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Abstract: Cardiac arrhythmias are cardiovascular conditions caused by irregularities in the formation or 

transmission of electrical impulses. To identify these arrhythmias and determine their origin, an electrocardiogram 

(ECG) is used, which graphically records the electrical activity responsible for each heartbeat over a short period. 

This analysis can reveal stochastic changes, introducing a degree of uncertainty. To detect these changes, 

neutrosophic control charts provide an appropriate statistical tool to assess the stability of the ECG, anticipate 

potential heart failures, reduce variability in measurements, and, in some cases, make predictions. The results 

indicate that the proposed model is highly accurate in detecting and classifying arrhythmias and that 𝑇2 control 

charts are useful for monitoring the quality of the detection process. In conclusion, the proposed hybrid 

neutrosophic model effectively identifies and classifies cardiac arrhythmias in clinical practice. 

Keywords: Uncertainty Control charts, Hotelling's 𝑇2, Neutrosophy, Cardiac arrhythmias. 

 

1. Introduction 

 

Currently, the preventive monitoring of cardiovascular diseases is of high importance, as it reduces 

the morbidity and mortality associated with these conditions, which are among the leading causes of 

death worldwide. The significance of monitoring this type of chronic disease lies in its ability to detect 

cardiac problems such as arrhythmias, heart attacks, or heart failure. It is essential to understand that 

early detection enables timely interventions, leading to improved clinical outcomes, reducing the need 

for invasive treatments, and lowering costs across the entire healthcare system. [1]. 

Early detection of abnormalities in the electrocardiogram (ECG) signal could indicate the 

development of a cardiac arrhythmia, which may have severe consequences if not properly detected 

and treated. The early diagnosis of these arrhythmias is essential for timely treatment and for improving 

the patient's quality of life. [2] 

In [3], the ability to handle uncertainty, indeterminacy, and contradiction in medical data—

common characteristics in both the diagnosis and monitoring processes of cardiovascular diseases—has 

been significantly supported by neutrosophy. Neutrosophy manages this uncertainty more effectively 

than traditional models by incorporating degrees of truth (T), falsehood (F), and indeterminacy (I) into 

its calculations. [4]. This is particularly useful for making more accurate clinical decisions based on 

undefined data. 

On the other hand, advancements in medical technology have enabled the development of more 

precise and effective tools and methods for detecting cardiac arrhythmias, resulting in more accurate 

diagnoses and better patient stratification. This not only optimizes the diagnosis of cardiac arrhythmias 

but also contributes to a more efficient and proactive healthcare system. Additionally, the use of 
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statistical techniques, such as heart rate variability (HRV) analysis, and machine learning can aid in the 

early detection and accurate diagnosis of arrhythmias, thereby improving the management of 

cardiovascular diseases. Similarly, the use of statistical techniques, such as heart rate variability (HRV) 

analysis and machine learning, can assist in the early detection and accurate diagnosis of arrhythmias, 

which can enhance care in the management of cardiovascular diseases. 

 

2. Preliminaries 

This section summarizes statistical control charts and the theory of neutrosophic logic 

2.1 Statistical Control Charts 

 

In [5] and [6], the authors mention that control charts are valuable tools for improving quality, early 

detection of process deviations, and analyzing their underlying causes. These charts enable the early 

identification of process issues, saving time and money in error correction. Additionally, control charts 

help enhance productivity and efficiency by providing a better understanding of the process and 

facilitating quicker problem identification. 

Hotelling's 𝑇2 chart is a type of multivariate control chart used to monitor the simultaneous 

behavior of two or more variables in a process. This chart is based on the calculation of a 𝑇2 statistic, 

which measures the distance between a point in multivariate space and the process mean. It enables the 

detection of deviations in both the mean and variance of the variables simultaneously, making it 

particularly useful in processes involving multiple interdependent variables. When a deviation is 

detected on the 𝑇2  chart, it indicates a change in the process has occurred, and the cause should be 

investigated to take corrective actions. [7] and [8]. 

 

2.2 Neutrosophy 

 

Neutrosophy is a recent philosophical discipline that focuses on the study of neutralities and their 

interactions with various concepts and entities, including ideas, propositions, theories, events, and 

entities, among others. Neutrosophy divides these concepts into three categories: A, anti-A, and neut-

A, with the latter representing a neutral position between the first two. The term neutrosophy derives 

from the combination of "neutral" (from the Latin neuter, meaning "neutral") and "sophia" (from the 

Greek sophia, meaning "knowledge"). Its main theory posits that every idea tends to be balanced by ideas 

that are not A (not just anti-A, as Hegel suggested), ultimately achieving a state of equilibrium. 

Neutrosophy began to develop in 1995 [9]. 

Neutrosophy is used as a tool to analyze uncertainty and indeterminacy in various fields of 

knowledge. In the context of cardiovascular disease detection, neutrosophy has been applied to manage 

uncertainty. Specifically, [10] propose a technique that aids decision-making, assisting both patients and 

physicians in determining whether a patient has heart failure. Additionally, the technique enables users 

to handle the uncertainty arising from the imprecision and vagueness of the symmetric priority scales 

of various disease symptoms, allowing them to better understand the severity of the condition in their 

body. 

