making

it applicable to a wide range of fields, including statistics [26] and image processing [30]. In

addition, single-valued neutrosophic sets have been explored to represent degrees of truth, in-

determinacy, and falsity within a simplified framework [28], with applications in graph theory

and decision making [2, 12].
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In recent years, neutrosophic topology has emerged as an extension of classical topologi-

cal concepts to the neutrosophic domain. Key developments include the exploration of con-

nectedness and stratification in neutrosophic topological spaces by Broumi et al. [3] and the

investigation of separation axioms by Dey and Ray [4]. Additionally, foundational studies

by Gallego Lupiáñez [6, 7, 16] have laid the groundwork for applying neutrosophic theory to

topology, creating opportunities to model complex relationships characterized by uncertainty.

The practical application of neutrosophic sets has been greatly enhanced by the develop-

ment of computational tools. El-Ghareeb introduced an open-source Python package to handle

neutrosophic data [5], and Sleem et al. developed the PyIVNS tool for interval-valued neu-

trosophic operations [24]. In addition, Topal et al. created a Python tool for implementing

operations on bipolar neutrosophic matrices, useful in applications requiring complex ma-

trix computations [27]. Furthermore, Saranya et al. developed a C# application specifically

designed to handle neutrosophic gα-closed sets, expanding the accessibility of neutrosophic

topology across different programming environments [23]. However, these tools are limited in

scope and focus primarily on specific neutrosophic operations rather than providing a compre-

hensive and interactive framework for dealing with symbolic representations of neutrosophic

sets.

The Python Neutrosophic Sets (PYNS) framework, developed by Nordo et al. [13], addresses

this limitation by offering a robust, modular library for the representation and manipula-

tion of neutrosophic sets and mappings. PYNS enables the modeling of various neutrosophic

structures, such as single-valued neutrosophic mappings [9] and neutrosophic soft topological

spaces [10, 11]. However, while PYNS supports essential topological operations, such as basis

and sub-basis construction, it lacks a generalized framework for systematically defining and

verifying neutrosophic topologies.

In this paper, we introduce the NSfamily class as an extension of the PYNS framework,

aimed at facilitating the construction, manipulation, and verification of neutrosophic topolo-

gies. This new class draws upon theoretical work by Ozturk [14] and Salama et al. [18,20–22] on

neutrosophic sets and topological structures, offering a more integrated approach for defining

families of neutrosophic sets as basis and sub-basis. The NSfamily class supports automated

generation of neutrosophic topologies, including operations to verify closure under union and

intersection, providing an efficient and scalable solution for neutrosophic topological modeling.

Furthermore, NSfamily addresses a broad range of computational requirements in neutro-

sophic topology, including the ability to handle interval-valued data and complex neutrosophic

structures. This flexibility makes it suitable for both theoretical research and practical appli-

cations, as demonstrated in Rabuni and Balaman’s approach to neutrosophic soft topologies

using Python [15], and in applications of single-valued neutrosophic ideals by Saber et al. [17].
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Our contribution extends the PYNS framework with a cohesive and efficient tool for neutro-

sophic topological modeling, addressing the computational needs of researchers and expanding

the possibilities of neutrosophic analysis in complex domains.

The structure of the paper is as follows. In Section 2, we review fundamental definitions

and properties in neutrosophic topology, including closure and continuity. Section 3 details the

NSfamily class, highlighting the core methods and their applications. Finally, we provide

practical examples that illustrate the enhanced capabilities of PYNS with the NSfamily

extension, discussing the potential impact of this work on future research in neutrosophic

topology.

2. Preliminaries

This section provides a comprehensive overview of neutrosophic sets, neutrosophic topology,

and the structure of the Python Neutrosophic Sets (PYNS) framework. This background

is necessary to understand the design and functionality of the new NSfamily class, which

extends PYNS for advanced neutrosophic topological modeling.

2.1. Neutrosophic Sets

The concept of neutrosophic sets, introduced by Smarandache [25], generalizes classical,

fuzzy [29], and intuitionistic fuzzy sets [1] by assigning each element three independent degrees:

truth, indeterminacy, and non-membership, each within the hyperreal interval ]0−, 1+[ of the

nonstandard real numbers. A simpler variant, the single-valued neutrosophic set [28], uses the

standard interval [0, 1], making it more accessible and practical for scientific and engineering

applications.

Definition 2.1. [28] Let U be a universal set and A ⊆ U. A single-valued neutrosophic set

(abbreviated SVN-set) over U, denoted by Ã = ⟨U, µA, σA, ωA⟩, is defined as:

Ã = {(u, µA (u) , σA (u) , ωA (u)) : u ∈ U}

where µA : U → I, σA : U → I, and ωA : U → I are the membership, indeterminacy, and

non-membership functions of A, respectively, and I = [0, 1] denotes the real unit interval.

For every u ∈ U, µA (u), σA (u), and ωA (u) are called the degree of membership, degree of

indeterminacy, and degree of non-membership of u, respectively.

Definition 2.2. [25, 28] Let Ã = ⟨U, µA, σA, ωA⟩ and B̃ = ⟨U, µB, σB, ωB⟩ be two SVN-sets

over the universe set U, we say that:

• Ã is a neutrosophic subset (or simply a subset) of B̃ and we write Ã ⋐ B̃ if, for every

u ∈ U, it results µA (u) ≤ µB (u), σA (u) ≤ σB (u) and ωA (u) ≥ ωB (u). We also say
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that Ã is contained in B̃ or that B̃ contains Ã and we write B̃ ⋑ Ã to denote that B̃

is a neutrosophic superset of Ã.

