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Abstract: The specific purpose of this study is to define continuity of mappings in 

neutro-topological spaces using neutro-open and neutro-closed sets and analyze the properties of 

continuous functions that are true in classical topological spaces in the neutro-topological space. 

Neutro-interior and neutro-closure in neutro-topological spaces have some properties that are 

somewhat different from those in classical topological spaces. However, with the definition of a 

new form of continuity, termed as weakly neutro-continuity, much of the properties of continuous 

functions could be established in neutro-topological spaces. Neutro-open map and neutro-closed 

maps are also defined on the basis of neutro-open and neutro-closed sets. The notion of weakly 

neutro-continuity has been used to define neutro-homeomorphism and many of the properties of 

homeomorphism are analyzed and found to be true in the case of neutro-homeomorphism. A 

comparison of some of the properties of continuity and homeomorphism in classical topological 

spaces have been done vis-à-vis the neutrosophic topological spaces and neutro-topological spaces.  

Keywords: Neutro-topological space, neutro-continuity, weakly neutro-continuity, neutro-open 

map, neutro-closed map, neutro-homeomorphism 

 

 

1. Introduction 

Continuity of functions in topological spaces is a well-established notion. Kelley [1] 

characterized continuity of functions by eight equivalent definitions and characterizations. The 

validity of any one of the characterizations is equivalent for a function to be continuous. Halfar [2] in 

1960 studied conditions that imply continuity of functions between spaces and studied continuity of 

functions in terms of connectedness and compactness of the spaces. Levine [3-4] introduced the 

concept of weakly continuity. In the later article he introduced semi-open sets and he defined 

semi-continuity of functions in terms of the semi-open sets. Other studies on semi-continuity can be 

seen in [5-7]. Studies on weakly, sub-weakly and semi-weakly continuous functions can be seen in 

[9-12]. Hussain [13] defined almost continuity of functions by the openness of image of inverse 

image of the neighborhood of a point. Almost continuity has been studied by many other scholars 

[14-18]. Gentry et al. [19] introduced somewhat open sets and defined somewhat continuous 

functions and studied the properties of such continuous functions. Noiri [20] introduced  -closed 

sets and its complement, the  -open sets and subsequently defined the  -continuous functions 

and proved that  -continuity implies weakly continuity. Mashour et al. [21] defined 

pre-continuous and weakly pre-continuous functions on the basis of pre-open sets. Further, 

Mashour et al. [22] defined  -open sets, and introduced  -continuous functions and  -open 

maps. More studies on the  -continuous functions have been done in [23-25]. Many other scholars 

defined many different types of open sets and defined continuity with regard to those open sets and 
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the list is huge as new kinds of open sets and new kinds of closed sets have been defined over the 

years. Zadeh [26] defined the fuzzy set with the aim to overcome the shortfall of the Cantorian set in 

failing to provide a base to study ambiguity. Chang [27] defined fuzzy topological space based on 

the fuzzy set defined by Zadeh. Atanassov [28] refined the fuzzy set by introducing intuitionistic 

fuzzy set. Coker [29] defined intuitionistic fuzzy topological space. Smarandache [30] introduced the 

neutrosophic logic. Further, Smarandache [31] refined the fuzzy set and hence the intuitionistic 

fuzzy set by bringing about the neutrosophic set. The neutrosophic set has been defined to 

encompass three parts: “the Truth, the Indeterminacy and the Falsity” of an entity to belong to a set. 

The fuzzy set is based only on the grade of truth while the intuitionistic fuzzy set is based on both 

the grade of truth as well as the grade of falsity. Thus the third component indeterminacy refined the 

study of the fuzzy set. Further, Salama et al. [32] defined the neutrosophic topological space. Salama 

et al. [33] defined neutrosophic closed set and defined different types of neutrosophic continuity 

based on the neutrosophic closed sets and proposed many results on neutrosophic continuity. 

