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1. Introduction

1.1. Uncertain Set and Graph Theory

Graph theory provides a fundamental framework for analyzing networks, composed of nodes
(vertices) and their connections (edges). It offers insights into the structure, connectivity, and
properties of diverse networks [11]. Among the various types of graphs, this paper focuses on
mixed graphs, which integrate both undirected and directed edges. This integration allows
the representation of both symmetric and asymmetric relationships, making mixed graphs
a versatile tool for modeling complex systems. Consequently, mixed graphs have garnered
significant attention in both theoretical and practical research [4, 38,42,45,46,67].

To address uncertainty in real-world scenarios, concepts like fuzzy sets have been developed
[70]. A fuzzy set quantifies the degree to which an element belongs to a set using a membership
function. Neutrosophic sets [50–52] further extend this idea by incorporating degrees of truth,
indeterminacy, and falsity, enabling more nuanced modeling of uncertain phenomena. Below
are intuitive examples illustrating these concepts in practical scenarios.� Note that the following
are merely intuitive examples.
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Example 1.1 (Fuzzy Set). Consider a scenario where A represents the set of ”short buildings”
and B represents the set of ”tall buildings.”

Let x be a building with a height of 30 meters. Its membership degree in each set might be
defined as follows:

µA(x) = 0.6 (short buildings), µB(x) = 0.4 (tall buildings).

This representation reflects that the building x exhibits characteristics of both short and tall
buildings, quantifying the overlap between these categories.

Example 1.2 (Neutrosophic Set). Consider the classification of weather as ”Sunny,” ”Cloudy,”
or ”Rainy.” The weather state might not fully belong to any single category, making it suitable
for representation using a Neutrosophic Set.

Let the weather condition x be characterized as follows:

• Truth Membership Degree (T (x)): The degree to which the weather is ”Sunny,” T (x) =

0.7.
• Indeterminacy Membership Degree (I(x)): The degree of uncertainty about the

weather, I(x) = 0.2.
• Falsity Membership Degree (F (x)): The degree to which the weather is ”Rainy,” F (x) =

0.1.

Thus, the weather condition can be represented as:

Weather = {(Sunny, T (x) = 0.7), (Uncertain, I(x) = 0.2), (Rainy, F (x) = 0.1)}.

This paper investigates uncertain graph models, such as Fuzzy, Intuitionistic Fuzzy, Neutro-
sophic, Turiyam, and Plithogenic Graphs, designed to address uncertainties in various applica-
tions. These models, collectively referred to as uncertain graphs, extend classical graph theory
by incorporating different levels and types of uncertainty [3,5,6,13,16–21,23,24,44,53,57,59,60].

For example, a fuzzy graph assigns membership degrees in [0, 1] to vertices and edges,
representing uncertainties in connections. Neutrosophic graphs go further, assigning truth,
indeterminacy, and falsity membership degrees to vertices and edges, thus capturing more
complex uncertainties. These models are especially valuable in decision-making scenarios(ex.
[3]). Below are examples illustrating the application of these concepts in real-world scenarios.
Note that the following are merely intuitive examples.

Example 1.3 (Fuzzy Graph). Consider a scenario where A represents the set of ”short build-
ings” and B represents the set of ”tall buildings.”

Let x be a building with a height of 30 meters. Its membership degree in each set might be
defined as follows:

µA(x) = 0.6 (short buildings), µB(x) = 0.4 (tall buildings).
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This representation reflects that the building x exhibits characteristics of both short and tall
buildings, quantifying the overlap between these categories.

Now, consider a fuzzy graph G = (V,E), where V = {x1, x2, x3} represents buildings and E

represents connections based on architectural similarity. For instance, the edge (x1, x2) might
have a membership degree µ((x1, x2)) = 0.8, indicating a high degree of similarity in design,
materials, or function between the two buildings. This could represent relationships such as
”similar construction style” or ”shared purpose.”

Example 1.4 (Neutrosophic Graph). Consider the classification of weather as ”Sunny,”
”Cloudy,” or ”Rainy.” The state of the weather might not fully belong to any single cate-
gory, making it suitable for representation using a Neutrosophic Set.