• Ã is a neutrosophically equal (or simply equal) to B̃ and we write Ã = B̃ if Ã ⋐ B̃ and

B̃ ⋐ Ã.

Notation 2.3. Let U be a set, I = [0, 1] the unit interval of the real numbers, for every r ∈ I,

with r we denote the constant mapping r : U→ I defined by r(u) = r, for every u ∈ U.

Definition 2.4. [28] Given a universe set U:

• the SVN-set ⟨U, 0, 0, 1⟩ is said to be the neutrosophic empty set over U and it is denoted

by ∅̃, or more precisely by ∅̃U in case it is necessary to specify the corresponding universe

set

• the SVN-set ⟨U, 1, 1, 0⟩ is said to be the neutrosophic absolute set over U and it is

denoted by Ũ.

On neutrosophic sets, union, intersection and complement operations can be defined.

Definition 2.5. [19] Let
{
Ãα

}
α∈Λ

be a family of SVN-sets Ãα = ⟨U, µAα , σAα , ωAα⟩ over a

common universe set U, then:

• the neutrosophic union, denoted by
⋃⋃
α∈Λ

Ãα, is the neutrosophic set Ã = ⟨U, µA, σA, ωA⟩

with µA =
∨
α∈Λ

µAα, σA =
∨
α∈Λ

σAα, and ωA =
∧
α∈Λ

ωAα. In particular, the neutrosophic

union of two SVN-sets Ã = ⟨U, µA, σA, ωA⟩ and B̃ = ⟨U, µB, σB, ωB⟩, denoted by Ã⋓B̃,

is the neutrosophic set defined by ⟨U, µA ∨ µB, σA ∨ σB, ωA ∧ ωB⟩
• the neutrosophic intersection, denoted by

⋂⋂
α∈Λ

Ãα, is the neutrosophic set Ã =

⟨U, µA, σA, ωA⟩ with µA =
∧
α∈Λ

µAα, σA =
∧
α∈Λ

σAα, and ωA =
∨
α∈Λ

ωAα. In

particular, the neutrosophic intersection of two SVN-sets Ã = ⟨U, µA, σA, ωA⟩
and B̃ = ⟨U, µB, σB, ωB⟩, denoted by Ã ⋒ B̃, is the neutrosophic set defined by

⟨U, µA ∧ µB, σA ∧ σB, ωA ∨ ωB⟩

where ∧ and ∨ denote the minimum and the maximum, respectively.

Definition 2.6. [25,28] The neutrosophic complement of a SVN-set Ã = ⟨U, µA, σA, ωA⟩ over
U, denoted by Ã∁, is given by: Ã∁= ⟨U, ωA, 1− σA, µA⟩ .

2.2. Neutrosophic Topology

Neutrosophic topology generalizes classical topology by defining open and closed sets

through neutrosophic set theory, enabling topologies where openness, closedness, and inde-

terminacy are graded. According to Salama et al [18], Serkan Karatas et al [8] and Gallego
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Lupiáñez [6, 7], a neutrosophic topology is a family of neutrosophic sets which contains the

empty neutrosophic set, the absolute neutrosophic set and is closed with respect to the neu-

trosophic union and the finite neutrosophic intersection.

Definition 2.7. [6,18] Let T be a family of neutrosophic sets over the same universe set U,

we say that T is a neutrosophic topology if the following four conditions hold:

(1) ∅̃ ∈ T

(2) Ũ ∈ T

(3) ∀A ⊆ T ,
⋃⋃

A ∈ T

(4) ∀Ũ , Ṽ ∈ T , Ũ ⋒ Ṽ ∈ T

and when this occurs we also say that the pair (U,T ) constitutes a neutrosophic topological

space, while the elements of T are named neutrosophic open sets.

Although, the authors are not aware of papers in which notions such as bases and sub-

basis of neutrosophic topologies are introduced and treated, by simple analogy with classical

topological spaces, the following general definitions and basic properties can be introduced.

Definition 2.8. Given two nutrosophic topologies T1 and τ2 over same universe set U, we

say that T1 is coarser (weaker or smaller) than T2, or equivalently, that T2 is finer (stronger

or larger) than T1 if T1 ⊆ T2.

So, the inclusion relation ⊆ is a partial order on the set of all neutrosophic topologies over

a universe set U.

Proposition 2.9. The intersection
⋂
α∈Λ

Tα of any family {Tα}α∈Λ of neutrosophic topologies

over a common universe set U is itself a neutrosophic topology on U.

Proposition 2.10. Given a family S of neutrosophic subsets over a common universe set U,

there exists and is unique the smallest (minimal) neutrosophic topology T (S ) on U containing

S .

Definition 2.11. Let S be a family of neutrosophic subsets over a common universe set

U, the neutrosophic topology T (S ) of Proposition 2.10 is called the neutrosophic topology

generated by the family S .

Proposition 2.12. If S1 and S2 are two families of neutrosophic sets on the same universe

set U such that S1 ⊆ S2 then the corresponding generated neutrosophic topologies satisfy

T (S1) ⊆ T (S2).

