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Abstract – In this paper, we present equivalent characterizations of k-kernel symmetric (k-KS) 

Quadri Partitioned Neutrosophic Fuzzy Matrices (QPNFMs). Additionally, we establish the 

necessary and sufficient conditions for the Schur complement (SC) within a k-KS QPNFM to be 

k-symmetric. The study also offers equivalent characterizations of both KS and k-KS QPNFMs. A 

few fundamental examples of KS QPNFMs are provided to clarify these concepts. It is shown that 

although k-symmetry implies k-KS, the converse does not necessarily hold. Several fundamental 

properties of k-KS QPNFMs are also derived. Finally, decision-making model utilizing QPNSMs has 

been successfully developed and validated through its application to real-world problems. 

Keywords: QPNFM, Schur Complement, KS, k-KS. 

1. Introduction 

In the growing domain of fuzzy matrix theory, the Schur complement has emerged as a 

powerful mathematical tool, particularly for solving systems of linear equations, matrix 

decomposition, and optimization problems. The Schur complement has been widely applied in 

various branches of linear algebra and matrix theory, enabling the simplification of complex matrix 
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structures by partitioning them into smaller submatrices and providing insights into their 

properties. When extended to fuzzy matrices, the Schur complement offers valuable methods for 

handling uncertainty and vagueness in system modeling, which is especially crucial in real-world 

applications where precise information is often unavailable. In recent years, the integration of 

neutrosophic logic into fuzzy matrices has further advanced the capacity to manage uncertainty. 

Neutrosophic fuzzy matrices introduce three distinct components—truth (T), falsity (F), and 

indeterminacy (I)—which allow for a more nuanced representation of uncertain or incomplete data. 

The k-kernel symmetric matrices, another essential class of matrices in fuzzy theory, provide 

structured approaches for modeling symmetry and balance within systems. These matrices maintain 

symmetry in relation to a kernel, offering valuable properties in matrix decomposition and 

transformation. 

The concept of quadri partitioning within neutrosophic fuzzy matrices introduces a novel 

method for dividing the matrix into four distinct partitions, each of which can represent various 

aspects of the system being modeled. This partitioning method enhances the flexibility of matrix 

operations, enabling more efficient computation and improved structural analysis, especially in 

systems that exhibit complex or multidimensional relationships. The Schur complement in the 

context of k-kernel symmetric quadri partitioned neutrosophic fuzzy matrices represents a fusion of 

these powerful mathematical tools. It aims to extend the traditional Schur complement to this new 

matrix class, allowing for more sophisticated handling of uncertainty and system decomposition. 

The combination of neutrosophic logic, kernel symmetry, and quadri partitioning offers a unique 

framework for solving complex systems with multiple layers of uncertainty, making it particularly 

useful in fields such as decision-making, artificial intelligence, and network theory, where 

incomplete or conflicting information is common. In this study, we explore the application of the 

Schur complement in k-kernel symmetric quadri partitioned neutrosophic fuzzy matrices, aiming to 

extend its utility to more intricate and uncertain systems. This research contributes to the broader 

understanding of matrix theory by introducing novel theoretical frameworks and practical 

methodologies for solving systems with high degrees of uncertainty and complexity. 

The growing complexity of real-world systems has posed significant challenges in modeling 

uncertainty and imprecision. Traditional set theory, which relies on binary logic, often falls short in 

capturing the ambiguity present in natural phenomena. To address these limitations, Lotfi A. Zadeh 

introduced the concept of fuzzy sets in 1965, which allowed for partial membership, offering a more 

flexible framework for uncertainty modeling [1]. This revolutionary idea laid the foundation for 

fuzzy logic and its widespread applications in control systems, decision-making, and artificial 

intelligence.Since Zadeh’s pioneering work, several extensions and generalizations of fuzzy sets 

have emerged, each aimed at refining the ability to handle various forms of uncertainty. Atanassov's 

intuitionistic fuzzy sets, introduced in 1983, provided an additional degree of freedom by 

incorporating both membership and non-membership functions [2]. This model was soon followed 

by Smarandache's introduction of neutrosophic sets, which generalized intuitionistic fuzzy sets by 

adding an indeterminacy function to capture even more complex uncertainties [3]. These 

advancements have been crucial in various fields, such as medical diagnosis, pattern recognition, 

and engineering systems. 

As fuzzy set theory evolved, so did the need for algebraic structures capable of representing and 

processing fuzzy data. Matrix theory emerged as a powerful tool for this purpose, enabling the 

structured manipulation of fuzzy information. One of the early contributions to this area was made 

by Kim and Roush, who generalized the concept of fuzzy matrices in 1980 [4]. This work opened up 

new possibilities for representing relationships between fuzzy quantities in matrix form, making it 

easier to perform operations such as addition, multiplication, and inversion on fuzzy data. 

Following this development, several researchers contributed to expanding the theory and 
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applications of fuzzy matrices. Meenakshi's work in 2008 on fuzzy matrix theory significantly 

advanced the understanding of how matrices can be used in fuzzy logic and decision-making 

systems [5]. Matrix algebra provided a robust mathematical foundation for fuzzy models, and 

studies such as those by Hill and Waters [6] and Baskett and Katz [7] further explored the properties 

of κ-real and κ-Hermitian matrices, as well as EPr matrices. These investigations were essential in 

understanding the behavior of complex matrix operations, which are widely used in systems theory 

and optimization problems. 

In parallel, research on special classes of matrices such as κ-EP matrices and their Schur 

complements gained traction. Meenakshi and Krishnamoorthy made substantial contributions in 

this domain, examining the properties and applications of κ-EP matrices and Schur complements 

[8-10]. Their findings have had significant implications for the study of matrix decompositions and 

applications in numerical analysis, signal processing, and optimization. Moreover, the exploration of 

secondary matrix structures, such as secondary κ-kernel symmetric matrices, introduced new 

directions for research in fuzzy mathematics. These matrices, first studied by Meenakshi and D. Jaya 

Shree, extend the concept of symmetry in matrices to fuzzy environments, allowing for more 

nuanced analysis of fuzzy systems [10-11]. Secondary symmetric matrices, including secondary 

skew-symmetric and orthogonal matrices, were further examined by An Lee [13], contributing to the 

understanding of how symmetry properties can influence matrix behavior in fuzzy systems. 

More recent developments have focused on interval-valued fuzzy matrices, which account for 

uncertainty by allowing membership values to be represented as intervals rather than precise 

numbers. Shyamal and Pal's work in this area demonstrated the utility of interval-valued fuzzy 

matrices in dealing with imprecise data [12, 20]. Building on this, Meenakshi and Kalliraja 

introduced regular interval-valued fuzzy matrices, adding further refinement to the representation 

and manipulation of uncertain information [21]. The introduction of neutrosophic sets by 

Smarandache added another layer of complexity to fuzzy matrix theory. Neutrosophic fuzzy 

matrices, which incorporate indeterminacy in addition to membership and non-membership values, 

have gained considerable attention in recent years. Anandhkumar and colleagues made notable 

contributions to this field, exploring generalized symmetric neutrosophic fuzzy matrices [23] and 

secondary κ-column symmetric neutrosophic fuzzy matrices [24]. These studies have significantly 

expanded the applicability of fuzzy matrices in fields such as image processing, decision analysis, 

and communication systems. 

Neutrosophic matrices have also been applied to new areas of research, including the study of 

pseudo-similarity in neutrosophic fuzzy matrices, as explored by Anandhkumar et al. in 2023 [27]. 

Their findings offer new perspectives on how similarity and dissimilarity can be quantified in fuzzy 

environments, providing valuable insights for applications in data mining, pattern recognition, and 

machine learning. Additionally, various inverse operations on neutrosophic fuzzy matrices, 

examined in [28], have opened up new possibilities for solving complex systems of equations in 

fuzzy environments, with potential applications in artificial intelligence, economics, and systems 

theory. As the field continues to grow, the intersection of matrix theory and fuzzy set theory remains 

a rich area of research. Ongoing studies on the properties of matrices, such as secondary κ-range 

symmetric fuzzy matrices [26] and interval-valued secondary κ-range symmetric neutrosophic 

fuzzy matrices [25], continue to push the boundaries of what is possible with fuzzy systems. 

Punithavalli et al [35] has discussed Reverse Sharp and Left-T Right-T Partial Ordering On IFM. 

These advancements highlight the importance of fuzzy matrix theory in addressing modern 

challenges in various scientific and engineering disciplines. 

  

1.1 Literature Review 
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The concept of fuzzy sets, first introduced by Lotfi A. Zadeh in 1965, revolutionized the field of 

mathematical modeling by allowing for degrees of membership, thus accommodating uncertainty 

and imprecision in real-world systems [1]. Zadeh's work laid the foundation for fuzzy logic, which 

has since become essential in diverse applications, from control systems and decision-making to 

artificial intelligence and data analysis. Fuzzy set theory addressed the limitations of classical set 

theory, where membership was strictly binary. By allowing partial membership, fuzzy sets provided 

a more nuanced approach to modeling uncertainty. 