Al-Omeri et al. [34] defined different types of neutrosophic open sets in neutrosophic topological 

spaces and studied neutrosophic continuity on the basis of the new sets that they defined. Senyurt et 

al. [35] studied neutrosophic continuity by establishing the properties of continuous functions in 

classical topological spaces via neutrosophic topological spaces. Smarandache [36-39], introduced 

the concept of NeutroAlgebra and AntiAlgebra thereby laying the foundation for further studies in 

algebraic structures like groups, rings etc. He used the terms Neutrosophication and 

Antisophication to generalise the concepts in classical algebra to NeutroAlgebra and AntiAlgebra by 

defining terms like NeutroAxiom, AntiAxiom, NeutroTheorem, AntiTheorem, NeutroOperation, 

AntiOperation etc. Agboola et al. [40] realized the concept of neutro-algebra and anti-algebra [36-37] 

by studying them with the help of existing number systems. Further, Agboola [41-42] provided the 

definition of a neutro-group and neutro-rings. Smarandache et al. [43] studied BCK-algebra and 

extended the study to neutro-BCK-algebra by the application of neutrosophication of the underlying 

operations of the BCK-algebras. Agboola [44-45] dwelt on finite neutro-groups and finite and infinite 

neutro-rings. Agboola et al. [46-47] introduced anti-groups and anti-rings. Ibrahim et al. [48] 

introduced neutro-vector space and studied certain simple properties of only a particular type of 

neutro-vector space which they called type 4S. Ibrahim et al. [49] defined neutro-hypergroup and 

anti-hypergroup by neutrosophication and antisophication of the three axioms of a classical 

hypergroup. Mohammadzadeh et al. [50] introduced neutro-nilpotent groups and studied some of 

their properties and they found the quotient of the group in context and the intersection of two such 

groups are also of the same group. Al-Tahan et al. [51] studied the application of the new algebras to 

Semigroups by introducing partial order relation in the Neutro-algebras. Smarandache [52], 

diversified the study of the neutrosophic triplets Truth: <A>; Indeterminate: <Neut A>; Falsity: <Anti 

A> on various possible studies and analysis of space, event etc. and for any study on any structure, 

by neutrosophication one can always have the component neutro-structure and by antisophication, 

one can always have the anti-structure component. Analysis of any structure may be with anything 

like axiom, theorem, lemma, property, proposition etc. Smarandache [53] extended the study of the 

neutro and anti-algebras to neutro-geometry and anti-geometry. Rezaei et al. [54] extended the study 

of neutrosophication and antisophication to the study of Semi-hypergroups. Sahin et al. [55] defined 

a neutro-metric space and discussed the basic properties of the neutro-metric, studied various 

similarities between the neutro-metric and the classical metric and concluded that a neutro-metric is 

obtainable from every classical metric and also pointed out the variations. Further, Sahin et al. [56] 

introduced the conception of a neutro-topological space and an anti-topological space. The study 

compared the new topologies with the classical topology and concluded that neutro-topology has a 

more general structure than the classical topology. They also further concluded that a 

neutro-topology could be derived from any given classical topology and further that a 

neutro-topology could also be derived from any given anti-topology. Further, Basumatary et al. [57], 

extended the study on neutro-topological spaces by studying the traits of interior, closure and 

boundary in neutro-topological spaces and found many interesting results. Again, Basumatary et al. 

[58] defined neutro-bitopological spaces and studied the traits of interior, closure and boundary in 
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the new spaces. Basumatary et al. [59] studied the traits of interior, closure and boundary in 

anti-topological spaces and found that most of the traits that are followed for the aspects in a 

classical topology are also true in an anti-topology. In a contemporary study made by Witczak [60], 

wherein study on interior, closure, door spaces was made and two types of continuity of functions 

was also defined in anti-topological spaces. Basumatary et al. [61-62] provided the definitions of 

neighborhood of a point, base and sub-base in a neutro-topological space and in an anti-topological 

space and have compared the properties of the aspects to that of the general topological spaces.  