 

2.3 Neutrosophic Control Charts. 

 

Classical control charts, such as 𝑿 − 𝑹 o 𝑿 − 𝑺,  charts, are highly effective for monitoring processes 

with controlled variability and well-defined data. They work very well if measurements are accurate 

and there is little doubt about the precision of the data. For this reason, traditional control charts can 

identify when a process is out of control. Additionally, they are advantageous because they effectively 

detect variations in stable and well-understood processes. [11] and [12]. 
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However, when the data of variables related to cardiovascular problems contain uncertainty or 

indeterminacy, or if the data is contaminated with noise or unrecognized errors, the use of classical 

control charts is not recommended, as it may produce misleading results. On the other hand, integrating 

neutrosophic logic with control charts allows the model to capture not only the variability in the data 

but also the uncertainty and indeterminacy, instead of assuming that each piece of data is entirely true 

or false. This makes it a powerful tool for process monitoring in environments with uncertainty, such 

as healthcare. [13]. 

In [14], the authors propose a neutrosophic mean deviation (MD) control chart that can 

accommodate imprecise observations in the collected quality characteristic variables. The results 

indicated that the proposed MD chart design outperforms existing counterparts in terms of statistical 

power. Similarly, in [15], attribute control charts are presented for monitoring blood components under 

neutrosophic statistics. These are described as highly effective, appropriate, adaptable, and informative 

for the surveillance of blood components in uncertain environments, as evidenced in various 

applications. They also mention that the proposed control chart can be applied in medical sciences for 

monitoring various diseases. 

 

3. Calculation of Neutrosophic Control Limits 

 

The present research proposes a neutrosophic hybrid model to classify cardiac arrhythmias using 

parameters obtained from electrocardiogram (ECG) signals. The proposed model employs adjusted 

means and standard deviations for the neutrosophic components. Based on this, upper and lower limits 

can be calculated, considering the uncertainty and indeterminacy of the data, where 𝜇𝑇  is the mean 

adjusted by the value of T y 𝜎𝑇  is the standard deviation considering uncertainty. This is achieved using 

a linear interpretation formula such as: 
𝑼𝒑𝒑𝒆𝒓 𝑪𝒐𝒏𝒕𝒓𝒐𝒍 𝑳𝒊𝒎𝒊𝒕 (𝑼𝑪𝑳) = 𝜇𝑇 + 𝑍 ∗  𝜎𝑇  

𝑳𝒐𝒘𝒆𝒓 𝑪𝒐𝒏𝒕𝒓𝒐𝒍 𝑳𝒊𝒎𝒊𝒕 (𝑳𝑪𝑳) = 𝜇𝑇 − 𝑍 ∗  𝜎𝑇  

The parameters obtained from the ECG, such as heart rate, P wave, QRS complex, and RR interval, 

are used to train the neutrosophic hybrid model. [16] 

 

4. Neutrosophic Hybrid Model 

 

Neutrosophy is a mathematical theory that allows processing information that is neither true, nor 

false, nor indeterminate. In the context of classifying the four types of cardiac arrhythmias, the 

uncertainty and ambiguity of the detected waves are studied using Hotelling's 𝑇2 control charts and 

neutrosophic values to calculate the percentage of truth, uncertainty, and falsehood of their 

characteristics, as shown in (Table 1). [17] 

The Neutrosophic Hybrid Model is an advanced approach that combines neutrosophic logic with 

other statistical, mathematical, or computational methods to address complex problems where 

uncertainty, indeterminacy, and vagueness are critical factors. This model is particularly useful in areas 

where data is incomplete, noisy, or ambiguous, such as medical analysis, artificial intelligence, and 

decision-making. 
Table 1: Definition of Linguistic Terms 

 

Linguistic Terms SNVV 

Extremely Important (1.00, 0.00, 0.00) 

Very Very Important (0.90, 0.10, 0.10) 

Very Important (0.80, 0.15, 0.20) 

Important (0.70, 0.25, 0.30) 

Moderately Important (0.60, 0.35, 0.40) 
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Linguistic Terms SNVV 

Moderate (0.50, 0.50, 0.50) 

Moderately Insignificant (0.40, 0.65, 0.60) 

Insignificant (0.30, 0.75, 0.70) 

Very Insignificant (0.20, 0.85, 0.80) 

Very Very Insignificant (0.10, 0.90, 0.90) 

Extremely Insignificant (0.00, 1.00, 1.00) 

 

In a universe 𝐸, the truth membership function (𝑇𝑥),  indeterminacy (𝐼𝑥) and falsehood (𝐹𝑥) 

functions determine the neutrosophic set to which an element belongs in 𝐸. The notation of these 

functions allows the following equation to be used to describe the neutrosophic set to which it belongs. 