Further developments in fuzzy set theory led to the introduction of intuitionistic fuzzy sets (IFS) 

by Atanassov in 1983 [22]. Intuitionistic fuzzy sets extended Zadeh’s fuzzy sets by introducing an 

additional degree of uncertainty through a non-membership function, complementing the 

membership function. Unlike traditional fuzzy sets, which only consider the degree of membership, 

intuitionistic fuzzy sets account for both membership and non-membership, along with a degree of 

hesitation or indeterminacy. 

The theory of intuitionistic fuzzy sets has found applications in areas such as decision-making, 

pattern recognition, and medical diagnosis [2]. For instance, intuitionistic fuzzy sets are particularly 

useful in situations where experts are unsure about the degree to which an element belongs to a set, 

allowing for a more comprehensive representation of uncertainty. Although the initial work focused 

on theoretical aspects, subsequent research has expanded into applications, such as multi-criteria 

decision-making and image processing [2, 12]. 

In 2005, Smarandache introduced neutrosophic sets, a generalization of intuitionistic fuzzy sets 

that incorporated an additional indeterminacy function [3]. Neutrosophic sets allow for the 

representation of truth, falsity, and indeterminacy independently, making them more flexible for 

handling complex uncertainty. This development addressed limitations in intuitionistic fuzzy sets, 

where the sum of membership and non-membership functions had to equal 1. Neutrosophic sets 

relaxed this restriction, allowing for more comprehensive modeling of uncertain, inconsistent, and 

incomplete information. 

Neutrosophic sets have since been applied to a wide range of fields, including decision-making, 

optimization, and image processing. The flexibility provided by the independent consideration of 

truth, falsity, and indeterminacy has made neutrosophic sets particularly valuable in environments 

with high uncertainty and ambiguity [23]. More recent work has focused on integrating 

neutrosophic sets with other mathematical frameworks, such as matrices, to improve their 

applicability in complex systems. 

Matrix theory has long been a fundamental tool in various branches of mathematics, and its 

extension to fuzzy environments has expanded its utility. Fuzzy matrices represent relationships 

between fuzzy quantities in a structured way, enabling matrix operations such as addition, 

multiplication, and inversion to be applied to uncertain data [4]. One of the early works in this area 

was Kim and Roush’s 1980 exploration of generalized fuzzy matrices [4]. Their work established the 

foundational concepts needed for the manipulation of fuzzy matrices, setting the stage for further 

research. 
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Subsequent developments in fuzzy matrix theory include A. R. Meenakshi’s work in 2008, 

which contributed significantly to the application of fuzzy matrices in decision-making and 

optimization [5]. Meenakshi’s work extended the theory of fuzzy matrices to include new classes of 

matrices, such as κ-EP matrices, which have important applications in system theory, numerical 

analysis, and signal processing [8-10]. 

Research on the Schur complement of κ-EP matrices by Meenakshi and Krishnamoorthy has been 

particularly influential, as it addresses the properties and behavior of matrices under certain 

transformations [9]. The Schur complement plays a vital role in the decomposition of matrices and 

has applications in solving systems of linear equations, making it an essential tool in fields such as 

optimization, control theory, and econometrics. 

 

One significant extension of fuzzy matrix theory is the development of interval-valued fuzzy 

matrices, which allow for the representation of uncertainty in the form of intervals rather than 

precise membership values. This approach was introduced by Shyamal and Pal in 2006 [12], who 

demonstrated the advantages of interval-valued fuzzy matrices in handling data with a high degree 

of imprecision. By allowing membership values to vary within a range, interval-valued fuzzy 

matrices offer a more flexible and realistic representation of uncertainty in real-world problems, 

where exact probabilities or membership degrees may be difficult to obtain. 

 

Meenakshi and Kalliraja further developed this concept by introducing regular interval-valued 

fuzzy matrices, which added an additional layer of structure and consistency to the representation of 

uncertainty [21]. These matrices have found applications in areas such as decision analysis and 

pattern recognition, where handling imprecise data is critical.The introduction of neutrosophic sets 

into matrix theory led to the development of neutrosophic fuzzy matrices, which incorporate the 

three components of neutrosophic logic: truth, falsity, and indeterminacy [23]. This extension allows 

matrices to model even more complex forms of uncertainty, where the degree of indeterminacy 

plays a significant role. 

 

Anandhkumar and colleagues have been at the forefront of research on neutrosophic fuzzy 

matrices, exploring several new classes of matrices, such as generalized symmetric neutrosophic 

fuzzy matrices and secondary κ-column symmetric neutrosophic fuzzy matrices [23-25]. These 

studies have highlighted the potential of neutrosophic fuzzy matrices in fields such as image 

processing, decision support systems, and cryptography, where uncertainty and indeterminacy are 

inherent.In addition to traditional and neutrosophic fuzzy matrices, researchers have investigated 

the properties of secondary matrices, which introduce a new level of symmetry to matrix theory. 

Secondary symmetric, secondary skew-symmetric, and secondary orthogonal matrices, first 

explored by An Lee in 1976 [13], have unique properties that make them useful in specialized 

mathematical and engineering applications. These matrices have been further studied in fuzzy 

environments, particularly in the context of κ-EP matrices and κ-kernel symmetric matrices [10, 11]. 
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Recent advances in the field have focused on the application of fuzzy and neutrosophic 

matrices in modern technologies such as artificial intelligence, machine learning, and blockchain. 

The work of Anandhkumar et al. on pseudo-similarity in neutrosophic fuzzy matrices [27] and 

various inverse operations on these matrices [28] has opened up new possibilities for their use in 

data mining, pattern recognition, and cryptographic systems. Additionally, the exploration of 

time-varying fuzzy matrices and their applications in dynamic systems presents a promising area of 

future research. Despite these advancements, gaps remain in the practical application of fuzzy and 

neutrosophic matrices, particularly in terms of computational efficiency and scalability for 

large-scale systems. Moreover, the unification of various fuzzy matrix frameworks, such as 

intuitionistic, neutrosophic, and interval-valued matrices, into a single, cohesive structure remains 

an open research question. 

 

1.2 Novelties 

In recent years, significant advancements have emerged in the field of fuzzy matrix theory, 

particularly with the integration of neutrosophic logic, which extends the traditional fuzzy set 

framework to handle more complex forms of uncertainty. One of the most notable innovations is the 

development of neutrosophic fuzzy matrices, which incorporate the three elements of truth, falsity, 

and indeterminacy, offering a more comprehensive approach to modeling uncertainty in real-world 

systems [23]. This innovation has paved the way for the creation of new matrix classes, such as 

secondary κ-column symmetric neutrosophic fuzzy matrices and generalized symmetric 

neutrosophic fuzzy matrices [24, 23]. These novel matrix structures enable the representation of 

intricate data relationships, particularly in fields like communication systems and cryptography, 

where uncertainty is pervasive.  

 

Additionally, the introduction of interval-valued neutrosophic matrices has further enhanced 

the ability to model uncertain data through ranges of values, making them particularly useful in 

decision-making and machine learning applications [25]. Recent research also explores the 

pseudo-similarity of neutrosophic matrices, providing new methods to analyze relationships 

between matrices that share approximate similarities, a significant leap for pattern recognition and 

clustering techniques [27]. Moreover, the extension of inverse operations in neutrosophic matrices 

[28] and the application of these matrices in cryptography and blockchain systems represent 

cutting-edge developments, highlighting the vast potential of neutrosophic logic in securing and 

managing decentralized systems. These advancements not only expand the theoretical foundations 

of fuzzy matrices but also demonstrate their growing relevance in modern technologies, offering 

robust tools for handling complex uncertainty across various scientific and engineering domains. 

 

1.3 Research Gap:  

 

Meenakshi, Jayasree [10,17] and Anandhkumar et al [23,24,30] introduced the concepts of 

k-kernel symmetric matrices and the Schur complement in the context of k-KS matrices. 
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Building on their work, we have applied these principles to Quadri Partitioned Neutrosophic 

Fuzzy Matrices (QPNFMs). In this study, we examine several results and extend these 

concepts to QPNFMs. First, we present equivalent characterizations for the Schur complement 

within k-KSQPNFMs and provide equivalent conditions that QPNFMs must satisfy to exhibit 

kernel symmetry (KS). Additionally, we explore the relationship between KS and k-KS in this 

framework. 

 

Table:1 Review of the Extension of QPNFM. 

 

Ref Journal Name  Authors Name Extension of NFM. Year 

[10] Int. Journal of Math. 

Analysis 

A. R. Meenakshi and 

D. Jaya Shree  

On Schur Complement 

in k-Kernel Symmetric 

Matrices,  

1989 

[17]  International Journal 

of Mathematics and 

Mathematical Sciences 

AR.Meenakshi and 

D.Jaya Shree,  

On k-kernel symmetric 

matrices,  

2009 

[23] Neutrosophic Sets and 

Systems 

M.Anandhkumar et al 

 

Generalized Symmetric 

NFM  

 2023 

[30] TWMS J. App. and 

Eng. Math 

G. Punithavalli, and M. 

Anandhkumar,  

Kernel and K-Kernel 

Symmetric IFM 

2024 

[24] Neutrosophic Sets and 

Systems  

 

M. Anandhkumar et al 

 

Secondary k-column 

symmetric NFM 

 

2024 

Proposed Neutrosophic Sets and 

Systems 

K. Radhika et al On Schur Complement in 

k-Kernel Symmetric Block 

QPNFM 

2024 

 

 

 

 

 

 

 

 

 

 

 

 

 

On Schur Complement in 

k-Kernel Symmetric 

Matrices 

On k-kernel symmetric 

matrices, 

Kernel and K-Kernel 

Symmetric IFM 

Secondary k-column 

symmetric NFM 

Generalized 

Symmetric NFM 

On Schur Complement 

in k-Kernel Symmetric 

Block QPNFM 
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1.3.1 Validation and Comparison of QPNFM with Existing Models 

 

The Quadripolar Neutrosophic Fuzzy Matrix (QPNFM) demonstrates significant 

advancements when compared to existing models, such as traditional fuzzy matrices and 

intuitionistic fuzzy matrices (IFM), especially in handling uncertainty and indeterminacy. 