Basumatary et al. [63] established formulae to evaluate the number of neutro-topological spaces 

based on the number of members in the universal set on which a neutro-topological space is defined.  

1.1  Motivation and method of study 

The motivation behind this study comes from the fact that in literature, it has been observed that 

whenever any new set or topology is defined, the primary studies that are carried out in the new 

structure are studying the properties of interior, closure, boundary, exterior in the new space after 

which studies are done on continuity of functions in the space and other properties of the new space. 

After the definition of the neutro-topology has been provided in [56], the properties of interior, 

closure and boundary in neutro-topological spaces have been studied in [57]. The current study will 

utilize the notion of the neutro-open and neutro-closed sets defined and used in [57] to define 

continuity of functions in neutro-topological spaces. And taking advantage of the fact that a 

neutro-topology could be deduced from any classical topology [56], a new form of continuity called 

as weakly neutro continuity has also been defined and various underlying properties of continuity 

of functions are studied in neutro-topological spaces. Further, using the idea of weakly 

neutro-continuous functions, an attempt has been made to introduce neutro-homeomorphism. Also 

neutro-open map and neutro-closed map are introduced and they are used to further study the 

properties of neutro-homeomorphism. The study that has been undertaken has not yet been done by 

anyone as only a few studies have yet been done in neutro-topological and anti-topological spaces. 

2. Preliminaries  

Definition 2.1 [56] For a non-void universe X, with a class T of subsets of X, if one or more of {i, ii, iii} 

below are true, then T  becomes a neutro-topology (nu-topology) over X and (X,T) will become a 

neutro-topological space (NTTS):  

(i) [  and XT simultaneously] or [ , TX I ] 

(ii) For ,Tp   for a finite n, 
n

Tp
1=


   and for other Trq  , , for a finite n, 

[
n

Tq
1=


   or 

n

I Tr
1=


  ] 

(iii) For ,Tp   I
Tp




  , I being an arbitrary index set, and for other 

 I
TqTrq




  [,,  or,  I I Tr



  ]       

Remark 2.1 [56] The symbols “ I= ” and “ I ” are used to denote respectively circumstances when 

“equal to” and “belongs to” are not sure or not properly defined.  

Theorem 2.1 [56] If T , a class of subsets of X  becomes a topology over X , then T \  and 

T \ X  are n-topologies on X .      
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Theorem 2.2 [56] Finite union of n-topologies is again a n-topology. 

Definition 2.2 [57] If ),( TX  is a NTTS , then the components of T  are termed neutro-open 

(nu-open) sets and complements of these nu-open sets are termed neutro-closed (nu-closed) sets. 

Definition 2.3 [57] If ),( TX  is a NTTS  over X  and XO  , then the neutro-interior 

(nu-interior) of O  is the join of every nu-open subsets of A  and is identified by )(ONuInt . That 

is, OQQONuInt ii = :{)(   and each iQ  is nu-open} . 

Theorem 2.3 [57] If A  is nu-open the .)( OONuInt =  The result is however not always true the 

other way around in general.    

Theorem 2.4 [57] If ),( TX  is a NTTS over X  and XQO ,  then: 

(i)  OONuInt )(    

(ii)  = )(;)( NuIntXXNuInt   

(iii) )())(( ONuIntONuIntNuInt =    

(iv) )()( QNuIntONuIntQO   

Definition 2.4 [57] If ),( TX  is a NTTS over X  and XC  , then the neutro-closure 

(nu-closure) of C  is the meet of the nu-closed sets that contains C  and will be denoted by 

)(CNuCl . Thus, ii DCDCNuCl = :{)(   and each iD  is nu-closed} . 

Theorem 2.5 [57] If C  is nu-closed then CCNuCl =)( . The result is not true the other way 

around in general.  