Let the weather condition x be characterized as follows:

• Truth Membership Degree (T (x)): The degree to which the weather is ”Sunny,” T (x) =

0.7.
• Indeterminacy Membership Degree (I(x)): The degree of uncertainty about the

weather, I(x) = 0.2.
• Falsity Membership Degree (F (x)): The degree to which the weather is ”Rainy,” F (x) =

0.1.

In the context of a neutrosophic graph G = (V,E), let V = {x1, x2, x3}, where each vertex
represents a weather condition. Edges E represent relationships such as transitions between
weather states. For instance, (x1, x2) might have the following degrees:

T ((x1, x2)) = 0.5, I((x1, x2)) = 0.3, F ((x1, x2)) = 0.2,

indicating the truth, indeterminacy, and falsity degrees of the transition between x1 (Sunny)
and x2 (Cloudy). Such edges could represent the likelihood of weather transitions based on
historical data or meteorological patterns.

1.2. Our Contribution

Research on uncertain sets and graphs, as illustrated above, is crucial for modeling real-
world phenomena. However, their mathematical structures remain partially unexplored. In
this work, we propose and analyze the concept of mixed graphs within the frameworks of
Fuzzy Graphs, Neutrosophic Graphs, and Turiyam Neutrosophic Graphs. We explore their
properties, relationships, and potential applications, contributing to the broader understanding
of uncertain graphs. Notably, the Turiyam Neutrosophic Set is a specific case of the Quadruple
Neutrosophic Set, obtained by replacing the ”Contradiction” component with ”Liberal” [49].
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2. Preliminaries and definitions

In this section, we present a brief overview of the definitions and notations used throughout
this paper.

2.1. Basic Graph Concepts

We outline some basic graph concepts here. Note that this is not an exhaustive list. For
more foundational graph concepts and notations, please refer to [10,11,29,69].

Definition 2.1 (Graph). [11] A graph G is a mathematical structure consisting of a set of
vertices V (G) and a set of edges E(G) that connect pairs of vertices, representing relationships
or connections between them. Formally, a graph is defined as G = (V,E), where V is the vertex
set and E is the edge set.

Definition 2.2 (Subgraph). [11] A graph H = (VH , EH) is called a subgraph of a graph
G = (V,E) if:

• VH ⊆ V , i.e., the vertex set of H is a subset of the vertex set of G,
• EH ⊆ E, i.e., the edge set of H is a subset of the edge set of G,
• For each edge e ∈ EH , if e = {u, v}, then u, v ∈ VH .

In other words, a subgraph H of G consists of a subset of the vertices and edges of G, with
the condition that all edges in EH connect vertices in VH .

Definition 2.3 (Degree). [11] Let G = (V,E) be a graph. The degree of a vertex v ∈ V ,
denoted deg(v), is the number of edges incident to v. Formally, for undirected graphs:

deg(v) = |{e ∈ E | v ∈ e}|.

In the case of directed graphs, the in-degree deg−(v) is the number of edges directed into v,
and the out-degree deg+(v) is the number of edges directed out of v.

Definition 2.4 (Induced Subgraph). (cf. [8]) Given a graph G = (V,E) and a subset of
vertices S ⊆ V , the induced subgraph of G on S, denoted by G[S], is defined as:

G[S] = (S,ES),

where ES = {{u, v} ∈ E | u, v ∈ S}.
The induced subgraph G[S] satisfies the following properties:

• The vertex set of G[S] is exactly S.
• The edge set ES contains all edges in G whose endpoints are both in S.

Definition 2.5 (Directed Graph). [11] A directed graph G = (V,A) is a mathematical struc-
ture consisting of:
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• V : A set of vertices (or nodes),
• A ⊆ V × V : A set of directed edges (or arcs), where each arc (u, v) ∈ A has an

orientation from vertex u (the tail) to vertex v (the head).

2.2. Fuzzy, Neutrosophic Graphs, and Turiyam Neutrosophic Graphs

In this subsection, we examine Fuzzy Graphs, Neutrosophic Graphs, and Turiyam Neutro-
sophic Graphs. Fuzzy graphs are frequently discussed in comparison with crisp graphs, which
represent the classical form of graphs [35,44].

Definition 2.6. (cf. [35, 44]) A crisp graph is an ordered pair G = (V,E), where:

• V is a finite, non-empty set of vertices.
• E ⊆ V × V is a set of edges, where each edge is an unordered pair of distinct vertices.