 

𝑿 =  
(𝑻(𝒙)  +  𝑰(𝒙)  +  𝑭(𝒙))

𝟑
 (1) 

 

Donde:   
𝑿: 𝑇ℎ𝑒 𝑎𝑟𝑟ℎ𝑦𝑡ℎ𝑚𝑖𝑎 𝑥 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑜𝑓 𝑎𝑟𝑟ℎ𝑦𝑡ℎ𝑚𝑖𝑎𝑠 𝑦 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎 𝑦" 
𝑻(𝒙): 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠  "𝑎𝑟𝑟ℎ𝑦𝑡ℎ𝑚𝑖𝑎 𝑥 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑜𝑓 𝑎𝑟𝑟ℎ𝑦𝑡ℎ𝑚𝑖𝑎𝑠 𝑦" 
𝑭(𝒙): 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 "𝐴𝑟𝑟ℎ𝑦𝑡ℎ𝑚𝑖𝑎 𝑥 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑜𝑓 𝑎𝑟𝑟ℎ𝑦𝑡ℎ𝑚𝑖𝑎𝑠 𝑦" 
𝑰(𝒙): 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 "𝑎𝑟𝑟ℎ𝑦𝑡ℎ𝑚𝑖𝑎 𝑥 𝑖𝑠 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑜𝑓 𝑎𝑟𝑟ℎ𝑦𝑡ℎ𝑚𝑖𝑎𝑠  𝑦" 

The values of the components of the membership function are associated with the linguistic 

characteristics (Table 1). Table 2 correspond cardiac parameters and values. 

 

 

 

Characteristics Value 

Heart rate 0.6 

QRS complex duration 0.8 

Presence of P wave 0.2 

Relationship between QRS complex and RR interval 0.9 

Tabla 2: Cardiac Parameters and Values 

To analyze the existence of out-of-control processes determined by neutrosophic linguistic 

characteristics, a matrix is generated with three variables, features that will allow the formula to be used: 

𝑴𝑻𝟐 =  
 𝑺𝑻𝟐

𝒏
 

(2) 

 

Where M𝑇2represents the mean 𝑇2, S𝑇2 the sum 𝑇2, and n is the number of 𝑇2 observations. This 

formula calculates the arithmetic mean of the data in a set of 𝑇2 observations. For the classification of 

cardiac arrhythmias, Hotelling's 𝑇2 sample covariance matrix allows the detection of anomalies in 

electrocardiogram data by implementing the following formula. 

𝑺 =  
𝟏

𝒏 − 𝟏
 ∗  (𝑿 −  �̅�)′ ∗  (𝑿 – �̅�) 

(3) 
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Where S represents the measure of the joint variability of the variables in the dataset to define the 

upper control limit 𝑇2 using a test called F with a significance level of 5%. A neutrosophic composition 

matrix allows representing the composition of a set of elements and the value of the corresponding 

degree for each element, enabling classification as either standard or non-standard real subsets by 

applying the following: 
𝑽𝑻(𝒙, 𝒚)  =  ∑ (𝑽𝑻(𝒙) ∗  𝑪𝑭(𝒚)) 
𝑽𝑭(𝒙, 𝒚)  =  ∑ (𝑽𝑭(𝒙) ∗  𝑪𝑻(𝒚)) 
𝑽𝑰(𝒙, 𝒚)  =   ∑ (𝑽𝑰(𝒙) ∗  𝑪𝑰(𝒚)) 

 

Where, for each degree of element X, the summation of the complement for the corresponding 

degree must be performed, and the summation is carried out over all elements Y in the combination 

that are not X. Subsequently, the results obtained from the neutrosophic composition matrix are 

graphed and analyzed, allowing a probabilistic evaluation of whether an arrhythmia belongs to a 

specific category, even in cases where the classification is unclear, ambiguous, or there is no presence of 

waves. 

 

5. Results 

 

To determine the accuracy in classifying cardiac arrhythmias, the experimental results showed that 

the neutrosophic hybrid model achieved an average classification accuracy of 82.99% for detecting four 

different types of cardiac arrhythmias. These results were comparable to the original values of each 

dataset, as shown in (Table 3). To evaluate the scalability of the neutrosophic hybrid model, the signal 

duration was increased from 3500 ms to 5000 ms, and the model's performance was assessed in terms 

of classification accuracy and processing time. The results demonstrated that the neutrosophic hybrid 

model was capable of handling ECG datasets with a higher number of signals without significantly 

reducing classification accuracy. 

 
Table 3: Accuracy Results of the Hybrid Model  

 

Id Database Arrhythmia Records 
Hybrid 

Model 
Accuracy 

1 MIT-BIH Atrial 

Fibrillation Database 

Atrial 

fibrillation 

14 14 100.00% 

2 CU Ventricular 

Tachyarrhythmia 

Database 

Ventricular 

tachycardia 

18 13 72.22% 

3 Norwegian Endurance 

Athlete ECG Database 

Bradycardia 17 24 70.83% 

4 MIT-BIH 

Supraventricular 

Arrhythmia Database 

Supraventricul

ar tachycardia 

18 16 88.89% 

 Total  67 67 82.99% 

 

To formulate the mathematical model based on Table 3, an approach can be constructed to evaluate 

the overall accuracy of the hybrid model in classifying arrhythmias. This involves integrating the 

observations by arrhythmia type and calculating a general metric. 
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5.1 Mathematics Model 

5.1.1 Define Variables: 

• 𝒏𝒊: Total number of records for the database i. 