Theorem 2.6 [57] If ),( TX  is a NTTS over X  and XDC ,  then the following are true: 

(i) )(CNuClC     

(ii) )())(( CNuClCNuClNuCl =    

(iii) )()( DNuClCNuClDC   

3. Continuity in neutro-topological spaces 

 Definition 3.1.  For two NTTSs  ),( XTX  and ),( YTY , a mapping   defined between XT  

and YT  will be neutro-continuous (nu-continuous) if  YTO XTO − )(1 . 

Definition 3.2.  For the topological spaces ),( XTX  and ),( YTY  the spaces XTX ,( \ )  and 

YTY ,( \ )  where   stands for   or X , are neutro-topological spaces on the sets X  and Y  

by theorem 2.1. A function   which is continuous in these neutro-topologies will be termed as 

weakly neutro-continuous (w-nu-continuous).   

Remark 3.1. Whenever w-nu-continuity is mentioned, the underlying nu-topology will be either 

T \   or T \ X , where T  is a classical topology. We will denote the nu-topologies in the 

NTTSs XTX ,( \ )  and YTY ,( \ )  simply by T  in some of our future discussions.    

Theorem 3.1. If   is nu-continuous then   is w-nu-continuous.  

Proof: Straight from their definitions. 

Remark 3.2. Theorem 3.1 is not always true the other way around because a classical topology 

cannot be obtained from a nu-topology by the inclusion of the whole set or the null set to the 

nu-topology.    
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Theorem 3.2. For two NTTSs ),( XTX  and ),( YTY , a mapping   defined between XT  and YT  

will be w-nu-continuous iff for each YT -nu-closed C , )(1 C−  is a XT -nu-closed. 

Proof: If the map f  is w-nu-continuous and C  is any YT -nu-closed set then YC c =( \ )C
YT  

and   being w-nu-continuous Y(1− \ )C XT . Now, Y(1− \ XC =) \ − )(1 C XT -nu-open 

set and hence, )(1 C−  is nu-closed in XT . 

Conversely, if )(1 Cf −
 is nu-closed in YT  for every nu-closed set C  in XT , let D YT . Then 

Y \ D  is nu-closed in YT  and as such Y(1− \ )D  is nu-closed in XT . Now, 

Y(1− \ )() 1 DXD −−=   will be a nu-closed set in XT  thereby showing that − )(1 D XT . 

Hence as per definition the map   is w-nu-continuous.   

Theorem 3.3. For two NTTSs ),( XTX  and ),( YTY , a mapping   defined between XT  and YT  

will be w-nu-continuous if and only if ))(()(( 11 BNuClBNuCl −−    for any subset B  of Y . 

Proof:  Assume that   is w-nu-continuous and assume that B  is any nu-closed subset of Y , 

then )(BNuCl  is nu-closed in YT  and so by theorem 3.2, ))((1 BNuCl−  is nu-closed in XT  

and hence ))(())](([ 11 BNuClBNuClNuCl −− =  … (1)  

Now, ))(()()( 11 BNuClBBNuClB −−    

)))((())(( 11 BNuClNuClBNuCl −−   , by theorem 2.6 (iii) 

))(())(( 11 BNuClBNuCl −−   , by (1) 

Conversely, the condition is assumed to be true and let C  be any nu-closed set in YT . Then 

CCNuCl =)(  and so by the given condition )())(()]([ 111 CCNuClCNuCl −−− =       

That is, )()]([ 11 CCNuCl −−  .  

But, we have )]([)( 11 CNuClC −−    in general by theorem 2.6 (i). 

Thus, )()]([ 11 CCNuCl −− =  , thereby showing that )(1 C−  is nu-closed in XT  and so by 

theorem 3.3, the function   is w-nu-continuous.   

Remark 3.4. In theorem 3.3, the function   will not be nu-continuous because in a NTTS , the 

nu-closure of a set is not necessarily a nu-closed set (see theorem 2.5).  