Definition 2.13. Given a neutrosophic topological space (U,T ), a family B ⊆ T is said to

be a neutrosophic basis for the neutrosophic topology T if every neutrosophic open set in T
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can be expressed as a neutrosophic union of a subfamily of B, i.e., if for each Ũ ∈ T , there

exists A ⊆ B such that Ũ =
⋃⋃

A .

Notation 2.14. Given a family S of neutrosophic sets over a common universe set U, let us

denote by B(S ) (or, equivalently, by S ∗) the family of all its finite neutrosophic intersections,

with the addition of the absolute neutrosophic set, i.e:

B(S ) =

{
n⋂⋂

i=1

S̃i : n ∈ N, S̃i ∈ S

}
⋓
{
Ũ

}
.

Proposition 2.15. If S1 and S2 are two families of neutrosophic sets on the same uni-

verse set U such that S1 ⊆ S2 then the corresponding family of all their finite neutrosophic

intersections satisfy B(S1) ⊆ B(S2).

Proposition 2.16. The neutrosophic topology T (S ) generated by a family of neutrosophic

sets S over the same universe set U coincides with the topology T (B(S )) generated by the

family of all finite neutrosophic intersections B(S ) of S , i.e., we have:

T (S ) = T (B(S ))

and the family B(S ) of all finite neutrosophic intersections forms a neutrosophic basis for

T (S ).

Definition 2.17. In the situation described by Proposition 2.16, the S family is said to be a

neutrosophic sub-basis (or a neutrosophic pre-base) of the T (S ) topology.

2.3. The PYNS Framework

The Python Neutrosophic Sets (PYNS) framework, developed by Nordo et al. [13], supports

essential components for neutrosophic modeling. It is composed of three primary classes:

NSuniverse, NSset and NSmapping designed to manage neutrosophic universes, individual

neutrosophic sets and functions between neutrosophic sets, respectively.

The PYNS framework includes three primary classes that enable the representation and

manipulation of neutrosophic structures in Python. These are:

• NSuniverse that defines a universe set over which neutrosophic sets are established.

It supports initialization with various formats, such as lists, tuples, and strings. Key

methods include:

– get() - Returns the elements of the universe set

– cardinality() - Returns the total count of elements

– isSubset(unv) - Checks if the current universe set is a subset of another spec-

ified universe set.
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• NSset which represents individual neutrosophic sets, where each element in the uni-

verse has associated degrees of membership, indeterminacy, and non-membership. Pri-

mary methods include:

– NSunion(nset) - Computes the union of the current neutrosophic set with

another specified set

– NSintersection(nset) - Finds the intersection of the current set with another

– NScomplement() - Generates the complement of the neutrosophic set, flipping

the membership, indeterminacy, and non-membership values

– NSdifference(nset) - Calculates the neutrosophic difference between the cur-

rent set and another

– isNSdisjoint(nset) - Verifies if the current set is disjoint from the given

neutrosophic set.

• NSmapping that is designed to manage mappings between two neutrosophic universe

sets, each instance of this class holds a dictionary to represent the mapping relations.

It includes methods such as:

– getDomain() - Retrieves the domain of the mapping as an NSuniverse object

– getCodomain() - Returns the codomain as an NSuniverse object

– getMap() - Provides access to the dictionary of element-value pairs defining the

mapping

– setValue(u, v) - Assigns a codomain element v to a domain element u

– getValue(u) - Returns the mapping value of a given element u from the domain

– getFibre(v) - Identifies all elements in the domain that map to a specified

codomain value v, effectively finding the fibre of v

– NSimage(nset) - Computes the neutrosophic image of a given neutrosophic set

– NScounterimage(nset) - Determines the neutrosophic counterimage for the

specified neutrosophic set.

In summary, the PYNS framework, as developed by Nordo et al. [13], provides a robust foun-

dation for neutrosophic modeling in Python, structured around the core classes NSuniverse,

NSset, and NSmapping. With approximately 1500 lines of code, PYNS supports intuitive

operations on neutrosophic universes, individual sets, and mappings. Key functionalities in-

clude fundamental operations such as neutrosophic union, intersection, difference, and com-

plement, as well as the computation of images and counterimages through mappings, all of

which contribute to a flexible toolset for handling neutrosophic structures across various types

of universes.

The modular design of PYNS not only supports interactive use, ideal for experimentation and

the exploration of neutrosophic properties, but also facilitates integration into larger Python
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projects due to its adaptable architecture and comprehensive, example-rich documentation.

This ease of use and flexibility makes the PYNS framework a valuable open source tool for ex-

ploring the properties of neutrosophic sets, with applications spanning diverse areas of research

that benefit from neutrosophic set theory.

Despite its comprehensive capabilities, PYNS currently lacks a mechanism for systematically

managing collections of neutrosophic sets that could serve as bases or sub-bases in topologi-

cal constructions. The ability to handle such collections is crucial for building and verifying

topological structures in neutrosophic settings, which remain essential for advanced applica-

tions and theoretical explorations in neutrosophic topology. This limitation is addressed by

extending the PYNS framework with the NSfamily class, presented in this paper which pro-

vides the necessary functionality to manage and interact with families of neutrosophic sets and

neutrosophic topologies.

3. The NSfamily Class

The NSfamily class enhances the PYNS framework by enabling the construction and man-

agement of neutrosophic families, which serve as bases or sub-bases for topology generation.