Fuzzy matrices rely on a single membership value to represent truth, making them suitable 

for well-defined problems but often inadequate in contexts involving ambiguity or conflicting 

information. Similarly, while IFMs extend this framework by introducing truth and falsity 

components, they lack a robust mechanism to explicitly account for indeterminacy. 

 

QPNFM addresses these limitations by incorporating quadripolar neutrosophic 

elements, enabling the simultaneous representation of truth, falsity, and indeterminacy as 

independent parameters. This added dimension allows QPNFM to model complex relational 

data with greater precision, particularly in scenarios characterized by incomplete or vague 

information. For example, in social network analysis, where relationships between entities 

may not be clearly defined, QPNFM provides a more nuanced representation compared to 

traditional fuzzy matrices. 

 

Moreover, QPNFM outperforms existing models in practical case studies by effectively 

capturing and processing high degrees of indeterminacy. While this added complexity 

increases computational requirements, the trade-off is justified by the enhanced capability to 

derive meaningful insights and support decision-making. Through empirical validation, 

QPNFM has demonstrated superior accuracy and reliability in modeling and analyzing 

uncertain systems, establishing itself as a comprehensive and effective alternative to 

traditional and intuitionistic fuzzy matrices. 

 

 

1.4 Notation 

let ( , , , )T C I FQ Q Q Q T  transpose of ( , , , )T C I FQ Q Q Q ,   

R( ( , , , )T C I FQ Q Q Q ) Row space of  ( , , , )T C I FQ Q Q Q   

N( ( , , , )T C I FQ Q Q Q ) Null space of  ( , , , )T C I FQ Q Q Q  

( , , , )T C I FQ Q Q Q +
 Moore-Penrose inverse of  ( , , , )T C I FQ Q Q Q  

C( ( , , , )T C I FQ Q Q Q ) column space of  ( , , , )T C I FQ Q Q Q   

QPNFM = Quadri Partitioned Neutrosophic fuzzy matrices,  

KSNFM=Kernel symmetric Neutrosophic fuzzy matrices,   

KS  =  Kernel  symmetr i c ,  

RS  =  Range  symmetr ic ,  
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PM =Permutat ion matr ices .  

1.5 The structure of the article is as follows.  

In section 1, We present intraduction, Literature Review, Novelties, Research Gap, Notation. 

In section 2, We present some elementary definitions and findings.  

In section 3, we provided k-kernel symmetric QPNFM.  

In section 4,  we introduced schur complement in k-kernel symmetric QPNFM. 

In section 5, Application of Fuzzy Quadripartitioned Neutrosophic Soft Matrix in Medical Decision 

Making Problem 

 

2 .Defini t ions  and Theorems  

Definition : 2.1 Let Q =< ( , , , )T C I FQ Q Q Q > ∈ (QPNFM)n then Q is called as kernel or null if 

N ( , , , )T C I FQ Q Q Q  = {x ∈ ( )
1n

QPNFM  /  x ( , , , )T C I FQ Q Q Q = (0,0,1,1) } = (0,0,1,1).  

 

Example: 2.1 Consider a QPNFM 

0.5,0.6,0.7,0.4 0.3,0.3,0.7,0.9 0.9,0.4,0.3,0.1

( , , , ) 0.2,0.6,0.4,0.8 0.6,0.1,0.7,0.6 0.1,0.6,0.7,0.2

0.9,0.6,0.7,0.4 0.4,0.6,0.7,0.8 0.2,0.4,0.7,0.1

T C I FQ Q Q Q Q

      
 

= =      
 
       

Choose,   ( )
1

, , , , , , , , , , ,
n

x a b c d e f g h i j k l QPNFM=         

Such that ( , , , ) (0,0,1,1)T C I Fx Q Q Q Q =  

Therefore, ( , , , ) (0,0,1,1)T C I FN Q Q Q Q =   

Definition 2.2 A QPNFM ( , , , ) ( )T C I F

nQ Q Q Q QPNFM is said to be k-kernel symmetric if  

N( ( , , , )T C I FQ Q Q Q ) = N(K ( , , , )T C I FQ Q Q Q T K).  

Definition 2.3 For QPNFM ( , , , ) ( )T C I F

nQ Q Q Q QPNFM  is kernel symmetric if 

N ( , , , )T C I FQ Q Q Q = N( ( , , , )T C I FQ Q Q Q T). . 

Example: 2.2 Consider a QPNFM 

0.7,0.6,0.2,0.4 0.6,0.3,0.5,0.9 0.1,0.4,0.4,0.1

( , , , ) 0.3,0.6,0.4,1 0.6,0.1,0.2,0.6 0.4,0.6,0.7,0.2

0.2,0.6,0.5,0.4 0.4,0.6,0.5,0.8 0.2,0.4,0.7,0.1

T C I FQ Q Q Q Q

      
 

= =      
 
       

Choose,   ( )
1

, , , , , , , , , , ,
n

x a b c d e f g h i j k l QPNFM=         
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Such that ( , , , ) (0,0,1,1)T C I Fx Q Q Q Q =  

Therefore, ( , , , ) (0,0,1,1)T C I FN Q Q Q Q =  

0.7,0.6,0.2,0.4 0.3,0.6,0.4,1 0.2,0.6,0.5,0.4

( , , , ) 0.6,0.3,0.5,0.9 0.6,0.1,0.2,0.6 0.4,0.6,0.5,0.8

0.1,0.4,0.4,0.1 0.4,0.6,0.5,0.8 0.2,0.4,0.7,0.1

T T C I F TQ Q Q Q Q

      
 

= =      
 
       

 Choose,   ( )
1

, , , , , , , , , , ,
n

x a b c d e f g h i j k l QPNFM=         

Such that ( , , , ) (0,0,1,1)T C I Fx Q Q Q Q =  

Therefore, ( , , , ) (0,0,1,1)T C I FN Q Q Q Q =  

Therefore, N ( , , , )T C I FQ Q Q Q = N( ( , , , )T C I FQ Q Q Q T). . 

Definition 2.4  For ( , , , ),T C I FQ Q Q Q ( , , , )T C I FR R R R  ∈ QPNFMn, ( , , , )T C I FQ Q Q Q  

is k-similar to ( , , , )T C I FR R R R  if there exists a permutation matrix (PM)  P such that 

( , , , )T C I FQ Q Q Q = (KPTK) ( , , , )T C I FR R R R P. 

Theorem 2.1  For A ∈ Fn, the following subsequence are equivalent:   

(i)  A is KS, 

(ii) PAPT is KS for some PM  P,  

(iii)  There exists a PM  such that 
0

0 0

D
PAP

 
=  
   

with det D > 0 

3. k-kernel symmetric Quadri Partitioned Neutrosophic fuzzy matrices 

 Consider ( , , , )T C I FQ Q Q Q  to be a QPNFM. If ( , , , )T C I FQ Q Q Q  is a part of 

(QPNFM)n is known as k-kernel symmetric QPNFM if N( ( , , , )T C I FQ Q Q Q ) is more 

significant than N(K ( , , , )T C I FQ Q Q Q TK). Matrices are essential in a variety of areas of 

research in engineering and science. The conventional matrix theory must address issues with 

a wide range of uncertainty. Let QPNFMmn indicates the set of every m×n QPNFM 

over the QP NF algebra (QPNF)n. We denote a solution Z of the equation 

( , , , )T C I FQ Q Q Q Z ( , , , )T C I FQ Q Q Q  = ( , , , )T C I FQ Q Q Q  by ( , , , )T C I FQ Q Q Q −
. 
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For a complex matrix Q subdivided in the form 

( , , , ) ( , , , )

( , , , ) ( , , , )

T C I F T C I F

T C I F T C I F

Q Q Q Q R R R R
Q

S S S S T T T T

 
=  
 

 . 

Schur complement of  ( , , , )T C I FQ Q Q Q  in Q denoted 

by ( , , , )T C I FT T T T ( , , , )T C I FS S S S− ( , , , )T C I FQ Q Q Q − ( , , , )T C I FR R R R . T h i s  i s  

k n o w n  as the QPNFM generalized Schur complement. If 

( , , , )T C I FQ Q Q Q Z ( , , , )T C I FQ Q Q Q = ( , , , )T C I FQ Q Q Q  has a solution, 

( , , , )T C I FQ Q Q Q  is considered regular. A solution Z to the 

equation ( , , , )T C I FQ Q Q Q Z ( , , , )T C I FQ Q Q Q = ( , , , )T C I FQ Q Q Q  is defined by 

( , , , )T C I FQ Q Q Q −
 and is referred to as a generalized inverse, or generalized inverse of 

( , , , )T C I FQ Q Q Q . 