Theorem 3.4. For two NTTSs ),( XTX  and ),( YTY , a mapping   defined between XT  and YT  

will be w-nu-continuous iff ))(())(( CNuClCNuCl    for any subset C of X . 

Proof: Consider   to be w-nu-continuous and XC   and assume YBC =)( . Then by 

theorem 3.4, we have )))(())(( 11 BNuClBNuCl −−   

)))((()))((( 11 CNuClCNuCl  −−   

)))((()( 1 CNuClCNuCl  − , since   is w-nu-continuous CC =− ))((1   

)))]((([)]([ 1 CNuClCNuCl  −  

))(())(( CNuClCNuCl    

Conversely, if the condition is true then let B be any arbitrary nu-closed set in YT , then 

XB − )(1  and hence by the condition, we have: 

))(()))((()))((()))((( 1111 BBNuClBNuClBNuCl −−−− =  , since B  is nu-closed. 

)())(( 11 BBNuCl −−    
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But ))(()( 11 BNuClB −−   , by theorem 2.6 (i). 

Hence, )())(( 11 BBNuCl −− =   thereby showing that )(1 B−  is nu-closed in XT  and so by 

theorem 3.2, the map   is w-nu-continuous. 

Remark 3.5. In theorem 3.4, the function   will not be nu-continuous because in a NTTS , the 

nu-closure of a set being equal to the set need not necessarily imply that the set is nu-closed (see 

theorem 2.5).  

Theorem 3.5. For two NTTSs ),( XTX  and ),( YTY , a mapping   defined between XT  and YT  

will be w-nu-continuous iff ))(())(( 11 ANuIntANuInt −−    for any subset A  of Y . 

Proof: Let   be w-nu-continuous with YA . Then )(ANuInt YT  and so − ))((1 ANuInt XT .  

Hence ))(()))((( 11 ANuIntANuIntNuInt −− =  . 

Now )())(()( 11 AANuIntAANuInt −−    

))(()))((( 11 ANuIntANuIntNuInt −−    

))(())(( 11 ANuIntANuInt −−   , since XTANuInt − ))((1 . 

Conversely, assume that the condition is true and let B 2T  so that BBNuInt =)( , then by the 

given condition we have ))(())(( 11 BNuIntBNuInt −−   which gives 

))(()( 11 BNuIntB −−   . But )())(( 11 BBNuInt −−    by theorem 2.4 (i) and as such we must 

have )())(( 11 BBNuInt −− =   thereby showing that − )(1 B XT  and hence  is 

w-nu-continuous. 

Remark 3.6. In theorem 3.5 the function   will not be nu-continuous because in a NTTS , the 

nu-interior of a set is not necessarily nu-open (see theorem 2.3).  

Theorem 3.6. For three NTTSs ),,(),,( YX TYTX  and ),( ZTZ , if the maps   from XT  to YT and 

  from YT  to ZT  are nu-continuous, then the map from XT  to ZT  given by 

),(),(: ZX TZTX →   is also nu-continuous.  

Proof: Assume that C  be a nu-open set in ZT , then − )(1 C YT  and −− ))(( 11 C XT . But 

)()())(())(( 11111 CCC −−−−− ==   . Thus, − )()( 1 C  XT  whenever ZTC  and so 

the map )(    is nu-continuous. 

Theorem 3.7. If ),( 1TX  and ),( 2TY  are two NTTSs and if }{x is a singleton subset of X , then 

the map ),(),(: YX TYTX →  is nu-continuous at Xx . 

Proof: Let   −− )(}{)()( 11 BxBxYBx  is nu-continuous at Xx . 

Theorem 3.8. For a NTTS ),( TX , the map XX →:  defined by xx =)(  for every Xx  

is nu-continuous. 

Proof: Let XBTB  . Now, xx =)(  Xx  and XB    

}{)(}:{)(})(:{)( 111 xBBxXxBBxXxB === −−−   

  is nu-continuous. 