Inspired by Ozturk’s theoretical work on neutrosophic topology [14] and Salama et al.’s object-

oriented design principles [20,21], NSfamily provides a unified interface for creating topologies

and verifying closure properties within neutrosophic environments. By adding NSfamily to

the other three classes NSuniverse, NSset and NSmapping above described, the framework

PYNS now supports topological operations on families of neutrosophic sets within the same

universe, bridging a key gap in the framework and enabling systematic topology construction.

The UML diagram below illustrates the relationships among the classes, with dashed arrows

indicating ”uses” relationships.

NSuniverse

NSsetNSmapping

NSfamily

The NSfamily class manages families of neutrosophic sets stored as lists of objects of the

class NSset sharing the same universe set and can be shortly described by means of its main

properties and methods in the following UML class diagram.
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NSfamily

neutrosophicfamily : list of NSset

init (*args) : constructor with generic argument
storeName() : save the name of the family as a property of the object itself
setUniverse() : sets the universe of the neutrosophic sets family
cardinality() : returns the number of elements of the neutrosophic family
isSubset(nsfamily) : checks if is contained in that passed as parameter
isSuperset(nsfamily) : checks if contains that passed as parameter
union(nsfamily) : returns the union with another one
intersection(nsfamily) : returns the intersection with another one
isDisjoint(nsfamily) : checks if is disjoint with another one
difference(nsfamily) : returns the set difference with another one
complement() : returns the family of neutrosophically complemented neutrosophic sets
getNSBase() : returns the neutrosophic topological base containing the current family
getNSTopologyByBase() : returns the neutrosophic topology from a neutrosophic base
getNSTopologyBySubBase() : returns the neutrosophic topology from the given family
isNeutrosophicTopology() : checks if the family forms a neutrosophic topology

The NSfamily constructor initializes a family of neutrosophic sets over a shared universe.

The initialization process is detailed in the following algorithm:

Constructor method of the class NSfamily

Function init (args):
Initialize the private property neutrosophicfamily as an empty list
Get the length of args
if length = 0 then

Set universe to None
else if length = 1 then

Let elem be the first and only element in args
if elem is an instance of NSset then

Add elem to neutrosophicfamily and set universe to the universe of elem

else if elem is a list or tuple then
foreach e in elem do

if e is not in neutrosophicfamily then
Set the name of e and add it to neutrosophicfamily

if neutrosophicfamily is not empty then
Set universe to the universe of the first element in neutrosophicfamily

else
Set universe to None

else if length > 1 then
foreach e in args do

if e is not in neutrosophicfamily then
Set the name of e and add it to neutrosophicfamily

Set universe to the universe of the first element in args

Store universe, neutrosophicfamily as private properties
Set the private property name to None
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The Python code corresponding to the constructor method of the NSfamily class is given

below.

1 from .ns_universe import NSuniverse
2 from .ns_set import NSset
3 from .ns_util import NSreplace,NSstringToDict,NSisExtDict,nameToBB,isBB
4 import inspect
5 from itertools import combinations
6 from functools import reduce
7 from time import time

9 class NSfamily:

11 def init (self, *args):
12 neutrosophicfamily = list()
13 length = len(args)
14 if length == 0:
15 universe = None
16 elif length == 1:
17 elem = args[0]
18 if type(elem) == NSset:
19 neutrosophicfamily = [elem]
20 universe = elem.getUniverse()
21 elif type(elem) in [list ,tuple]:
22 for e in elem:
23 if e not in neutrosophicfamily:
24 e.setName(e.getName())
25 neutrosophicfamily.append(e)
26 if len(neutrosophicfamily) > 0:
27 universe = neutrosophicfamily[0].getUniverse()
28 else:
29 universe = None
30 elif length > 1:
31 for e in args:
32 if e not in neutrosophicfamily:
33 e.setName(e.getName())
34 neutrosophicfamily.append(e)
35 universe = args[0].getUniverse()
36 self. universe = universe
37 self. neutrosophicfamily = neutrosophicfamily
38 self. name = None

The NSfamily constructor offers flexible initialization to handle various cases in creating

neutrosophic set families, managing arguments through the *args parameter. This enables

creation from individual sets, collections, or copies of existing NSfamily objects:

• empty family: NSfamily() creates an empty family with no universe, allowing ele-

ments to be added incrementally

• single neutrosophic set: NSfamily(ns set) initializes a family with one set, inher-

iting its universe
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• list or tuple of sets: NSfamily([ns set1, ns set2, ...]) or or

NSfamily((ns set1, ns set2, ...)) accepts a collection, avoiding duplicates

and setting the universe based on the first set

• multiple sets as arguments: NSfamily(ns set1, ns set2, ...) creates a fam-

ily from the specified sets, with the universe derived from the first neutrosophic set,

ensuring no duplicate entries

• existing NSfamily object: NSfamily(existing family) copies an existing fam-

ily, creating an independent object with the same universe.

This versatility allows the NSfamily class to support a broad range of initial configurations,

thereby facilitating the manipulation and management of neutrosophic set families.