 A QPNFM ( , , , )T C I FQ Q Q Q  is range symmetric if R ( , , , )T C I FQ Q Q Q = 

R ( , , , )T C I FQ Q Q Q T and kernel symmetric if N ( , , , )T C I FQ Q Q Q = N ( , , , )T C I FQ Q Q Q T. For 

QPNFM ( , , , )T C I FQ Q Q Q ∈ QPNFMn, ( , , , )T C I FQ Q Q Q  is range symmetric, that is, 

R ( , , , )T C I FQ Q Q Q = R ( , , , )T C I FQ Q Q Q T implies N ( , , , )T C I FQ Q Q Q = N ( , , , )T C I FQ Q Q Q T 

but converse needs not be true. 

Definition: 3.1  Let [ , , , ]T C I FR R R R R=   be a QPNFM, if R [ [ , , , ]T C I FR R R R ] = R 

[[ , , , ]T C I FR R R R T] then [ , , , ]T C I FR R R R R=   is called as RS. 

Example: 3.1 Consider an QPNFM 

 

0.4,0,1,0.6 1,0,1,1 0.2,0.3,0.4,0.7

[ , , , ] 1,0,1,1 1,0,1,1 1,0,1,1

0.2,0.3,0.4,0.7 1,0,1,1 1,0,1,1

T C I FR R R R

      
 

=      
 
         

Here, R [ , , , ]T C I FR R R R = R [[ , , , ]T C I FR R R R T]  Range symmetric  

Therefore N [ , , , ]T C I FR R R R = N[[ , , , ]T C I FR R R R T]  kernel symmetric  
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Therefore the above example both Range symmetric and kernel symmetric QPNFM. 

The following matrices does not satisfy the range symmetric condition 

0.4,0,1,0.7 1,0,1,1 0.2,0.3,0.4,0.6

[ , , , ] 1,0,1,1 1,0,1,1 1,0,1,1

0.2,0.4,0.4,0.6 1,0,1,1 1,0,1,1

T C I FR R R R

      
 

=      
 
         

0.4,0,1,0.7 1,0,1,1 0.2,0.4,0.4,0.6

[ , , , ] 1,0,1,1 1,0,1,1 1,0,1,1

0.2,0.3,0.4,0.6 1,0,1,1 1,0,1,1

T

T C I FR R R R

      
 

=      
 
         

 (0.4,0,1,0.7) (1,0,1,1) (0.2,0.3,0.4,0.6) ([ , , , ]) ,T C I FR R R R R
 

 (0.4,0,1,0.7) (1,0,1,1) (0.2,0.3,0.4,0.6) ([ , , , ] )T

T C I FR R R R R
, 

 (1,0,1,1) (1,0,1,1) (1,0,1,1) [ , , , ],T C I FR R R R R
 

 (1,0,1,1) (1,0,1,1) (1,0,1,1) ([ , , , ] ),T

T C I FR R R R R

 (0.2,0.4,0.4,0.6) (1,0,1,1) (1,0,1,1) ([ , , , ]) ,T C I FR R R R R
 

 (0.2,0.4,0.4,0.6) (1,0,1,1) (1,0,1,1) ([ , , , ] )T

T C I FR R R R R
, 

Here, R [ , , , ]T C I FR R R R   R [[ , , , ]T C I FR R R R T]  not Range symmetric  

Therefore N [ , , , ]T C I FR R R R = N[[ , , , ]T C I FR R R R T]  kernel symmetric  

Remark: 3.1 The above example shows that a kernel-symmetric QPNFM is not necessarily 

range-symmetric. Consequently, every range-symmetric QPNFM is also kernel-symmetric. 

Remark 3.2. In particular, when κ(i)= i for each i = 1 to n, the associated PM K reduces to the 

identity matrix reduces to N( ( , , , )T C I FQ Q Q Q ) = N( ( , , , )T C I FQ Q Q Q )T , that is, 

( , , , )T C I FQ Q Q Q  is kernel symmetric. If ( , , , )T C I FQ Q Q Q  is symmetric, then 

( , , , )T C I FQ Q Q Q  is k-KS for all transpositions k in Sn.  

 Further, ( , , , )T C I FQ Q Q Q  is k-Symmetric implies it is k-KS, for ( , , , )T C I FQ Q Q Q = 

K ( , , , )T C I FQ Q Q Q TK automatically implies N( ( , , , )T C I FQ Q Q Q ) = N(K ( , , , )T C I FQ Q Q Q TK).  
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The opposite need not be true, though.  

Therefore, ( , , , )T C I FQ Q Q Q    K ( , , , )T C I FQ Q Q Q T K    

But, N ( ( , , , )T C I FQ Q Q Q ) = N(K ( , , , )T C I FQ Q Q Q T K) = (0,0,1,1)  

Therefore, ( , , , )T C I FQ Q Q Q  is not k-symmetric. For this ( , , , )T C I FQ Q Q Q  , since 

( , , , )T C I FQ Q Q Q  has no zero rows and no zero columns. N(K ( , , , )T C I FQ Q Q Q TK )= (0,0,1,1) . 

Hence ( , , , )T C I FQ Q Q Q  is k-KS, but ( , , , )T C I FQ Q Q Q  is not k-symmetric. 

Theorem 3.1 Let 
( , , , ) (0,0,1,1)

( , , , )
(0,0,1,1) (0,0,1,1)

T C I F

T C I F T T T T
R R R R

 
=  
 

where 

( , , , )T C I FT T T T  is r × r QPNFM with no zero rows and no zero columns, then the following 

equivalent conditions hold: 

(i) ( , , , )T C I FR R R R  is k-KS 

(ii) ( )( , , , ) ( , , , )
T

T C I F T T C I FN R R R R N R R R R K=  

(iii) 
1

2

(0,0,1,1)

(0,0,1,1)

K
K

K

 
=  
   

where K1 and K2 are QPNFPM of order r and n-r, 

respectively, 

Proof: Since ( , , , )T C I FT T T T  has no zero rows and no zero columns 

( , , , ) ( , , , ) (0,0,1,1).T C I F T C I F TN T T T T N T T T T= =  

Therefore, ( , , , ) ( , , , ) (0,0,1,1)T C I F T C I F TN R R R R N R R R R=  and ( , , , )T C I FR R R R   

is KS. 

Now we will show that (i),(ii) and (iii) . ( , , , )T C I FR R R R  is k-KS⇔  

( )( , , , ) ( , , , )
T

T C I F T C I FN R R R R N R R R R K=
. 

Choose z =[ 0  y]  with all element of (0,0,1,1)y   and subdivided in conformity with that 
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of 
( , , , ) (0,0,1,1)

( , , , )
(0,0,1,1) (0,0,1,1)

T C I F

T C I F T T T T
R R R R

 
=  
   

Clearly, 

( )( , , , ) ( , , , ) ( , , , ) .
T

T C I F T C I F T T C I Fz N R R R R N R R R R N R R R R K = =

 

Let us subdivided  K as 
1 3

3 2

T

K K
K

K K

 
=  
 

 

Then 

1 3

3 2

( , , , ) (0,0,1,1)
( , , , )

(0,0,1,1) (0,0,1,1)

T C I F T

T C I F

T

K K T T T T
K R R R R

K K

  
=   
   

1

3

( , , , ) (0,0,1,1)

( , , , ) (0,0,1,1)

T C I F T

T T C I F T

K T T T T

K T T T T

 
=  
 

( )[0 ] ( , , , ) ( , , , )T C I F T C I F Tz y N R R R R N K R R R R=  =

1

3

( , , , ) (0,0,1,1)
[0 ] (0,0,1,1)

( , , , ) (0,0,1,1)

T C I F T

T T C I F T

K T T T T
y

K T T T T

 
 = 

 

3( , , , ) (0,0,1,1)T T C I F TyK T T T T =

 

Since ( , , , ) (0,0,1,1),T C I F TN T T T T = it follows that 
3 (0,0,1,1)TyK = . 

Since all element of y (0,0,1,1) under max-min arrangement 
3 (0,0,1,1)TyK =   this 

implies 
3

TK (0,0,1,1)= 
3K (0,0,1,1)= . 

Therefore 
1

2

(0,0,1,1)

(0,0,1,1)

K
K

K

 
=  
 

 

Thus, (iii) holds, conversely, if (iii) holds, then 
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1( , , , ) (0,0,1,1)
( , , , ) ,

(0,0,1,1) (0,0,1,1)

T C I F T

T C I F T K T T T T
K R R R R

 
=  
   

( ) ( )( , , , ) ( , , , )T C I F T T C I FN K R R R R N R R R R=

 

Thus (i)⇔(ii)⇔(iii) holds.  

Theorem 3.2. For ( , , , )T C I FQ Q Q Q ∈ Fn and k = k1k2 . Then the subsequence are equivalent:  

(i) ( , , , )T C I FQ Q Q Q  is k-KS of rank r,  

(ii) ( , , , )T C I FQ Q Q Q  is k-similar to a diagonal block matrix 

( , , , ) (0,0,1,1)

(0,0,1,1) (0,0,1,1)

T C I FT T T T 
 
 

 with det ( , , , )T C I FT T T T > (0,0,1,1) ,  

(iii) ( , , , )T C I FQ Q Q Q = KGLGT and L ∈ Fr with det L > (0,0,1,1)  and GTG = Ir . 