Definition 3.3. A map   between two NTTSs ),( XTX  and ),( YTY  is called a neutro-open 

(nu-open) map if   images of nu-open sets in XT are nu-open sets in YT .  The map 
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),(),(: YX TYTX →  will be called a neutro-closed (nu-closed) map if the   images of XT  

nu-closed sets are YT  nu-closed sets. 

Definition 3.4. If ),( XTX  and ),( YTY  are two NTTSs , then a map ),(),(: YX TYTX →  will 

be called a neutro-homeomorphism (nu-homeomorphism) iff: 

(i)   is one-one and onto; 

(ii) YX →:  is w-nu-continuous; and   

(iii)  XY →− :1  is w-nu-continuous. 

If such a map   exists between the NTTSs ),( XTX  and ),( YTY , then the two NTTSs  will be 

neutro-homomorphic to each other.   

Theorem 3.9. For two NTTSs ),( XTX  and ),( YTY , if   is one-one and onto mapping of X  to 

Y , then   is a nu-homeomorphism iff   is w-nu-continuous and a nu-open map. 

Proof: Assume that   is a nu-homeomorphism and let  =−1
 and  =−1

. Since   is one-one 

and onto, so   will also be one-one and onto. Now, if XTO , then YTO − )(1 . But since 

 =−1
 so YTOO =− )()(1  . Thus 21 )( TOTO    and hence it follows that   is a 

nu-open map and since   is a nu-homeomorphism, so it is w-nu-continuous. 

Conversely, let   be w-nu-continuous and a nu-open map. Also by condition   is one-one and 

onto, so it suffices to prove that  =−1
 is w-nu-continuous. Let XTO , then YTO )(  since 

  is nu-open. That is YTO − )(1  thereby showing that 
1−=   is w-nu-continuous. Hence the 

map   is a nu-homeomorphism. 

Theorem 3.10. For two NTTSs ),( XTX  and ),( YTY , if   is one-one and onto mapping of X  to 

Y , then   is a nu-homeomorphism iff   is w-nu-continuous and a nu-closed map. 

Proof: Let   be a nu-homeomorphism and let C  be any nu-closed set in XT  then X \ C XT . 

Since 
1−=   is w-nu-continuous, it follows that  (1 X− \ )C YT . Now, 

 (1 X− \ )C Y= \ )(1 C−  and hence )(1 C−  is nu-open in YT  and as such )(1 C−  is 

nu-closed in YT . That is, )()(1 CC  =−
 is nu-closed in YT . Hence   is w-nu-continuous and a 

nu-closed map. 

Conversely, let the conditions hold and let O  be any nu-open set in XT , then X \ O  is nu-closed 

set and   is a nu-closed map, so X( \ XO () = \ YO =) \ )(1 O−  is a nu-closed set in YT  

which implies that − )(1 O YT . Thus the image of every nu-open set in XT  under the function   

is nu-open in YT . Thus, 
1−=   is w-nu-continuous and hence   is a nu-homeomorphism.   

Theorem 3.11. For two NTTSs ),( XTX  and ),( YTY , if a mapping   from XT  to YT  is one-one 

onto and w-nu-continuous, then   is a nu-homeomorphism if   is nu-open or nu-closed. 

Proof: We assume that   is one-one onto and w-nu-continuous and also that   is either nu-open 

or nu-closed. We have to show that 
1−  is w-nu-continuous. By theorem 3.4, it suffices to verify 

that ))(())(( 11 BNuClBNuCl −−    for any subset B  of Y . 

Now, XBNuClYB  − ))(( 1  and is nu-closed. Also since   is given to be nu-closed, we 

have: ))))(((()))((( 11 BNuClNuClBNuCl −− =  … (1)  

Also, )))((())(())(()( 1111 BNuClBBNuClB −−−−       
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)))((())))(((()))((( 111 BNuClBNuClNuClBNuCl −−− =   by (1) 

))(())(()))((()( 111 BNuClBNuClBNuClBNuCl −−−    

Hence by theorem 3.3 the map 
1−  is w-nu-continuous and hence   is a nu-homeomorphism.   