• 𝒓𝒊: Number of correctly classified records for database i using the hybrid model. 

• 𝒑𝒊: Accuracy of the hybrid model for database i, calculated as: 

𝒑𝒊 =  
𝒓𝒊

𝒏𝒊
 𝒙 𝟏𝟎𝟎 

(4) 

5.1.2 Total Accuracy of the Hybrid Model: 

Let 𝑵 be the total number of records across all databases: 

𝑁 =  ∑ 𝑛𝑖

𝑘

𝑖=1

 
(4.1) 

 

Let 𝑹 be the total number of correctly classified records across all databases. 

𝑅 =  ∑ 𝑟𝑖

𝑘

𝑖=1

 
(4.2) 

 

The total accuracy 𝑷 of the hybrid model is calculated as:   

𝑃 =  
𝑅

𝑁
 𝑥 100 

(4.3) 

 

5.1.3 Application with the Data: 

For each database: 

𝑝1 =  
14

14
 𝑥 100 = 100% 

𝑝2 =  
13

18
 𝑥 100 = 72.22% 

𝑝3 =  
17

24
 𝑥 100 = 70.83% 

𝑝4 =  
16

18
 𝑥 100 = 88.89% 

Total records(𝑵) and correct records(𝑹) 
𝑁 = 14 + 18 + 24 + 18 = 74 
𝑅 = 14 + 13 + 17 + 16 = 60 

Total Accuracy(𝑷): 

𝑃 =  
60

74
 𝑥 100 = 82.99% 

This model allows calculating the total accuracy of the hybrid model by integrating data from all 

databases to evaluate its performance in arrhythmia classification. Regarding its efficiency, the obtained 

result of 82.99% suggests that the model has a solid performance in classifying arrhythmias. This 
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indicates that the model can correctly handle the majority of cases, accurately identifying the 

corresponding type of arrhythmia. 

Similarly, regarding the margin for improvement, it can be noted that 17.01% of the samples were 

not correctly classified, reflecting opportunities to optimize the model. Possible areas for improvement 

include adjustments to the neutrosophic parameters, higher quality training data, or the integration of 

additional features 

Finally, we can conclude that this level of accuracy positions the hybrid model as a viable solution 

for classifying cardiac arrhythmias, especially in contexts where data uncertainty can hinder the use of 

traditional methods. However, it is important to continue refining and validating the model to achieve 

greater accuracy and minimize potential errors. 

The robustness of the neutrosophic hybrid model was determined through the generation of 

neutrosophic triangular scales for each cardiac arrhythmia signal, as observed in (Algorithm_1 and 

Algorithm_2). Neutrosophic distances were generated, which allowed validating the percentage of 

divergence from each type of arrhythmia: Bradycardia (Tables 5 and 6), Ventricular Tachycardia (Tables 

7 and 8), Supraventricular Tachycardia (Tables 9 and 10), and Atrial Fibrillation (Tables 11 and 12). 

 

5.1.4 Definition of Variables 

 
𝑻𝒊 =  Truth degree of the signal i (Neutrosophic component). 
𝑰𝒊 =  Indeterminacy degree of the signal i 
𝑭𝒊 =  Falsity degree of the signal i 
𝑫𝒊 =  Neutrosophic distance of signal 𝐢 to the reference neutrosophic scale 
 

Algorithm 1 classifies data using a covariance measure. For each sample, it evaluates whether the 

covariance measure is less than 0.25, in which case the label "Ventricular" is assigned to sample iii. If 

cov_matrix is greater than or equal to 0.25 but less than 0.5, the label "Supraventricular" is assigned. If 

cov_matrix is greater than or equal to 0.5 but less than 0.75, the label "Bradycardia" is assigned. If 

cov_matrix is greater than or equal to 0.75, the label "Atrial Fibrillation" is assigned. In other words, the 

algorithm evaluates each sample iii and determines which class it belongs to base on the comatrix value. 

The steps are as follows: 

The values obtained from (Algorithm 1) are related to heart conditions and are used in the context 

of classifying cardiac arrhythmias, which are abnormal heart rhythms. In other words, the algorithm 

classifies cardiac signals into one of four arrhythmia categories based on covariance values and 

performs a normalization preprocessing step. Although it is a simple approach, it can be useful as a first 

step in a more advanced classification workflow or as a quick tool for initial evaluations. 