In order to conveniently display families of neutrosophic sets in both simplified and tabular

text formats while providing a comprehensive representation, the special methods str ()

and format () have been implemented. These methods allow customization of the output

format, especially when using the print function with f-strings for displaying NSfamily

objects. The format () method supports the following format specifiers:

s: : simple format (default), offering a straightforward textual representation

t: : tabular format, presenting data in a structured and neatly aligned manner

l: : includes a label with the NSfamily object’s name, if available

x: : extended format, providing additional spacing in the first column to accommodate

longer names or labels.

1 def str (self, tabularFormat=False, label=False, extended=False):
2 labelname = ""
3 if label and self. name is not None:
4 labelname = f"{self. name} = "
5 if not self. neutrosophicfamily:
6 return labelname + "\u2205"
7 indentation = " "*(len(labelname) + 2)
8 if not tabularFormat:
9 if extended:

10 items = [a. str (tabularFormat, True, extended)
11 for a in self. neutrosophicfamily]
12 formatted_lines=[", ".join(items[i:i + 2]) for i in range(0,len(

items),2)]
13 return labelname+"{ "+f",\n{indentation}".join(formatted_lines)+"

}\n"
14 else:
15 return labelname + "{ " + ", ".join(
16 [a. str (tabularFormat, True, extended)
17 for a in self. neutrosophicfamily]) + " }\n"
18 res = labelname + "{ " + ", ".join(
19 [a. str (tabularFormat, True, extended)
20 for a in self. neutrosophicfamily]) + " }\n"
21 return res
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23 def format (self, spec):
24 label = "l" in spec
25 extended = "x" in spec
26 if "t" in spec:
27 result = self. str (tabularFormat=True, label=label, extended=extended

)
28 else:
29 result = self. str (tabularFormat=False, label=label, extended=

extended)
30 return result

Some basic methods facilitate the management of neutrosophic family properties.

The storeName()method captures the object’s name from the local context, while getName

() retrieves it if stored. getUniverse() returns the associated NSuniverse of the neu-

trosophic family, and setUniverse() sets it, ensuring it is a valid NSuniverse instance.

Finally, cardinality() provides the count of neutrosophic sets within the family. Their

code is given below.

1 def storeName(self):
2 frame = inspect.currentframe().f_back
3 local_vars = frame.f_locals
4 var_name = next((nm for nm, vl in local_vars.items()
5 if vl is self), None)
6 self. name = var_name

8 def getName(self):
9 return self. name

11 def getUniverse(self):
12 return self. universe

14 def setUniverse(self, universe):
15 if type(universe) != NSuniverse:
16 raise ValueError("The parameter’s type must be NSuniverse.")
17 self. universe = universe

19 def cardinality(self):
20 return len(self. neutrosophicfamily)

Let us illustrate what just said with an example of code executed interactively in the Python

console.

>>> from NS.pyns.ns_universe import NSuniverse
>>> from NS.pyns.ns_set import NSset
>>> from NS.pyns.ns_family import NSfamily
>>> U = NSuniverse("a,b,c")
>>> A1 = NSset(U, "(0.4,0.4,0.3), (0.1,0.1,0.1), (0.2,0.2,0.2)")
>>> A2 = NSset(U, "(0.1,0.2,0.9), (0.9,0.1,0.3), (0.5,0.3,0.4)")
>>> A1.storeName()
>>> A2.storeName()
>>> E = NSset.EMPTY(U)
>>> L = NSfamily(E, A1, A2)
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>>> L.storeName()
>>> print(f"family {L:lx}")
family L = { A1 = < a/(0.4,0.4,0.3), b/(0.1,0.1,0.1), c/(0.2,0.2,0.2) >,

A2 = < a/(0.1,0.2,0.9), b/(0.9,0.1,0.3), c/(0.5,0.3,0.4) > }

The following methods provide essential operations for managing and comparing neutro-

sophic families. These methods allow for determining subset and superset relationships, com-

puting unions and intersections of families, checking for disjoint sets, and calculating differences

and complements.

The isSubset() method verifies if the current neutrosophic family is contained within

another, while the le () method overloads the <= operator to provide a more intuitive

comparison.

1 def isSubset(self, nsfamily):
2 if type(nsfamily) != NSfamily:
3 raise ValueError("the parameter is not a neutrosophic family")
4 if self.getUniverse() != nsfamily.getUniverse():
5 raise ValueError("the two neutrosophic families cannot be defined on

different universe sets")
6 else:
7 result = True
8 for e in self. neutrosophicfamily:
9 if e not in nsfamily. neutrosophicfamily:

10 result = False
11 break
12 return result

14 def le (self, nsfamily):
15 if type(nsfamily) != NSfamily:
16 raise ValueError("the second argument is not a neutrosophic family")
17 return self.isSubset(nsfamily)

Similarly, the isSuperset() method checks if the current neutrosophic family contains

another, with the ge () method overloading the >= operator to simplify this comparison.

1 def isSuperset(self, nsfamily):
2 if type(nsfamily) != NSfamily:
3 raise ValueError("the parameter is not a neutrosophic family")
4 if self.getUniverse() != nsfamily.getUniverse():
5 raise ValueError("the two neutrosophic families cannot be defined on

different universe sets")
6 return nsfamily.isSubset(self)

8 def ge (self, nsfamily):
9 if type(nsfamily) != NSfamily:

10 raise ValueError("the second argument is not a neutrosophic family")
11 return self.isSuperset(nsfamily)

Nordo G., Jafari S., Leyva Vázquez M.Y., A Python Framework Enhancement for Neutrosophic Topologies

Neutrosophic Sets and Systems, Vol. 78, 2025                                                                              264



Equality and inequality between families are determined by overloading the comparison

operators == and =! through the special methods eq () and ne ().