Formally, for any edge (u, v) ∈ E, the following holds:

(u, v) ∈ E ⇐⇒ u 6= v and u, v ∈ V

This implies that there are no loops (i.e., no edges of the form (v, v)) and edges represent
binary relationships between distinct vertices.

Taking the above into consideration, we define Fuzzy, Intuitionistic Fuzzy, Neutrosophic,
and Turiyam Neutrosophic Graphs as follows. Please note that the definitions have been
consolidated for simplicity.

Definition 2.7 (Unified Graphs Framework: Fuzzy, Intuitionistic Fuzzy, Neutrosophic, and
Turiyam Neutrosophic Graphs). (cf. [16]) Let G = (V,E) be a classical graph with a set of
vertices V and a set of edges E. Depending on the type of graph, each vertex v ∈ V and edge
e ∈ E is assigned membership values to represent various degrees of truth, indeterminacy, and
falsity.

(1) Fuzzy Graph [43,44,68]:
• Each vertex v ∈ V is assigned a membership degree σ(v) ∈ [0, 1], representing the

degree of participation of v in the fuzzy graph.
• Each edge e = (u, v) ∈ E is assigned a membership degree µ(u, v) ∈ [0, 1], repre-

senting the strength of the connection between u and v.
(2) Intuitionistic Fuzzy Graph (IFG) [1,65,71]:

• Each vertex v ∈ V is assigned two values: µA(v) ∈ [0, 1] (degree of membership)
and vA(v) ∈ [0, 1] (degree of non-membership), such that µA(v) + vA(v) ≤ 1.

• Each edge e = (u, v) ∈ E is assigned two values: µB(u, v) ∈ [0, 1] (degree
of membership) and vB(u, v) ∈ [0, 1] (degree of non-membership), such that
µB(u, v) + vB(u, v) ≤ 1.
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(3) Neutrosophic Graph [2,7,14,30,33,57,59]:
• Each vertex v ∈ V is assigned a triple σ(v) = (σT (v), σI(v), σF (v)), where:

– σT (v) ∈ [0, 1] is the truth-membership degree,
– σI(v) ∈ [0, 1] is the indeterminacy-membership degree,
– σF (v) ∈ [0, 1] is the falsity-membership degree,
– σT (v) + σI(v) + σF (v) ≤ 3.

• Each edge e = (u, v) ∈ E is assigned a triple µ(e) = (µT (e), µI(e), µF (e)), repre-
senting the truth, indeterminacy, and falsity degrees for the connection between
u and v.

(4) Turiyam Neutrosophic Graph [16,25–27,48]:
• Each vertex v ∈ V is assigned a quadruple σ(v) = (t(v), iv(v), fv(v), lv(v)), where:

– t(v) ∈ [0, 1] is the truth value,
– iv(v) ∈ [0, 1] is the indeterminacy value,
– fv(v) ∈ [0, 1] is the falsity value,
– lv(v) ∈ [0, 1] is the liberal state value,
– t(v) + iv(v) + fv(v) + lv(v) ≤ 4.

• Each edge e = (u, v) ∈ E is similarly assigned a quadruple representing the same
parameters for the connection between u and v.

2.3. Plithogenic Graphs

Plithogenic Graphs have recently emerged as a generalization of Fuzzy Graphs and Turiyam
Neutrosophic Graphs, extending the concept to represent Plithogenic Sets [55]. These graphs
are a focus of ongoing research and development [16, 34, 47, 62, 63]. The formal definition is
presented below.

Definition 2.8. [63] Let G = (V,E) be a crisp graph where V is the set of vertices and
E ⊆ V × V is the set of edges. A Plithogenic Graph PG is defined as:

PG = (PM,PN)

where:

(1) Plithogenic Vertex Set PM = (M, l,Ml, adf, aCf):
• M ⊆ V is the set of vertices.
• l is an attribute associated with the vertices.
• Ml is the range of possible attribute values.
• adf : M×Ml → [0, 1]s is the Degree of Appurtenance Function (DAF) for vertices.
• aCf : Ml × Ml → [0, 1]t is the Degree of Contradiction Function (DCF) for

vertices.
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(2) Plithogenic Edge Set PN = (N,m,Nm, bdf, bCf):
• N ⊆ E is the set of edges.
• m is an attribute associated with the edges.
• Nm is the range of possible attribute values.
• bdf : N ×Nm → [0, 1]s is the Degree of Appurtenance Function (DAF) for edges.
• bCf : Nm × Nm → [0, 1]t is the Degree of Contradiction Function (DCF) for

edges.