Proof. (i) ⇔(ii) ( , , , )T C I FQ Q Q Q  is k-KS  K ( , , , )T C I FQ Q Q Q  is KS 

( , , , ) (0,0,1,1)
( , , , )

(0,0,1,1) (0,0,1,1)

T C I F

T C I F T E E E E
PK Q Q Q Q P

 
 =  

 
with det 

( , , , )T C I FE E E E > (0,0,1,1) , for some Permutation matrix P 

( , , , ) (0,0,1,1)
( , , , )

(0,0,1,1) (0,0,1,1)

T C I F

T C I F T E E E E
Q Q Q Q KP P

 
 =  

 
 

( )
( , , , ) (0,0,1,1)

( , , , )
(0,0,1,1) (0,0,1,1)

T C I F

T C I F T E E E E
Q Q Q Q KP K K P

 
 =  

 
 

( ) 1

2

(0,0,1,1) ( , , , ) (0,0,1,1)
( , , , )

(0,0,1,1) (0,0,1,1) (0,0,1,1)

T C I F

T C I F T
K E E E E

Q Q Q Q KP K P
K

  
 =   

   
 

( ) 1( , , , ) (0,0,1,1)
( , , , )

(0,0,1,1) (0,0,1,1)

T C I F

T C I F T K E E E E
Q Q Q Q KP K P

 
 =  

 
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( )
( , , , ) (0,0,1,1)

( , , , )
(0,0,1,1) (0,0,1,1)

T C I F

T C I F T T T T T
Q Q Q Q KP K P

 
 =  

 
 

Thus ( , , , )T C I FQ Q Q Q  is k-similar to a diagonal block 

matrix
( , , , ) (0,0,1,1)

(0,0,1,1) (0,0,1,1)

T C I FT T T T 
 
 

, where ( , , , )T C I FT T T T = K1 ( , , , )T C I FE E E E  and 

det ( , , , )T C I FT T T T > (0,0,1,1) . 

 However, (ii)  (iii) 

( ) 1( , , , ) (0,0,1,1)
( , , , )

(0,0,1,1) (0,0,1,1)

T C I F

T C I F T K E E E E
Q Q Q Q KP K P

 
 =  

 

1 211 3

3 422 4

(0,0,1,1) ( , , , ) (0,0,1,1)
( , , , )

(0,0,1,1) (0,0,1,1) (0,0,1,1)

T T T C I F

T C I F

T T

P PKP P T T T T
Q Q Q Q K

P PKP P

      
 =       

     

 1

1 1 2

2

( , , , ) ( , , , )
T

T C I F T C I F

T

P
Q Q Q Q K K T T T T P P

P

 
 =  

 

 1

1 2 1

2

( , , , ) , , , ( , , , ) ( )
T

T C I F T T T C I F

rT

P
Q Q Q Q KGLG G G P P L K T T T T QPNFM

P

 
 = = = =  

 

  1

1 2 1 1 2 2

2

, ( )
T

T T T

r rT

P
G G P P PP P P I L QPNFM

P

 
= = + =  

 
 

4. Schur Complement in k-Kernel QPNFM 

Consider block QPNFM of the following form throughout 

( , , , ) ( , , , )

( , , , ) ( , , , )

T C I F T C I F

T C I F T C I F

Q Q Q Q R R R R
M

S S S S T T T T

 
=  
   

with respect to this subdividing a SC of 

( , , , )T C I FQ Q Q Q  in M is a Q P NFM of the form M/ ( , , , )T C I FQ Q Q Q  = ( , , , )T C I FT T T T  − 

( , , , )( , , , )T C I F T C I FS S S S Q Q Q Q − ( , , , )T C I FR R R R .where ( , , , )T C I FQ Q Q Q  and 

( , , , )T C I FT T T T  are square QPNFM. Here M/ ( , , , )T C I FQ Q Q Q is a Q P N F M  iff 

( , , , ) ( , , , )( , , , ) ( , , , )T C I F T C I F T C I F T C I FT T T T S S S S Q Q Q Q R R R R−  that is 
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( , , , ) ( , , , ) ( , , , )( , , , ) ( , , , ).T C I F T C I F T C I F T C I F T C I FT T T T T T T T S S S S T T T T R R R R−= + A 

subdivided QPNFM M of the form 
( , , , ) ( , , , )

( , , , ) ( , , , )

T C I F T C I F

T C I F T C I F

Q Q Q Q R R R R
M

S S S S T T T T

 
=  
 

 is k-KS then 

it is not true in general that a SC of ( , , , )T C I FQ Q Q Q  in M , M/ ( , , , )T C I FQ Q Q Q  is 

k-KSQPNFM. Here the both if and only if conditions for M/ ( , , , )T C I FQ Q Q Q  to be k-KS 

are obtained.  

Theorem 4.1 Let M  be a matrix of the form 
( , , , ) ( , , , )

( , , , ) ( , , , )

T C I F T C I F

T C I F T C I F

Q Q Q Q R R R R
M

S S S S T T T T

 
=  
   

with N( ( , , , )T C I FQ Q Q Q ) ⊆ N( ( , , , )T C I FR R R R ) and N(M/ ( , , , )T C I FQ Q Q Q ) ⊆ 

N( ( , , , )T C I FS S S S ), then the subsequent statement are equivalent. 

(i) M is k – KSQPNFM with k = k1k2. 

(ii) ( , , , )T C I FQ Q Q Q  is k -KS, M/ ( , , , )T C I FQ Q Q Q  is k -KS, 

N( ( , , , )T C I FQ Q Q Q T ) ⊆ N( ( , , , )T C I FS S S S T ) and N((M/ ( , , , )T C I FQ Q Q Q )T ) ⊆ 

N( ( , , , )T C I FR R R R T ) 

(iii) Both the matrices 
( , , , ) (0,0,1,1)

( , , , ) / ( , , , )

T C I F

T C I F T C I F

Q Q Q Q
M

S S S S M Q Q Q Q

 
=  
 

and 

( , , , ) ( , , , )

(0,0,1,1) / ( , , , )

T C I F T C I F

T C I F

Q Q Q Q R R R R
M

M Q Q Q Q

 
=  
 

 are k- kernel symmetric. 

Proof:(i)⇒ (ii): 

To prove ( , , , )T C I FQ Q Q Q  is k is k-KS, M/ ( , , , )T C I FQ Q Q Q  is k-KS 

Let 1y ∈ N( ( , , , )T C I FQ Q Q Q ) and 2y ∈ N(M/ ( , , , )T C I FQ Q Q Q ). 

Hence 1y ( , , , )T C I FQ Q Q Q  = (0,0,1,1) and 2y (M/ ( , , , )T C I FQ Q Q Q ) (0,0,1,1)=  

Define 1 2[ ]y y y=  
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we claim that 
1 2

( , , , ) ( , , , )
[ ] (0,0,1,1)

( , , , ) ( , , , )

T C I F T C I F

T C I F T C I F

Q Q Q Q R R R R
yM y y

S S S S T T T T

 
= = 

 
 

Since N(M/ ( , , , )T C I FQ Q Q Q )N ( , , , )T C I FS S S S ,  

2y (M/ ( , , , )T C I FQ Q Q Q (0,0,1,1)=  

Implies , 2y ( , , , )T C I FS S S S (0,0,1,1)=  

N( ( , , , )T C I FQ Q Q Q ) ⊆ N( ( , , , )T C I FR R R R ) , 

1y ( , , , )T C I FQ Q Q Q  =(0,0,1,1) ⇒ 1y ( , , , )T C I FR R R R  =(0,0,1,1)  

Hence, 1y ( , , , )T C I FQ Q Q Q  + 2y ( , , , )T C I FS S S S  (0,0,1)= and  

1( , , , )T C I Fy R R R R  + 
2 ( , , , )T C I Fy T T T T  (0,0,1,1)= .  

Therefore yM  (0,0,1,1)=  i.e) y ∈ N(M). 