 

Algorithm 1: Training Algorithm for Cardiac Classification 

# Loop through the sample set 

for i in range(n_samples): 

    # Classification based on the covariance matrix (cov_matrix) 

    if cov_matrix < 0.25: 

        y[i] = 1 # Class 1: Ventricular Rhythm 

    elif cov_matrix < 0.5: 

        y[i] = 2 # Class 2: Supraventricular Rhythm 

    elif cov_matrix < 0.75: 

        y[i] = 3 # Class 3: Bradycardia 

    else: 

        y[i] = 4 # Class 4: Atrial Fibrillation 

# Data normalization (X) 

X_norm = (X - np.mean (X, axis=0)) / np.std (X, axis=0) 
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a. Data normalization 

After classifying all the samples, the algorithm normalizes the data in X so that they have a mean 

of zero and a standard deviation of one, resulting in the neutrosophic reference values for each cardiac 

arrhythmia (Table 4), 

𝐗𝐧𝐨𝐫𝐦[𝐢, 𝐣] =  
𝐗[𝐢, 𝐣] −  𝛍𝐣

𝛔𝐣
 

(5) 

 

Donde: 
𝐗[𝐢, 𝐣]: Value of feature 𝐣 for sample 𝐢. 
𝛍𝐣: Mean of feature 𝐣 for all samples. 
𝛔𝐣: Standard deviation of feature 𝐣 for all samples. 

Each feature has a mean of 0 and a standard deviation of 1. 

b. Sample classification 

Each sample is classified into one of the arrhythmia categories based on the value of the 

covariance matrix (cov_matrix): 

 

y[i] =  {

1;  si cov_matrix < 0.25(Ventricular Tachycardia)
2;  si 0.25 ≤ cov_matrix < 0.5(Supraventricular Tachycardia)

3;  si 0.5 ≤ cov_matrix < 0.75(Atrial Fibrillation)
4;  si covmatrix > 0.75(Bradycardia)

 

 

c. Calculation of Neutrosophic Reference Values (NRV) 

For each arrhythmia category (𝐤 ∈ {𝟏, 𝟐, 𝟑, 𝟒} The neutrosophic reference values((𝑻𝒌, 𝑰𝒌, 𝑭𝒌) are 

calculated as the means of the normalized values of the corresponding features. 

Truth Degree (𝑻𝒌): Represents the mean of the features that indicate a direct relationship with the 

category: 

𝐓𝒌 =  
1

𝑛𝑘
 ∑ 𝑋𝑛𝑜𝑟𝑚⟦i, Truth features⟧

𝑛

𝑖 ∈ 𝑘

 

Indeterminacy Degree (𝑰𝒌): Represents the mean of the features that introduce ambiguity or variability 

in the category: 

𝑰𝒌 =  
1

𝑛𝑘
 ∑ 𝑋𝑛𝑜𝑟𝑚⟦i, Indeterminacy features⟧

𝑛

𝑖 ∈ 𝑘

 

Falsity Degree (𝑭𝒌): Represents the mean of the features that contradict the category: 

𝑭𝒌 =  
1

𝑛𝑘
 ∑ 𝑋𝑛𝑜𝑟𝑚⟦i, Falsity features⟧

𝑛

𝑖 ∈ 𝑘

 

Donde: 
𝐧𝒌: Number of samples in category k. 
𝐢 ∈ 𝐤: Samples classified in the category k. 

d. Results for the Categories. 
 

Table 4: Neutrosophic Reference Values 

 

Cardiac arrhythmia NRV 

Ventricular tachycardia (0.4, 0.6, 0) 

Supraventricular tachycardia (0.3, 0.3, 0.4) 
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Cardiac arrhythmia NRV 

Atrial fibrillation (0.3, 0.2, 0.5) 

Bradycardia (0.2, 0.8, 0) 

 

These values reflect the neutrosophic mean calculated for each category after normalization and 

classification. 

e. Interpretation of the Categories According to the Table  

Taquicardia Ventricular (𝑇 = 0.4, 𝐼 = 0.6, 𝐹 = 0.0): 

• High Truth (T=0.4): Indicates a reliable classification based on specific features of the 

arrhythmia. 

• Moderate Indeterminacy (I=0.6): The category has some ambiguity, which might be related 

to features shared with other arrhythmias. 

• No Falsity (F=0.0): The features do not contradict the classification 

Supraventricular tachycardia (𝑇 = 0.3, 𝐼 = 0.3, 𝐹 = 0.4): 

• Moderate Truth (𝑇 = 0.3): The classification is supported but not as strong as in other 

categories. 

• Low Indeterminacy (𝐼 = 0.3): The data is clearer and more consistent. 

• High Falsity (𝐹 = 0.4): There are significant contradictions in the features, suggesting possible 

errors in classification or conflicting data. 

Atrial fibrillation (𝑻 = 𝟎. 𝟑, 𝑰 = 𝟎. 𝟐, 𝑭 = 𝟎. 𝟓): 

• Moderate Truth (T=0.3): Similar to supraventricular, the data partially support the 

classification. 

• Low Indeterminacy (I=0.2): The data is quite clear and well-defined. 

• High Falsity (F=0.5): Suggests a high degree of conflict, possibly due to similarities with other 

categories. 