The Plithogenic Graph PG must satisfy the following conditions:

(1) Edge Appurtenance Constraint: For all (x, a), (y, b) ∈ M ×Ml:

bdf ((xy), (a, b)) ≤ min{adf(x, a), adf(y, b)}

where xy ∈ N is an edge between vertices x and y, and (a, b) ∈ Nm × Nm are the
corresponding attribute values.

(2) Contradiction Function Constraint: For all (a, b), (c, d) ∈ Nm×Nm:

bCf ((a, b), (c, d)) ≤ min{aCf(a, c), aCf(b, d)}

(3) Reflexivity and Symmetry of Contradiction Functions:

aCf(a, a) = 0, ∀a ∈ Ml

aCf(a, b) = aCf(b, a), ∀a, b ∈ Ml

bCf(a, a) = 0, ∀a ∈ Nm

bCf(a, b) = bCf(b, a), ∀a, b ∈ Nm

Example 2.9. (cf. [14]) The following examples are provided.

• When s = t = 1, PG is called a Plithogenic Fuzzy Graph.
• When s = 2, t = 1, PG is called a Plithogenic Intuitionistic Fuzzy Graph.
• When s = 3, t = 1, PG is called a Plithogenic Neutrosophic Graph.
• When s = 4, t = 1, PG is called a Plithogenic Turiyam Neutrosophic Graph.

3. Result in this paper

In this section, we present the results of this paper.

3.1. Uncertain Mixed Graph

We examine the concept of an Uncertain Mixed Graph, which integrates the ideas of Un-
certain Graphs and Mixed Graphs. The definitions, including related concepts, are provided
below.
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Definition 3.1 (Mixed Graph). [42,45,46,67] A mixed graph G = (V,E,A) is a mathematical
structure in graph theory consisting of three components:

• V : A set of vertices (or nodes),
• E: A set of undirected edges, where an edge uv ∈ E (or equivalently, [u, v]) connects

two vertices u and v without any orientation,
• A: A set of directed edges, also called arcs, where an arc −→uv ∈ A (or equivalently,
(u, v)) connects two vertices u and v with a specific orientation, making u the tail and
v the head.

Properties of Mixed Graphs:

(1) Vertices and Edges: Each vertex u ∈ V can be connected to another vertex v ∈ V

either by an undirected edge or a directed arc. There can be multiple edges between
the same pair of vertices, but for simplicity, loops (edges/arcs that start and end at
the same vertex) are not considered in this definition.

(2) Walks in Mixed Graphs: A walk in a mixed graph is a sequence of vertices and
edges/arcs denoted as

v0, c1, v1, c2, v2, . . . , ck, vk,

where for each index i, ci is either an undirected edge vivi+1 or a directed arc −−−→vivi+1.
(3) Paths and Cycles: A path is a walk in which no vertices, edges, or arcs are repeated,

except possibly the starting and ending vertices. A closed path (where the start and
end vertices are the same) is called a cycle. A mixed graph is called acyclic if it does
not contain any cycles.

In summary, a mixed graph generalizes both undirected and directed graphs by allowing
the presence of both undirected edges and directed arcs, making it a versatile model for
representing complex networks with mixed types of relationships.

Proposition 3.2. An undirected graph is a special case of a mixed graph where the set of
directed edges A is empty.

Proof. Let G = (V,E) be an undirected graph, where:

• V is the set of vertices,
• E is the set of undirected edges.

Define a mixed graph G′ = (V ′, E′, A′), where:

• V ′ = V ,
• E′ = E,
• A′ = ∅.

Takaaki Fujita and Florentin Smarandache, Mixed Graph in Fuzzy, Neutrosophic, and
Plithogenic Graphs

Angel
Texto tecleado
Neutrosophic Sets and Systems, {Special Issue: Advances in SuperHyperStructures                                                         464
and Applied Neutrosophic Theories)}, Vol. 74, 2024



Since A′ is empty, all edges in G′ are undirected, and G′ retains the same structure as G.
Thus, G can be represented as a mixed graph G′.