Since M is k - KS, N(M) = N(KMT K) 

Then, yKMT K (0,0,1,1)=
 

1 2

0 0( , , , ) ( , , , )
[ ] (0,0,1,1)

0 0( , , , ) ( , , , )

T C I F T T C I F T

T C I F T T C I F T

K KQ Q Q Q R R R R
y y

K KS S S S T T T T

    
=    

    
 

1 2( , , , ) ( , , , ) (0,0,1,1)T C I F T T C I F Ty K Q Q Q Q K y K R R R R K + =   

1 ( , , , ) (0,0,1,1)T C I F Ty K Q Q Q Q K = and 
2 ( , , , ) (0,0,1,1)T C I F Ty K R R R R K =  and  

1 2( , , , ) ( , , , ) (0,0,1,1)T C I F T T C I F Ty K S S S S K y K T T T T K + =  

1 ( , , , ) (0,0,1)T C I F Ty K S S S S K =  and 
2 ( , , , ) (0,0,1,1)T C I F Ty K T T T T K =   

Hence 

1 2( , , , ) , ( , , , )T C I F T C I F Ty N K Q Q Q Q K y N K R R R R K         and 

2 ( , , , )T C I Fy N K T T T T K     

Since 1 ( , , , )T C I Fy N Q Q Q Q     and 2 / ( , , , )T C I Fy N M Q Q Q Q    it follows that 

( , , , ) ( , , , ) ,T C I F T C I FN Q Q Q Q N K Q Q Q Q K        
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/ ( , , , ) ( , , , )T C I F T C I F TN M Q Q Q Q N K R R R R K        

/ ( , , , ) ( , , , )T C I F T C I F TN M Q Q Q Q N K T T T T K       implies 

/ ( , , , ) ( / ( , , , ))T C I F T C I FN M Q Q Q Q N K M Q Q Q Q K        

Likewise, it may be demonstrated that 

( , , , ) ( , , , )T C I F T C I FN K Q Q Q Q K N Q Q Q Q        

Thus ( , , , )T C I FQ Q Q Q is k-KS 

Since, 1 ( , , , )T C I Fy N K S S S S K     and ( , , , )T C I FQ Q Q Q  is k-KS 

( , , , ) ( , , , ) ( , , , )T C I F T C I F T T C I F TN Q Q Q Q N K Q Q Q Q K N K S S S S K     =        

( , , , ) ( , , , )T C I F T T C I F TN Q Q Q Q N S S S S        

M/ ( , , , )T C I FQ Q Q Q  = ( , , , )T C I FT T T T  − ( , , , )T C I FS S S S ( , , , )T C I FQ Q Q Q −

 

( , , , )T C I FR R R R . 

Thus (i) implies (ii) holds 

(ii) implies (iii) 

1

( , , , ) (0,0,1,1)

( , , , ) / ( , , , )

T C I F

T C I F T C I F

Q Q Q Q
M

S S S S M Q Q Q Q

 
=  
 

and  

1

( , , , ) ( , , , )

(0,0,1,1) / ( , , , )

T C I F T C I F

T C I F

Q Q Q Q R R R R
M

M Q Q Q Q

 
=  
   

are k-KS. 

Let ( )1 .y N M Partition y conformity with that M1 as y = [y1 y2] then, 

1 2

( , , , ) (0,0,1,1)
[ ] (0,0,1,1)

( , , , ) ( , , , )

T C I F

T C I F T C I F

Q Q Q Q
y y

S S S S T T T T

 
= 

 
 

1 2( , , , ) (0,0,1,1), ( , , , ) (0,0,1,1),T C I F T C I Fy Q Q Q Q y S S S S= =  

2 / ( , , , ) (0,0,1,1)T C I Fy M Q Q Q Q  =   
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Since ( , , , )T C I FQ Q Q Q  and  / ( , , , )T C I FM Q Q Q Q  are k-KS 

1 ( , , , ) ( , , , )T C I F T C I F Ty N Q Q Q Q N K Q Q Q Q K    =     

1 ( , , , ) (0,0,1,1)T C I F Ty K Q Q Q Q K =  

( )2 / ( , , , ) / ( , , , )
TT

T C I F T C I Fy N M Q Q Q Q N K M Q Q Q Q K   =    
 

( )2 / ( , , , ) (0,0,1,1)
T

T C I Fy K M Q Q Q Q K  =
  

 

Since, ( , , , ) ( , , , )T C I F T T C I F TN Q Q Q Q N S S S S        

( , , , ) ( , , , )T C I F T T C I F TN K Q Q Q Q K N K S S S S K        

1 ( , , , ) (0,0,1,1)T C I F Ty K S S S S K =  

Now by using 
1 1( , , , ) (0,0,1,1), ( , , , ) (0,0,1,1)T C I F T T C I F Ty K Q Q Q Q K y K S S S S K= =  

and 
2 / ( , , , ) (0,0,1,1)

T
T C I Fy K M Q Q Q Q K  =  it can be verified that  

1 2

( , , , ) ( , , , )
[ ] (0,0,1,1)

(0,0,1,1) ( / ( , , , )

T C I F T T C I F

T C I F T

K Q Q Q Q K K S S S S K
y y

K M Q Q Q Q K

 
= 

   

Thus  1 1 .TN M N KM K     

 1 1

TN KM K N M     

Hence Therefore,  1 1

TN KM K N M  =   

Hence M1 is k-KS. 

Similarly, it may be demonstrated that M2 is k-KS.  

Thus (ii)⇒ (iii) holds. 

(iii)⇒ (i) M1 is k - KS ⇒ N(M1) = N(KMT K)  

M2 is k - KS⇒ N(M2) = N(KMT K) 

To prove, M is k-KS that is N(M ) = N(KMT K).  

Let y∈ N(M ) ⇒ yM = 0. 

M as y = [y1 y2] then, 
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1 2

( , , , ) ( , , , )
[ ] (0,0,1,1)

( , , , ) ( , , , )

T C I F T C I F

T C I F T C I F

Q Q Q Q R R R R
y y

S S S S T T T T

 
= 

 
 

1 2( , , , ) ( , , , ) (0,0,1,1)T C I F T C I Fy Q Q Q Q y S S S S+ =  

1 2( , , , ) (0,0,1,1), ( , , , ) (0,0,1,1)T C I F T C I Fy Q Q Q Q y S S S S = =  

1 2( , , , ) ( , , , ) (0,0,1,1)T C I F T C I Fy R R R R y T T T T+ =  

1 2( , , , ) (0,0,1,1), ( , , , ) (0,0,1,1)T C I F T C I Fy R R R R y T T T T = =
 

From the definition of M/ ( , , , )T C I FQ Q Q Q  = ( , , , )T C I FT T T T ( , , , )T C I FS S S S−  

( , , , )T C I FQ Q Q Q − ( , , , )T C I FR R R R   

We have, 
2 2( , , , ) (0,0,1,1), ( , , , ) (0,0,1,1)T C I F T C I Fy T T T T y S S S S= =  

( )2 / ( , , , ) (0,0,1,1)T C I Fy M Q Q Q Q =  

( )1 2 2( , , , ) ( , , , ) (0,0,1,1) and / ( , , , ) (0,0,1,1)T C I F T C I F T C I Fy Q Q Q Q y S S S S y M Q Q Q Q+ = =

And 
1( , , , ) (0,0,1,1),T C I Fy Q Q Q Q =  

1 2( , , , ) / ( , , , ) (0,0,1,1)T C I F T C I Fy R R R R y M Q Q Q Q + =   

1 1( ) ( )Ty N M y N KM K    

2 2( ) ( )Ty N M y N KM K    

Hence, ( ).Ty N KM K  

( ) ( )TN M N KM K  

Similarly, ( ) ( )TN M N KM K  
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( ) ( )TN M N KM K=  

Therefore M is k-KSNFM.       

Theorem 4.2 Let M be a Q P N F M  of the form 

( , , , ) ( , , , )

( , , , ) ( , , , )

T C I F T C I F

T C I F T C I F

Q Q Q Q R R R R
M

S S S S T T T T

 
=  
   

with N( ( , , , )T C I F TQ Q Q Q ) ⊆ 

N( ( , , , )T C I F TS S S S ) and N( ( )/ ( , , , )
T

T C I FM Q Q Q Q  ⊆ N( ( , , , )T C I F TR R R R ), then the 

subsequence are equivalent. 

(i) M is k – KSQPNFM with k = k1k2. 

(ii) ( , , , )T C I FQ Q Q Q  is k -KS, M/ ( , , , )T C I FQ Q Q Q  is k -KS, N ( , , , )T C I FQ Q Q Q  ⊆ 

N ( , , , )T C I FR R R R  and N((M/ ( , , , )T C I FQ Q Q Q ) ⊆ N ( , , , )T C I FS S S S  

(iii) Both the matrices 
( , , , ) (0,0,1,1)

( , , , ) / ( , , , )

T C I F

T C I F T C I F

Q Q Q Q
M

S S S S M Q Q Q Q

 
=  
 

and 

( , , , ) ( , , , )

(0,0,1,1) / ( , , , )

T C I F T C I F

T C I F

Q Q Q Q R R R R
M

M Q Q Q Q

 
=  
 

 are k- kernel symmetric. 

 

Proof: This theorem is directly supported by Theorem (4.1) and the observation that M is k- 

KS⇔ MT is k - KS. 

Theorem 4.3 Let M be a Q P N F M  of the form 
( , , , ) ( , , , )

( , , , ) ( , , , )

T C I F T C I F

T C I F T C I F

Q Q Q Q R R R R
M

S S S S T T T T

 
=  
   

with N( ( , , , )T C I FQ Q Q Q ) ⊆ N( ( , , , )T C I F TR R R R ) and N( ( )/ ( , , , )T C I FM Q Q Q Q  ⊆ 

N( ( , , , )T C I FR R R R ), then the following are equivalent. 

(i) M is k – KSQPNFM with k = k1k2. 

(ii) ( , , , )T C I FQ Q Q Q  is k -KS, M/ ( , , , )T C I FQ Q Q Q  is k -KS,  

(iii)  The matrices
( , , , ) (0,0,1,1)

( , , , ) / ( , , , )

T C I F

T C I F T C I F

Q Q Q Q
M

S S S S M Q Q Q Q

 
=  
 

  is k- KS. 