Bradycardia (𝑻 = 𝟎. 𝟐, 𝑰 = 𝟎. 𝟖, 𝑭 = 𝟎. 𝟎): 

• Low Truth (T=0.2): The specific features of bradycardia are less defined compared to other 

arrhythmias. 

• High Indeterminacy (I=0.8): The data shows significant variability or ambiguity. 

• No Falsity (F=0.0): There are no clear contradictions in the data, suggesting that the conflicts 

are due to lack of definition rather than errors. 
Robustness of the Hybrid Model 

• This NRV-based approach demonstrates that the hybrid model is capable of handling 

ambiguous and conflicting data by representing the characteristics of arrhythmias in terms of 

truth, indeterminacy, and falsity. 

• The differences in 𝑻, 𝑰, 𝑭 between categories can help to: 

• Identify areas where the data is inconsistent. 

• Adjust the model to improve its accuracy. 

• Prioritize key features in future optimizations. 

 

In conclusion, we can state that the neutrosophic model based on normalization and 𝑵𝑹𝑽 provides 

a more detailed and realistic representation of cardiac arrhythmias, addressing uncertainty and 

ambiguity in medical data. This is crucial for improving the accuracy and reliability of automated 

diagnoses and supporting clinical decisions with more interpretable data 

On the other hand, (Algorithm 2) creates a transition matrix used in the analysis of discrete time series, 

particularly in the analysis of electrocardiograms (ECGs). The transition matrix represents the 
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probability of transitioning from one state to another in a discrete time series. In this case, the matrix 

represents the transition probabilities between different types of cardiac complexes in an ECG time 

series. This matrix has four rows (one for each type of cardiac arrhythmia) and three columns (one for 

each possible subsequent type of cardiac arrhythmia). 

 

Algorithm 2: ENT Algorithm 

# Creation of the neutrosophic matrix 

# Each row corresponds to a specific cardiac signal feature 

# Columns represent truth, indeterminacy, and falsehood values 

neutro_matrix = np.array([ 

    [1 - fc, 0, fc],  # Row 1: Feature-based on 'fc' 

    [1 - qrs, qrs, 0],  # Row 2: Feature-based on 'qrs' 

    [p, 1 - p, 0],   # Row 3: Feature-based on 'p' 

    [1 - qrs_rr, qrs_rr, 0]  # Row 4: Feature-based on 'qrs_rr' 

]) 

# Explanation: 

# The matrix stores neutrosophic values: [truth, indeterminacy, falsehood]. 

# For each feature, the truth, indeterminacy, and falsehood are computed. 

 
This algorithm performs a classification of cardiac arrhythmias by calculating the Euclidean 

distance between the neutrosophic matrix obtained from Algorithm 2. 

General Mathematical Model 

Neutrosophic Matrix: 

𝐧𝐞𝐮𝐭𝐫𝐨𝐦𝐚𝐭𝐫𝐢𝐱 =  [

𝟏 − 𝐟𝐜         𝟎       𝐟𝐜
𝟏 − 𝐪𝐫𝐬            𝐪𝐫𝐬        𝟎

𝒑            𝟏 − 𝒑        𝟎
𝟏 − 𝒒𝒓𝒔_𝒓𝒓      𝒒𝒓𝒔_𝒓𝒓       𝟎

] (6) 

 

Euclidean Distance: For any pair of states 𝒊 y 𝒋: 

𝐃𝒊𝒋 = √∑(𝒏𝒆𝒖𝒕𝒓𝒐_𝒎𝒂𝒕𝒓𝒊𝒙[𝒊, 𝒌] − 𝒏𝒆𝒖𝒕𝒓𝒐_𝒎𝒂𝒕𝒓𝒊𝒙[𝒋, 𝒌])2

3

𝑘=1

 (7) 

 

This model allows calculating the distance between different states in a discrete ECG time series, 

representing how much one type of cardiac complex differs from another in terms of neutrosophic 

dimensions (truth, indeterminacy, and falsity). Higher values of 𝑫𝒊𝒋  indicate greater dissimilarity 

between states, which can aid in analyzing transitions and patterns in cardiac signals. 

The elements of the matrix represent the transition probabilities from one type of cardiac 

arrhythmia to another. For an ECG signal with an arrhythmia of the bradycardia type, its parameters 

are: 𝒇𝒄 = 𝟎. 𝟑, 𝒒𝒓𝒔 = 𝟎. 𝟕, 𝒑 = 𝟎, 𝒒𝒓𝒔_𝒓𝒓 = 𝟏 resulting in the values shown in Table 5. For ventricular 

tachycardia, its parameters are 𝒇𝒄 = 𝟎. 𝟕, 𝒒𝒓𝒔 = 𝟎. 𝟑, 𝒑 = 𝟎. 𝟕, 𝒒𝒓𝒔_𝒓𝒓 = 𝟏 resulting in the values shown 

in Table 7, for supraventricular tachycardia its parameters are: 𝒇𝒄 = 𝟎. 𝟖, 𝒒𝒓𝒔 = 𝟎. 𝟓, 𝒑 = 𝟎. 𝟑, 𝒒𝒓𝒔_𝒓𝒓 =

𝟎. 𝟑 resulting in the values shown in Table 9 and finally for atrial fibrillation its parameters are:  𝒇𝒄 = 𝟏, 

𝒒𝒓𝒔 = 𝟎, 𝒑 = 𝟏, 𝒒𝒓𝒔_𝒓𝒓 = 𝟎. 𝟐 resulting in the values shown in Table 11. 