Theorem 3.12. For two NTTSs ),( ,XTX  and ),( ,YTY , a function   between the two spaces is 

nu-open iff ))(())(( ANuIntANuInt    for any A X .  

Proof: Assume   to be nu-open and XA  then ))(( ANuInt  is nu-open since 

)(ANuInt
,XT . Now )())(()( AANuIntAANuInt   .  

Again ))(( ANuInt
,YT , so ))(()))((( ANuIntANuIntNuInt  = … (1) 

Also, ))(()))((()())(( ANuIntANuIntNuIntAANuInt    

))(())(( AnIntAnInt    by (1) 

Conversely, let the condition be true and let O ,XT  so that OONuInt =)( . Then 

))(())(()( ONuIntONuIntO  = , by the given condition. But we have by theorem 2.4 (i) 

)())(( OONuInt   . Thus, we have )())(( OONuInt  =  thereby showing that )(O
,YT . 

Thus   is nu-open. 

Remark 3.7. In the above theorem XT  and YT  are two different nu-topologies both having the 

property of T (see remark 3.1) and so have been denoted by ),( ,XTX  and ),( ,YTY .  

Theorem 3.13. For two NTTSs ),( ,XTX  and ),( ,YTY , a function   between the two spaces is 

nu-closed iff ))(())(( CNuClCNuCl    for any C X . 

Proof: Let   be nu-closed and XC  , then )(CNuCl is nu-closed in ,XT  and since   is 

nu-closed ))(( CNuCl  is nu-closed in ,YT and thus ))(()))((( CNuClCNuClNuCl  = … (1) 

Again, 

))(()))((())(())(()()( CNuClCNuClNuClCNuClCNuClCCNuClC  =

by (1). That is ))(())(( CNuClCNuCl   . 

Conversely, let the condition hold and suppose that D  is some nu-closed set in ,XT  so that 

DDNuCl =)( . Then )())(( DDNuCl  = … (2) 

Now, by the given condition )())(())(( DDNuClDNuCl  =  by (2) 

That is, )())(( DDNuCl   . But by theorem 2.6 (i) we have ))(()( DNuClD    as a result 

of which we must have )())(( DDNuCl  = thereby showing that )(D is nu-closed in ,YT . 

Hence   is nu-closed. 

Theorem 3.14. For two NTTSs ),( XTX  and ),( YTY ,  if the function   between the two spaces 

is one-one onto, then   is a nu-homeomorphism iff ))(())(( CNuClCNuCl  =  for every 

XC  . 

Proof: Assume that   is a nu-homeomorphism. Then   is one-one, onto, and also by theorem 3.11 

  is nu-closed and w-nu-continuous. Now, if XC  , then by theorem 3.4 

))(())(( CNuClCNuCl   … (1) 

Also, ))((())(())(()()( CnClNuClCNuClCNuClCCNuClC   … (2) 

Now,   is nu-closed and )(CNuCl  is nu-closed in XT  and so ))(( CNuCl  is nu-closed in YT  

and hence ))(()))((( CNuClCNuClNuCl  = … (3)  
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(2) and (3) gives ))(())(( CNuClCNuCl   … (4) 

(1) and (4) gives ))(())(( CNuClCNuCl  =  

Conversely, let ))(())(( CNuClCNuCl  =  for every XC  .  

Then obviously ))(())(( CNuClCNuCl    which from theorem 3.4 means that the function   

is w-nu-continuous. Again, if D  is any nu-closed set in XT  so that DDNuCl =)(  which implies 

))(()()())(( DNuClDDDNuCl  ==  by the given condition, thereby showing that 

)(D  is nu-closed in YT  whenever D  is closed in XT  thereby showing that   is nu-closed. 

Thus   is nu-closed as well as one-one onto and w-nu-continuous, so   is a nu-homeomorphism.  