Remark 4.1 It is crucial to consider the condition that is placed on M in Theorems 4.1 and 4.2. 

The example that follows serves to illustrate this. 

Example:4.1 Let us consider a QPNFM 
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(1,1,0,0) (1,1,0,0) (1,1,0,0) (0,0,1,1)

(1,1,0,0) (1,1,0,0) (1,1,0,0) (1,1,0,0)
and

(1,1,0,0) (0,0,1,1) (1,1,0,0) (1,1,0,0)

(1,1,0,0) (1,1,0,0) (1,1,0,0) (1,1,0,0)

M

 
 
 =
 
 
   

1 2 3 4

1

2

3

4

(1,1,0,0) (1,1,0,0) (1,1,0,0) (0,0,1,1)

(1,1,0,0) (1,1,0,0) (1,1,0,0) (1,1,0,0)

(1,1,0,0) (0,0,1,1) (1,1,0,0) (1,1,0,0)

(1,1,0,0) (1,1,0,0) (1,1,0,0) (1,1,0,0)

v v v v

v

M v

v

v

 
 
 
 =
 
 
  

 

 

(0,0,1,1) (1,1,0,0) (0,0,1,1) (0,0,1,1)

(1,1,0,0) (0,0,1,1) (0,0,1,1) (0,0,1,1)

(0,0,1,1) (0,0,1,1) (0,0,1,1) (1,1,0,0)

(0,0,1,1) (0,0,1,1) (1,1,0,0) (0,0,1,1)

K

 
 
 =
 
 
 

 

( , , , ) ( , , , )

( , , , ) ( , , , )

T C I F T C I F

T C I F T C I F

Q Q Q Q R R R R
M

S S S S T T T T

 
=  
   

(1,1,0,0) (1,1,0,0) (1,1,0,0) (0,0,1,1)
( , , , ) , ( , , , ) ,

(1,1,0,0) (1,1,0,0) (1,1,0,0) (1,1,0,0)

T C I F T C I FQ Q Q Q R R R R
   

= =   
   

 

(1,1,0,0) (0,0,1,1)
( , , , )

(1,1,0,0) (1,1,0,0)

T C I FS S S S
 

=  
 

, 
(1,1,0,0) (1,1,0,0)

( , , , )
(1,1,0,0) (1,1,0,0)

T C I FT T T T
 

=  
   

For this M, since M has ho zero rows and no zero columns N(M) = (0,0,1,1). 

N(KMT K) = (0,0,1,1).Thus N(M) = N(KMT K) ⇒ M is k-- KS. 

(1,1,0,0) (1,1,0,0)
( , , , )

(1,1,0,0) (1,1,0,0)

T C I FQ Q Q Q −  
=  
 

is a g-inverse, with respect to ( , , , )T C I FQ Q Q Q −
 

M/ ( , , , )T C I FQ Q Q Q  = ( , , , )T C I FT T T T  − ( , , , )T C I FS S S S  ( , , , )T C I FQ Q Q Q −  

( , , , )T C I FR R R R . 

M/ ( , , , )T C I FQ Q Q Q  =
(1,1,0,0) (1,1,0,0)

(1,1,0,0) (1,1,0,0)

 
 
 

 −
(1,1,0,0) (0,0,1,1)

(1,1,0,0) (1,1,0,0)

 
 
 

 

(1,1,0,0) (1,1,0,0)

(1,1,0,0) (1,1,0,0)

 
 
 

(1,1,0,0) (0,0,1,1)
,

(1,1,0,0) (1,1,0,0)

 
 
 
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M/ ( , , , )T C I FQ Q Q Q  =
(1,1,0,0) (0,0,1,1)

,
(1,1,0,0) (1,1,0,0)

 
 
 

 

M/ ( , , , )T C I FQ Q Q Q  is k - KS ,  

Since N(M/ ( , , , )T C I FQ Q Q Q ) = N(K(M/ ( , , , )T C I FQ Q Q Q )T K)  = (0,0,1,1). 

( , , , )T C I FQ Q Q Q  is k - K S , since N(M) = N(KMT K) = (0,0,1,1) for all K. 

N( ( , , , )T C I FQ Q Q Q ) ⊆ N( ( , , , )T C I FR R R R ) and N( ( , , , )T C I FQ Q Q Q T ) ⊆ 

N( ( , , , )T C I F TS S S S ). 

Here, N(M/ ( , , , )T C I FQ Q Q Q ) =(0,0,1,1)  = N((M/ ( , , , )T C I FQ Q Q Q )T ),  

N( ( , , , )T C I FS S S S ) = (0,0,1,1) , N( ( , , , )T C I FR R R R T ) = (0,0,1,1)  

N(M/ ( , , , )T C I FQ Q Q Q )  contained in N( ( , , , )T C I F TS S S S ) and N((M/ ( , , , )T C I FQ Q Q Q )T 

contained in N( ( , , , )T C I FR R R R T ). 

Further   

1

(1,1,0,0) (1,1,0,0) (0,0,1,1) (0,0,1,1)

(1,1,0,0) (1,1,0,0) (0,0,1,1) (0,0,1,1)
and

(1,1,0,0) (0,0,1,1) (0,0,1,1) (1,1,0,0)

(1,1,0,0) (1,1,0,0) (0,0,1,1) (0,0,1,1)

M

 
 
 =
 
 
 

 

(0,0,1,1) (1,1,0,0) (0,0,1,1) (0,0,1,1)

(1,1,0,0) (0,0,1,1) (0,0,1,1) (0,0,1,1)

(0,0,1,1) (0,0,1,1) (0,0,1,1) (1,1,0,0)

(0,0,1,1) (0,0,1,1) (1,1,0,0) (0,0,1,1)

K

 
 
 =
 
 
 

 

1( ) (0,0,1,1).N M =  

1

TKM K =

(0,0,1,1) (1,1,0,0) (0,0,1,1) (0,0,1,1)

(1,1,0,0) (0,0,1,1) (0,0,1,1) (0,0,1,1)

(0,0,1,1) (0,0,1,1) (0,0,1,1) (1,1,0,0)

(0,0,1,1) (0,0,1,1) (1,1,0,0) (0,0,1,1)

 
 
 
 
 
 
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(1,1,0,0) (1,1,0,0) (1,1,0,0) (1,1,0,0)

(1,1,0,0) (1,1,0,0) (0,0,1,1) (1,1,0,0)

(0,0,1,1) (0,0,1,1) (0,0,1,1) (0,0,1,1)

(0,0,1,1) (1,1,0,0) (1,1,0,0) (0,0,1,1)

 
 
 
 
 
 

(0,0,1,1) (1,1,0,0) (0,0,1,1) (0,0,1,1)

(1,1,0,0) (0,0,1,1) (0,0,1,1) (0,0,1,1)

(0,0,1,1) (0,0,1,1) (0,0,1,1) (1,1,0,0)

(0,0,1,1) (0,0,1,1) (1,1,0,0) (0,0,1,1)

 
 
 
 
 
 

 

1

(1,1,0,0) (1,1,0,0) (1,1,0,0) (0,0,1,1)

(1,1,0,0) (1,1,0,0) (1,1,0,0) (1,1,0,0)

(0,0,1,1) (0,0,1,1) (0,0,1,1) (0,0,1,1)

(0,0,1,1) (0,0,1,1) (0,0,1,1) (0,0,1,1)

TKM K

 
 
 =
 
 
 

 

 1( ) (0,0,1,1), (0,0,1,1), (0,0,1,1), ( , , , ) : ( , , , ) ( )T T C I F T C I FN KM K Q Q Q Q Q Q Q Q QPNFM= 

⇒ M1 is not k- Kernel Symmetric. 

2

(1,1,0,0) (1,1,0,0) (1,1,0,0) (0,0,1,1)

(1,1,0,0) (1,1,0,0) (1,1,0,0) (1,1,0,0)

(0,0,1,1) (0,0,1,1) (0,0,1,1) (1,1,0,0)

(0,0,1,1) (0,0,1,1) (0,0,1,1) (0,0,1,1)

M

 
 
 =
 
 
 

 

     M 2  is not k- Kernel Symmetric. 

Remark:4.2  For a KSQPNFM  M of the form  
( , , , ) ( , , , )

( , , , ) ( , , , )

T C I F T C I F

T C I F T C I F

Q Q Q Q R R R R
M

S S S S T T T T

 
=  
   

with k = k1k2 following are equivalent. 