In Table 5 we can identify the three different measures (truth, uncertainty, and falsehood) for each 

of the three possible states of the variable (present, uncertain and absent). Where, the first row of values 

shows has a truth measure of 0.4, suggesting that the patient is likely to have bradycardia. The 

uncertainty measure is 0, indicating that there is no uncertainty in the statement, and the falsehood 

measure is 0.6, suggesting that it is unlikely that the patient does not have bradycardia. 
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Table 5: Neutrosophic scale pertaining to Bradycardia 

 

Neutrosophic Triangular Scale 

True Uncertainty Falsehood 

0.4 0 0.6 

0.2 0.8 0 

0.2 0.8 0 

0.1 0.9 0 

 

Table 6: Neutrosophic distances pertaining to Bradycardia 

 

Neutrosophic distances 

Ventricular Supraventricular Fibrillation Bradycardia 

1.178 1.241 1.442 1.037 

 

The results obtained in Algorithm 3 show that the neutrosophic matrix is more like the reference 

matrices for Bradycardia, as its Neutrosophic distance is equal to 1.037. The longest distance is for 

Fibrillation, suggesting that the neutrosophic matrix is less like the Fibrillation reference matrix. 

 

Table 7: Neutrosophic scale for ventricular tachycardia 

 

Neutrosophic Triangular Scale 

True Uncertainty Falsehood 

0.1 0 0.9 

0.1 0.9 0 

0.5 0.5 0 

0.1 0.9 0 

 

In Table 7 we can identify the three different measures (truth, uncertainty, and falsehood) for each 

of the three possible states of the variable (present, uncertain and absent). Where, the third row of values 

(0.5, 0.5, 0) indicates a balanced measure of truth and uncertainty, suggesting that we are not sure 

whether the patient has ventricular tachycardia. The falsehood measure is 0, suggesting that it is 

unlikely that the patient does not have ventricular tachycardia. 

 
Table 8: Neutrosophic distances pertaining to ventricular tachycardia 

 

Neutrosophic distances 

Ventricular Supraventricular Fibrillation Bradycardia 

1.281 1.319 1.476 1.396 

 

The results obtained in Algorithm 3 show that the neutrosophic matrix is more like the reference 

matrices for Ventricular Tachycardia, as its Neutrosophic distance is equal to 1.281. The longest distance 

is for Fibrillation, suggesting that the neutrosophic matrix is less like the Fibrillation reference matrix. 
 

Table 9: Neutrosophic scale pertaining to supraventricular tachycardia 

 

Neutrosophic Triangular Scale 

True Uncertainty Falsehood 

0.1 0 0.9 
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Neutrosophic Triangular Scale 

True Uncertainty Falsehood 

0 1 0 

0.8 0.2 0 

0.8 0.2 0 

 

In Table 9 we can identify the three different measures (truth, uncertainty, and falsity) for each of 

the three possible states of the variable (present, uncertain and absent). Where, the third and fourth sets 

of values, the measure of belief in truth is high (0.8) and the measure of falsity is low (0), suggesting that 

the statement is believed to be probably true. However, there is also some uncertainty (0.2) associated 

with this belief. 
Table 10: Neutrosophic distances pertaining to supraventricular tachycardia 

 

Neutrosophic distances 

Ventricular Supraventricular Fibrillation Bradycardia 

1.49 1.2 1.49 1.726 

 

The results obtained in Algorithm 3 show that the neutrosophic matrix is more like the reference 

matrices for Supraventricular Tachycardia, since its Neutrosophic distance is equal to 1.2. The longest 

distance is for Bradycardia, suggesting that the neutrosophic matrix is less like the Bradycardia 

reference matrix. 

Table 11: Neutrosophic scale pertaining to atrial fibrillation 

 

Neutrosophic Triangular Scale 

True Uncertainty Falsehood 

0.1 0 0.9 

1 0 0 

1 0 0 

1 0 0 

 

In Table 11 we can identify the three different measures (truth, uncertainty, and falsehood) for each 

of the three possible states of the variable (present, uncertain and absent). Where, the fourth set of 

values, the measure of belief in truth is high (1), while the measure of falsity is low (0). This could be 

interpreted as an opinion that the statement is true. There is no uncertainty associated with this 

statement. 
 

Table 12: Neutrosophic distances belonging to atrial fibrillation 

 

Neutrosophic distances 

Ventricular Supraventricular Fibrillation Bradycardia 

1.849 1.612 1.606 2.302 

 

The results obtained in Algorithm 3 show that the Neutrosophic matrix is more like the reference 

matrices for Arterial Fibrillation as its Neutrosophic distance is equal to 1.606. The longest distance is 
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for Bradycardia, suggesting that the Neutrosophic matrix is less similar to the reference matrix for 

Bradycardia. 