1 def eq (self, nsfamily):
2 if type(nsfamily) != NSfamily:
3 raise ValueError("the second argument is not a neutrosophic family")
4 if self.getUniverse() != nsfamily.getUniverse():
5 raise ValueError("the two neutrosophic families cannot be defined on

different universe sets")
6 equal = self.isSubset(nsfamily) and nsfamily.isSubset(self)
7 return equal

9 def ne (self, nsfamily):
10 if type(nsfamily) != NSfamily:
11 raise ValueError("the second argument is not a neutrosophic family")
12 if self.getUniverse() != nsfamily.getUniverse():
13 raise ValueError("the two neutrosophic families cannot be defined on

different universe sets")
14 different = not (self == nsfamily)
15 return different

The union() method, along with its operator + overloaded by add (), combines two

neutrosophic families into one, eliminating duplicates and ensuring they share the same uni-

verse.

1 def union(self, nsfamily):
2 if not isinstance(nsfamily, NSfamily):
3 raise ValueError("The parameter is not a neutrosophic family.")
4 if self.getUniverse() != nsfamily.getUniverse():
5 raise ValueError("The two neutrosophic families cannot be defined
6 on different universes.")
7 combined_sets = self. neutrosophicfamily +
8 [s for s in nsfamily. neutrosophicfamily
9 if s not in self. neutrosophicfamily]

10 return NSfamily(combined_sets)

12 def add (self, nsfamily):
13 if not isinstance(nsfamily, NSfamily):
14 raise ValueError("the second argument is not a neutrosophic family")
15 return self.union(nsfamily)

The intersection() method identifies common elements between two families, facili-

tated by the & operator via and (), while isDisjoint() checks for disjointness.

1 def intersection(self, nsfamily):
2 if not isinstance(nsfamily, NSfamily):
3 raise ValueError("The parameter is not a neutrosophic family.")
4 if self.getUniverse() != nsfamily.getUniverse():
5 raise ValueError("The two neutrosophic families cannot be defined on

different universes.")
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6 common_sets = [s for s in self. neutrosophicfamily
7 if s in nsfamily. neutrosophicfamily]
8 return NSfamily(common_sets)

10 def and (self, nsfamily):
11 if not isinstance(nsfamily, NSfamily):
12 raise ValueError("the second argument is not a neutrosophic family")
13 return self.intersection(nsfamily)

15 def isDisjoint(self, nsfamily):
16 nsemptyfamily = NSfamily()
17 nsemptyfamily.setUniverse(self.getUniverse())
18 intersez = self.intersection(nsfamily)
19 disjoint = intersez.cardinality() == 0
20 return disjoint

The difference() method and its - operator via sub () return the elements unique

to the first family, and complement() along with ˜ (overloaded by the special method

invert ()) yields the family consisting of the neutrosophic complements of the neutrosophic

sets of the original family.

1 def difference(self, nsfamily):
2 if not isinstance(nsfamily, NSfamily):
3 raise ValueError("The parameter is not a neutrosophic family.")
4 if self.getUniverse() != nsfamily.getUniverse():
5 raise ValueError("The two neutrosophic families cannot be defined on

different universes.")
6 unique_sets = [s for s in self. neutrosophicfamily
7 if s not in nsfamily. neutrosophicfamily]
8 return NSfamily(unique_sets)

10 def sub (self, nsfamily):
11 if not isinstance(nsfamily, NSfamily):
12 raise ValueError("The second argument is not a neutrosophic family")
13 return self.difference(nsfamily)

15 def complement(self):
16 complementary_sets = [ns_set.NScomplement()
17 for ns_set in self. neutrosophicfamily]
18 return NSfamily(complementary_sets)

20 def invert (self):
21 return self.complement()

From Proposition 2.16 and Definition 2.17 we know that any family of neutrosophic sets over

a same universe set is a neutrosophic sub-basis for the neutrosophic topology T (S ) generated

by S which has the family B(S ) of all finite neutrosophic intersections of S as neutrosophic

basis.

The method getNSBase returns a neutrosophic topological basis from the current neutro-

sophic family regarded as a sub-basis by generating all its possible neutrosophic intersections.
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Method getNSBase

Function getNSBase():
Let subbase be self. neutrosophicfamily
Initialize an empty list base
for i← 1 to len(subbase) do

foreach combination in combinations(subbase, i) do
Compute intersection by applying NSintersection on all elements in
combination
if intersection name is not empty then

Set the name of intersection to intersection name

foreach s in subbase do
if intersection equals s then

Set the name of intersection to name of s
break

Add intersection to base

Convert base to an NSfamily object
Set the universe of base to self.getUniverse()
return base

The Python code corresponding to the method getNSBase is given below.