N( ( , , , )T C I FQ Q Q Q ) ⊆ N( ( , , , )T C I FR R R R ) and N(M/ ( , , , )T C I FQ Q Q Q ) ⊆ 

N( ( , , , )T C I FS S S S ),  

N( ( , , , )T C I F TQ Q Q Q ) ⊆ N( ( , , , )T C I F TS S S S ), and N((M/ ( , , , )T C I FQ Q Q Q )T) ⊆ 

N( ( , , , )T C I F TR R R R )  

Example:4.2 Let us consider a QPNFM 

(1,1,0,0) (1,1,0,0) (1,1,0,0) (0,0,1,1)

(1,1,0,0) (0,0,1,1) (0,0,1,1) (1,1,0,0)
and

(0,0,1,1) (0,0,1,1) (0,0,1,1) (0,0,1,1)

(1,1,0,0) (0,0,1,1) (1,1,0,0) (1,1,0,0)

M

 
 
 =
 
 
   

(0,0,1,1) (1,1,0,0) (0,0,1,1) (0,0,1,1)

(1,1,0,0) (0,0,1,1) (0,0,1,1) (0,0,1,1)

(0,0,1,1) (0,0,1,1) (0,0,1,1) (1,1,0,0)

(0,0,1,1) (0,0,1,1) (1,1,0,0) (0,0,1,1)

K

 
 
 =
 
 
   
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 ( ) (0,0,1,1), (0,0,1,1), ( , , , ), (0,0,1,1) : ( , , , ) ( )T C I F T C I FN M Q Q Q Q Q Q Q Q QPNFM= 

TKM K =

(0,0,1,1) (1,1,0,0) (0,0,1,1) (0,0,1,1)

(1,1,0,0) (0,0,1,1) (0,0,1,1) (0,0,1,1)

(0,0,1,1) (0,0,1,1) (0,0,1,1) (1,1,0,0)

(0,0,1,1) (0,0,1,1) (1,1,0,0) (0,0,1,1)

 
 
 
 
 
 

 

(1,1,0,0) (1,1,0,0) (0,0,1,1) (1,1,0,0)

(1,1,0,0) (0,0,1,1) (0,0,1,1) (0,0,1,1)

(1,1,0,0) (0,0,1) (0,0,1) (1,1,0,0)

(0,0,1,1) (1,1,0,0) (0,0,1,1) (1,1,0,0)

 
 
 
 
 
 

(0,0,1,1) (1,1,0,0) (0,0,1,1) (0,0,1,1)

(1,1,0,0) (0,0,1,1) (0,0,1,1) (0,0,1,1)

(0,0,1,1) (0,0,1,1) (0,0,1,1) (1,1,0,0)

(0,0,1,1) (0,0,1,1) (1,1,0,0) (0,0,1,1)

 
 
 
 
 
 

 

 

(1,1,0,0) (1,1,0,0) (0,0,1,1) (0,0,1,1)

(1,1,0,0) (1,1,0,0) (1,1,0,0) (0,0,1,1)

(1,1,0,0) (0,0,1,1) (1,1,0,0) (0,0,1,1)

(0,0,1,1) (1,1,0,0) (1,1,0,0) (0,0,1,1)

TKP K

 
 
 =
 
 
 

 

( ) (0,0,1,1)TN KM K =  

( ) ( )TN M N KM K  

Therefore M  is not k - KS. 

P/
(0,0,1,1) (0,0,1,1)

( , , , )
(1,1,0,0) (0,0,1,1)

T C I FQ Q Q Q
 

=  
 

 

Here 

( , , , ) ( , , , ), ( / ( , , , )) ( , , , )T C I F T C I F T C I F T C I FN Q Q Q Q N R R R R N M Q Q Q Q N S S S S   

But ( , , , )T C I F TN Q Q Q Q  is not contained ( , , , )T C I F TN S S S S . 

( / ( , , , ))T C I F TN M Q Q Q Q  is not contained ( , , , )T C I F TN R R R R . 

5. Application of Fuzzy QuadripartitionedNeutrosophic Soft Matrix in Medical Decision 

Making Problem. 

 

The process of medical decision-making is among the most complex, as it requires 

comprehensive knowledge of a patient's medical history, the symptoms they are experiencing, and 

the treatments they have undergone under the guidance of medical experts. Often, the information 

provided by patients can be incomplete, unclear, or ambiguous, making it challenging for healthcare 

professionals to accurately diagnose the condition. This uncertainty may lead to misdiagnosis and 

improper treatment. To address this, experts should compile a thorough list of the patient’s 
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symptoms and continuously monitor their health status from the onset. In cases involving complex 

or atypical symptoms, a panel of specialists may be required for an accurate diagnosis and effective 

treatment. 

While biopsies are widely regarded as a definitive diagnostic tool, they are invasive and come 

with certain risks. It is essential to develop methodologies that can minimize the need for such 

procedures, especially for patients who are not at significant risk. Given the inherent uncertainty in 

medical treatment, the application of Fuzzy Quadripartition Neutrosophic Soft Sets (FQNSSs) is 

proposed. This approach offers a high-precision decision-making framework, which is crucial for 

accurate medical investigations. Below, we outline an algorithm to apply FQNSSs in the context of 

medical diagnosis. 

 

Algorithm: 

Step 1- Input the FQNSSs  (M,S) and (N,D) called the patient- symptom and symptom-disease sets, 

respectively, and write their corresponding matrices P,Q.  

Step 2- Compute P Q and .P Q  

( ) ( ) ( ) ( )max min( , ) ,max min( , ) ,min max( , ) ,min max( , )P Q P Q P Q P QP Q T T C C U U F F = 

 

max ,max ,min ,min
2 2 2 2

A B A B A B A BT T C C U U F F
P Q

       + + + +
 =        

       
  

Step 3- Compute ( )S P Q and ( )S P Q  

( )
( ) ( ) ( ) ( )

.
2

P Q P Q P Q P Q
T C U F

S P Q
   

+ − −
 =   

( )S P Q =
( ) ( ) ( ) ( )

2

P Q P Q P Q P Q
T C U F

   
+ − −

   

Step 4- Find the total score TS = ( )S P Q + ( )S P Q   

 Step 5- Identify the maximum total score  TS for each patient Pi and conclude that the patient Pi is 

surely suffering from the disease Dj. 

5.1 Example  

Suppose there are three  patients denoted by the set P ={ p1, p2, p3 } with symptoms denoted by the 

set S =  e1: Fewer; e2: Muscle aches, e3: Fatigue; Let the possible diseases denoted by d1 = Dengue 

fewer ; d2 = Malaria, d3 = Typhoid. Let the FQNSS (M,S), S over P and Q is given by 

0.4,0.3,0.5,0.6 0.2,0.4,0.3,0.4 0.3,0.6,0.4,0.5

0.2,0.4,0.7,0.3 0.4,0.6,0.5,0.4 0.7,0.2,0.1,0.2

0.5,0.4,0.1,0.5 0.6,0.7,0.3,0.8 0.5,0.3,0.6,0.7

P

      
 

=       
       
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0.5,0.4,0.7,0.2 0.2,0.5,0.6,0.5 0.4,0.5,0.6,0.7

0.6,0.2,0.4,0.4 0.6,0.4,0.7,0.2 0.6,0.3,0.4,0.5

0.2,0.6,0.4,0.6 0.5,0.6,0.4,0.5 0.4,0.2,0.4,0.6

Q

      
 

=       
       

0.4,0.6,0.4,0.4 0.3,0.6,0.4,0.4 0.4,0.3,0.4,0.5

0.2,0.4,0.4,0.3 0.5,0.4,0.4,0.4 0.4,0.4,0.4,0.5

0.6,0.4,0.4,0.5 0.6,0.5,0.6,0.5 0.6,0.4,0.4,0.7

P Q

      
 

 =       
       

0.45,0.6,0.35,0.4 0.4,0.6,0.4,0.3 0.4,0.4,0.35,0.45

0.5,0.4,0.25,0.25 0.6,0.5,0.25,0.3 0.55,0.45,0.25,0.4

0.6,0.45,0.35,0.35 0.6,0.55,0.35,0.5 0.6,0.5,0.35,0.6

P Q

      
 

 =       
       

 

( )

0.1 0.05 0.1

0.05 0.05 0.05

0.05 0 0.05

S P Q

− 
 

 = − − 
 − 

 

( )

0.15 0.15 0

0.2 0.27 0.17

0.17 0.15 0.07

S P Q

 
 

 =  
 
 

 

( ) ( )

1 2 3

1

2

3

0.25 0.2 0.1

0.15 0.32 0.12

0.22 0.15 0.02

S

d d d

p
T S P Q S P Q

p

p

 
 

− =  +  =
 
 
 

 

From the given matrix TS, it is evident that patients p1, p2, and p3 are diagnosed with diseases 

d1, d2, and d2, respectively. Furthermore, no patient has been identified with disease d3. 

 

Conclusion: 6 

This work presents theorems that describe the properties of k-kernel symmetry (k-KS) and the 

Schur complement in the context of k-KSQPNFMs. We introduce the concepts of kernel symmetry 

(KS) and k-KS QPNFMs, exploring various properties and providing examples to illustrate these 

findings. Several equivalent characterizations of kernel symmetric and k-KSNFMs are discussed, 

along with fundamental examples that enhance the understanding of KSQPNFMs. It is shown that 

while k-symmetry implies k-KS, the reverse implication does not hold. Future work will aim to 

prove additional properties related to the generalized inverses of the Schur complement and 

k-kernel symmetric QPNFMs. 

An algorithm has been developed to facilitate real-world decision-making within the FQNSM 

framework. To demonstrate its practical utility, the algorithm has been successfully applied to a 
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medical diagnosis problem. Future research could explore extending this work by incorporating 

interval-based FQNSM theory, where the truth, contradiction, ignorance, and false membership 

degrees are represented as intervals rather than crisp values. Additionally, the proposed approach 

has potential applications in areas such as game theory, similarity measures, risk management, and 

group decision-making problems. 
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