4. Comparative view of neutro-continuity, neutrosophic continuity vis-à-vis classical continuity 

In a neutro-topological space the interior of a set is not open in general and the closure of a set is also 

not generally closed. However, if we choose the neutro-topological space ),( TX , where T  is the 

neutro-topology obtained by either the exclusion of the whole set or the null set from the topology 

T , then we can have the interior of any subset open and the closure of any subset closed by choosing 

the exclusion of the null set or the whole set in the neutro-topology appropriately. Below we list 

some basic properties that are true in the three topological spaces: 

Classical Continuity Neutrosophic 

Continuity 

Nu-continuity and 

w-nu-continuity 

If ),,(),,( YX TYTX  and ),( ZTZ are three topological 

spaces and YX →: and ZY →:  are continuous 

functions then ZX →:  is a continuous function. 

True. Theorem 

3.1 [35]. 

True. Theorem 3.6. 

A mapping   from a space X into another space Y is 

continuous if and only if )()( AA   for 

every XA . 

True. Theorem 

3.3 [35]. 

True only for 

w-nu-continuity. 

Theorem 3.4 and 

remark 3.5. 

A mapping   from a space X into another space Y is 

continuous if and only if )()( 11 BB −−  for 

every YB  . 

True. Theorem 

3.4 [35]. 

True only for 

w-nu-continuity. 

Theorem 3.3 and 

remark 3.4. 

A mapping from a space X into another space Y is 

continuous if and only if 
 )]([][ 11 BB −−   for 

every YB  . 

True. Theorem 

3.6 [35]. 

True only for 

w-nu-continuity. 

Theorem 3.5 and 

remark 3.6. 

If a mapping YX →: between the spaces X and Y is 

one-one onto then   is a homeomorphism if and only 

if   is continuous and closed. 

True. Theorem 

3.12 [35] 

True for 

w-nu-homeomorphism. 

Theorem 3.10. 

4. Conclusions  

In this article, we have introduced the definition of neutro-continuous functions in 

neutro-topological spaces with the use of the open sets called neutro-open sets. Taking advantage of 

the fact that a neutro-topology could be deduced from any classical topology with the exclusion of 

the empty set or the whole set, we have defined a new form of continuity of functions in such 

neutro-topological spaces and named it weakly neutro-continuity. In a general neutro-topology the 

union and intersection of the neutro-open sets may or may not be neutro-open. However, in the 
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neutro-topology which is obtained by the simple exclusion of the empty set from a topology, the 

unions of the neutro-open sets are neutro-open and in the neutro-topology obtained from a topology 

by the exclusion of the whole set, the intersection of the neutro-open sets are neutro-open. It has 

been assumed that whenever properties of interior of neutro-open sets are involved, the exclusion of 

the whole set is considered in the neutro-topology and whenever closure properties are involved the 

exclusion of the empty set should be considered.  Thus, we have found the results involving the 

interior and closure of subsets valid via the weakly neutro-continuity of the functions. It has also 

been observed that whenever a function is weakly neutro-continuous, it is not always 

neutro-continuous because in a neutro-topology the union and intersection of the open and closed 

sets involved in the very definition of the neutro-topology may not be included in the collection that 

forms the neutro-topology.  

4.1 Limitations 

In our analysis we have found that most of the properties of continuous functions are true only in 

the case of weakly neutro-continuity, which has been defined in a special type of a neutro-topology. 

Neutro-homeomorphism has also been defined on the basis of weakly neutro-continuity and will 

not be generally meaningful if defined with the help of neutro-continuity as most of the properties 

that have been established might not be true in a general neutro-topological space. 

4.2  Scope for further studies in the field 

Further, one could investigate the continuity of functions with regard to the neutro-neighborhood, 

neutro-base, neutro-sub-base, neutro-relative topology and via other aspects of study of continuity 

of functions. The current study can be extended to study uniform continuity that will help study 

connectedness and compactness in neutro-topological spaces. 
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