1 def getNSBase(self):
2 subbase = self. neutrosophicfamily
3 base = list()
4 for i in range(1, len(subbase) + 1):
5 for combin in combinations(subbase, i):
6 intersez = reduce(lambda x, y: x.NSintersection(y), combin)
7 names = [s.getName() for s in combin if s.getName()]
8 intersez_name = " ⋒ ".join(names) if names else None
9 if intersez_name:

10 intersez.setName(intersez_name)
11 for s in subbase:
12 if intersez == s:
13 intersez.setName(s.getName())
14 break
15 base.append(intersez)
16 base = NSfamily(base)
17 base.setUniverse(self.getUniverse())
18 return base

As an example, we show how the method described above can be used in the interactive

mode by means of the Python console:

>>> from pyns.ns_universe import NSuniverse
>>> from pyns.ns_set import NSset
>>> from pyns.ns_family import NSfamily
>>> U = NSuniverse("a,b,c")
>>> A1 = NSset(U, "(0.4,0.4,0.3), (0.1,0.1,0.1), (0.2,0.2,0.2)")
>>> A2 = NSset(U, "(0.1,0.2,0.9), (0.9,0.1,0.3), (0.5,0.3,0.4)")
>>> A1.storeName()
>>> A2.storeName()
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>>> L = NSfamily(A1, A2)
>>> L.storeName()
>>> print(f"the neutrosophic family is {L:lt}")
the neutrosophic family is L = {
A1 | membership | indeterminacy | non-membership |

-------------------------------------------------------------
a | 0.4 | 0.4 | 0.3 |
b | 0.1 | 0.1 | 0.1 |
c | 0.2 | 0.2 | 0.2 |

-------------------------------------------------------------
,
A2 | membership | indeterminacy | non-membership |

-------------------------------------------------------------
a | 0.1 | 0.2 | 0.9 |
b | 0.9 | 0.1 | 0.3 |
c | 0.5 | 0.3 | 0.4 |

-------------------------------------------------------------
>>> B = L.getNSBase()
>>> B.storeName()
>>> print(f"basis is {B:lx}")
basis is B = { A1 = < a/(0.4,0.4,0.3), b/(0.1,0.1,0.1), c/(0.2,0.2,0.2) >,

A2 = < a/(0.1,0.2,0.9), b/(0.9,0.1,0.3), c/(0.5,0.3,0.4) >,
A1 ⋒ A2 = < a/(0.1,0.2,0.9), b/(0.1,0.1,0.3), c/(0.2,0.2,0.4) > }

From Proposition 2.16 and Definition 2.13, we know that a base for a topology is a col-

lection of sets from which every open set can be represented as a union of elements of the

base. Specifically, in the context of neutrosophic topology, a neutrosophic base provides the

foundation for generating all possible neutrosophic unions, which form the topology.

The method getNSTopologyByBase returns the neutrosophic topology derived from the

current base. This is accomplished by generating all possible finite neutrosophic unions of the

base sets, thus constructing the full topology.

Method getNSTopologyByBase

Function getNSTopologyByBase():
Let base be self. neutrosophicfamily
Initialize an empty list topology
Create an empty neutrosophic set and add it to topology
for i← 1 to len(base) do

foreach combination in combinations(base, i) do
Compute union by applying NSunion on all elements in combination
Construct the union name based on the combination’s names
Assign union name to union, if applicable
if union matches any base element then

Update union’s name accordingly

Add union to topology

Create an absolute neutrosophic set from the universe and add it to topology
Convert topology to an NSfamily object
Set the universe of topology to self.getUniverse()
return topology

The Python code corresponding to the method getNSTopologyByBase is given below.
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1 def getNSTopologyByBase(self):
2 base = self. neutrosophicfamily
3 topology = list()
4 universe = self. universe
5 empty = NSset.EMPTY(universe)
6 empty.setName("\u2205\u0303")
7 topology.append(empty)
8 for i in range(1, len(base) + 1):
9 for combin in combinations(base, i):

10 union = reduce(lambda x, y: x.NSunion(y), combin)
11 names = [s.getName() for s in combin if s.getName()]
12 union_name = " ⋓ ".join(f"({name})" if "⋒" in name else name
13 for name in names)
14 if union_name:
15 union.setName(union_name)
16 for b in base:
17 if union == b:
18 union.setName(b.getName())
19 break
20 topology.append(union)
21 absolute = NSset.ABSOLUTE(universe)
22 universe_name = universe.getName()
23 absolute.setName(nameToBB(universe_name) if universe_name
24 and not isBB(universe_name) else universe_name)
25 topology.append(absolute)
26 topology = NSfamily(topology)
27 topology.setUniverse(self.getUniverse())
28 return topology

The getNSTopologyBySubBase method constructs the neutrosophic topology derived

from a subbase by computing all possible neutrosophic unions of intersections. It first generates

the neutrosophic base using the getNSBase() method and then forms the complete topology

by applying getNSTopologyByBase() on this base. This process ensures the creation of

a full neutrosophic topology from any given family of neutrosophic sets. The Python code

corresponding to this method is shown below.