To evaluate how interpretable the results obtained from the Neutrosophic hybrid model are, the 

visualization of the Neutrosophic distance process was used to verify its behavior for each type of 

cardiac arrhythmia (Figure 2 and Figure 3) using the Neutrosophic triangular function where the sets 

of classification rules and the most important features for the classification of cardiac arrhythmias were 

shown to be consistent with basic clinical knowledge. 

 

Algorithm 3: Neutrosophic Rule Generation Algorithm 

# Generate a sawtooth wave as the base for the triangular membership functions 

tri = sawtooth(x * np.pi, 0.5) 

# Calculate Euclidean distances for Ventricular classification 

ventricular_dist = np.linalg.norm(neutro_matrix - ventricular_ref, axis=1) 

tri_ventricular = np.zeros_like(tri)  # Initialize triangular function for Ventricular 

for d in ventricular_dist: 

    # Update triangular function with Ventricular distances 

    tri_ventricular += np.maximum(0, 1 - 2 * np.abs(x - d)) 

# Calculate Euclidean distances for Supraventricular classification 

supraventricular_dist = np.linalg.norm(neutro_matrix - supraventricular_ref, axis=1) 

tri_supraventricular = np.zeros_like(tri)  # Initialize triangular function for Supraventricular 

for d in supraventricular_dist: 

    # Update triangular function with Supraventricular distances 

    tri_supraventricular += np.maximum(0, 1 - 2 * np.abs(x - d)) 

# Calculate Euclidean distances for Bradycardia classification 

bradycardia_dist = np.linalg.norm(neutro_matrix - bradycardia_ref, axis=1) 

tri_bradycardia = np.zeros_like(tri)  # Initialize triangular function for Bradycardia 

for d in bradycardia_dist: 

    # Update triangular function with Bradycardia distances 

    tri_bradycardia += np.maximum(0, 1 - 2 * np.abs(x - d)) 

# Calculate Euclidean distances for Atrial Fibrillation classification 

fibrillation_dist = np. linalg.norm(neutro_matrix - fibrillation_ref, axis=1) 

tri_fibrillation = np. zeros_like(tri)  # Initialize triangular function for Atrial Fibrillation 

for d in fibrillation_dist: 

    # Update triangular function with Atrial Fibrillation distances 

    tri_fibrillation += np.maximum(0, 1 - 2 * np.abs(x - d)) 

 

Algorithm 3: Neutrosophic Rule Generation Algorithm generates neutrosophic rules to classify 

different types of cardiac arrhythmias (ventricular, supraventricular, bradycardia and fibrillation). This 

is achieved by calculating Euclidean distances from a Neutrosophic matrix to the corresponding 

references and constructing triangular membership functions for each type of arrhythmia and for each 

distance in the reference matrix. The construction of the triangular signal is performed by calculating 

the triangular wave function with the time variable x multiplied by pi and a factor of 0.5, at the end, the 

resulting triangular signals are used to determine the type of arrhythmia that best correlates with the 

input signal which returns the graph to review the behavior taken by each rule. 
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Figure 2: Behavior of neutrosophic distances for each type of cardiac arrhythmia 

 

The results of the application of Algorithm 3 show the behavior of each neutrosophic rule 

generated from the ECG signal for each type of arrhythmia where B represents bradycardia, VT 

represents ventricular tachycardia, SVT represents supraventricular tachycardia and AF represents 

atrial fibrillation. 

 
Figure 3: Results of the neutrosophic distances 

 

Figure 3 is another way of representing the values obtained from the neutrosophic rules (Algorithm 

3) and their neutrosophic distances where it is possible to interpret for each type of arrhythmia the 

percentage of remoteness or distance they have taking as a result the minimum value, that is, the closest 

as the type of arrhythmia classified. 

 

6. Conclusión  

 

This research work was carried out with the purpose of verifying the accuracy of the application 

of a hybrid model between neutrosophy and 𝑇2 Hotelling control charts to detect and classify cardiac 

arrhythmias, concluding that the model has a reliable accuracy and is completely scalable by means of 

its important components, such as the extraction and selection of features that in fusion of the 𝑇2 

Hotelling control charts, allow an accurate classification of cardiac arrhythmias even in situations of 

high variability and noise in the ECG signals.. 

Neutrosophy offers a unique and effective way to address uncertainty and errors in medical data. 

While process control charts allow you to monitor process variables, classify and identify unwanted 

deviations. Successful implementation of such a model requires a careful approach to data selection and 
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preprocessing, proper identification and measurement of variables, and the establishment of 

appropriate thresholds and limits for control charts. 

This model is also capable of handling large ECG datasets without decreasing classification accuracy, 

making it scalable and suitable for use in clinical settings. Interpretation of results is also accessible to 

the end user, increasing confidence in cardiac arrhythmia classification. 
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