1 def getNSTopologyBySubBase(self):
2 nsbase = self.getNSBase()
3 nstopology = nsbase.getNSTopologyByBase()
4 return nstopology

The isNeutrosophicTopology method verifies whether a neutrosophic family satisfies

the axioms of a neutrosophic topology. It ensures the presence of both the empty set and

the universal set in the family, and checks closure properties under union and intersection

operations.
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1 def isNeutrosophicTopology(self):
2 family = self. neutrosophicfamily
3 universe = self. universe
4 empty = NSset.EMPTY(universe)
5 if empty not in family:
6 return False
7 absolute = NSset.ABSOLUTE(universe)
8 if absolute not in family:
9 return False

10 if not self.NSunionClosed():
11 return False
12 if not self.NSintersectionClosed():
13 return False
14 return True

The isNeutrosophicTopology method relies on NSunionClosed

and NSintersectionClosed, both of which delegate the closure verification to the pri-

vate method checkClosure. This method efficiently manages the verification process by

iterating over all possible combinations of sets and applying the specified operation (union or

intersection) provided as a lambda function. By centralizing the core logic of closure checks,

checkClosure ensures consistency and efficiency in determining whether the neutrosophic

family satisfies the closure properties essential for a neutrosophic topology.

1 def checkClosure(self, operation, operation_name):
2 family = self. neutrosophicfamily
3 l = len(family)
4 for i in range(2, l + 1):
5 for combin in combinations(family, i):
6 result = reduce(operation, combin)
7 if result not in family:
8 return False
9 return True

12 def NSunionClosed(self):
13 return self. checkClosure(lambda x,y: x.NSunion(y),"union")

15 def NSintersectionClosed(self:
16 return self. checkClosure(lambda x,y: x.NSintersection(y),"intersection")

The following code example executed interactively in the Python console illustrates the use

of the above described methods.

>>> from pyns.ns_universe import NSuniverse
>>> from pyns.ns_set import NSset
>>> from pyns.ns_family import NSfamily
>>> U = NSuniverse("1,2,3")
>>> B1 = NSset(U, "(0.2,0.4,0.3), (0.6,0.1,0.1), (0.4,0.6,0.3)")
>>> B2 = NSset(U, "(0.3,0.2,0.9), (0.6,0.5,0.3), (0.2,0.3,0.8)")
>>> B1.storeName()
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>>> B2.storeName()
>>> S = NSfamily(B1, B2)
>>> T = S.getNSTopologyBySubBase()
>>> T.storeName()
>>> print(f"topology has cardinality {T.cardinality()} and is:\n {T:tlx}")
topology has cardinality 6 and is:
T = {

∅̃ | membership | indeterminacy | non-membership |
------------------------------------------------------------------
1 | 0 | 0 | 1 |
2 | 0 | 0 | 1 |
3 | 0 | 0 | 1 |

------------------------------------------------------------------
,
B1 | membership | indeterminacy | non-membership |

------------------------------------------------------------------
1 | 0.2 | 0.4 | 0.3 |
2 | 0.6 | 0.1 | 0.1 |
3 | 0.4 | 0.6 | 0.3 |

------------------------------------------------------------------
,
B2 | membership | indeterminacy | non-membership |

------------------------------------------------------------------
1 | 0.3 | 0.2 | 0.9 |
2 | 0.6 | 0.5 | 0.3 |
3 | 0.2 | 0.3 | 0.8 |

------------------------------------------------------------------
,
B1 ⋒ B2 | membership | indeterminacy | non-membership |

------------------------------------------------------------------
1 | 0.2 | 0.2 | 0.9 |
2 | 0.6 | 0.1 | 0.3 |
3 | 0.2 | 0.3 | 0.8 |

------------------------------------------------------------------
,
B1 ⋓ B2 | membership | indeterminacy | non-membership |

------------------------------------------------------------------
1 | 0.3 | 0.4 | 0.3 |
2 | 0.6 | 0.5 | 0.1 |
3 | 0.4 | 0.6 | 0.3 |

------------------------------------------------------------------
,

Ũ | membership | indeterminacy | non-membership |
------------------------------------------------------------------
1 | 1 | 1 | 0 |
2 | 1 | 1 | 0 |
3 | 1 | 1 | 0 |

------------------------------------------------------------------
}

>>> T.isNeutrosophicTopology()
True

4. Conclusions

In this paper, we introduced an extension to the Python Neutrosophic Sets (PYNS) frame-

work with the development of the NSfamily class. This addition allows for the efficient

construction, manipulation, and analysis of neutrosophic families and their roles as bases and

sub-bases in neutrosophic topological spaces. Leveraging existing PYNS classes, NSuniverse
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and NSset, the new class provides robust methods for evaluating closure properties, unions,

intersections, and complements, which are essential operations in topological studies.

The theoretical exploration underscored the adaptability of neutrosophic sets in addressing

indeterminate and inconsistent information, a feature that differentiates them from classical

set theories. The practical implementations demonstrated through detailed examples reveal

the computational efficiency and flexibility of the PYNS framework, particularly in generating

complete neutrosophic topologies from defined families.

Future research will aim to broaden the applicability of neutrosophic topologies, especially

in decision-making scenarios characterized by high uncertainty and indeterminacy. Further

enhancements to the PYNS framework are also planned to optimize performance and extend

support for more complex neutrosophic operations.

This work lays a foundational framework for the integration of neutrosophic topological

methods into various scientific and engineering disciplines. By providing a comprehensive

toolset for the exploration and application of neutrosophic concepts, it opens new avenues for

research where traditional approaches may not suffice.

The source code for the PYNS framework, including the NSfamily class in-

troduced in this paper, is available at https://github.com/giorgionordo/

PythonNeutrosophicTopologies. This repository, licensed under GPL 3.0, serves as

a valuable resource for researchers and practitioners, enabling them to explore, utilize, and

extend neutrosophic topologies in their projects.
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