Definition 3.3 (Fuzzy Mixed Graph). (cf. [9, 28, 39–41]) A Fuzzy Mixed Graph G =

(V,E,A, σ, µE , µA) is a mixed graph where:

• V is the set of vertices.
• E is the set of undirected edges.
• A is the set of directed edges (arcs).
• σ : V → [0, 1] is the vertex membership function, assigning to each vertex v ∈ V a

membership degree σ(v).
• µE : E → [0, 1] is the edge membership function for undirected edges.
• µA : A → [0, 1] is the arc membership function for directed edges.

These functions satisfy the following conditions:

(1) For every undirected edge e = {u, v} ∈ E, the edge membership degree satisfies:

µE(e) ≤ min{σ(u), σ(v)}.

(2) For every directed edge a = (u, v) ∈ A, the arc membership degree satisfies:

µA(a) ≤ min{σ(u), σ(v)}.

Theorem 3.4. A Fuzzy Mixed Graph generalizes a Mixed Graph by assigning membership
degrees to vertices, undirected edges, and directed arcs.

Proof. Let G = (V,E,A) be a Mixed Graph, where:

• V : Set of vertices.
• E: Set of undirected edges.
• A: Set of directed edges.

Define a Fuzzy Mixed Graph G′ = (V ′, E′, A′, σ, µE , µA), where:

• V ′ = V ,
• E′ = E,
• A′ = A,
• σ(v) = 1 for all v ∈ V ,
• µE(e) = 1 for all e ∈ E,
• µA(a) = 1 for all a ∈ A.

Since all membership functions are set to 1, G′ behaves identically to G. Thus, any Mixed
Graph can be represented as a special case of a Fuzzy Mixed Graph.

Conversely, by allowing membership degrees in [0, 1], Fuzzy Mixed Graphs extend the ca-
pability of Mixed Graphs to model partial relationships and uncertainties.
Takaaki Fujita and Florentin Smarandache, Mixed Graph in Fuzzy, Neutrosophic, and
Plithogenic Graphs

Angel
Texto tecleado
Neutrosophic Sets and Systems, {Special Issue: Advances in SuperHyperStructures                                                         465
and Applied Neutrosophic Theories)}, Vol. 74, 2024



Definition 3.5 (Intuitionistic Fuzzy Mixed Graph). An Intuitionistic Fuzzy Mixed Graph

G = (V,E,A, µV , νV , µE , νE , µA, νA)

consists of:

• V : the set of vertices.
• E: the set of undirected edges.
• A: the set of directed edges (arcs).
• µV : V → [0, 1] and νV : V → [0, 1] are the vertex membership and non-membership

functions, respectively, satisfying for each v ∈ V :

0 ≤ µV (v) + νV (v) ≤ 1.

• µE : E → [0, 1] and νE : E → [0, 1] are the edge membership and non-membership
functions for undirected edges, satisfying for each e = {u, v} ∈ E:

0 ≤ µE(e) + νE(e) ≤ 1,

µE(e) ≤ min{µV (u), µV (v)},

νE(e) ≥ max{νV (u), νV (v)}.

• µA : A → [0, 1] and νA : A → [0, 1] are the arc membership and non-membership
functions for directed edges, satisfying for each a = (u, v) ∈ A:

0 ≤ µA(a) + νA(a) ≤ 1,

µA(a) ≤ min{µV (u), µV (v)},

νA(a) ≥ max{νV (u), νV (v)}.

Theorem 3.6. An Intuitionistic Fuzzy Mixed Graph generalizes both Fuzzy Mixed Graphs and
Mixed Graphs by incorporating membership and non-membership degrees.

Proof. Let G = (V,E,A, σ, µE , µA) be a Fuzzy Mixed Graph, where:

• V : Set of vertices.
• E: Set of undirected edges.
• A: Set of directed arcs.
• σ, µE , and µA are the vertex, edge, and arc membership functions, respectively.

Define an Intuitionistic Fuzzy Mixed Graph G′ = (V ′, E′, A′, µV , νV , µE , νE , µA, νA), where:

• V ′ = V ,
• E′ = E,
• A′ = A,
• µV (v) = σ(v) for all v ∈ V ,
• νV (v) = 1− σ(v) for all v ∈ V ,
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• µE(e) = µE(e), νE(e) = 1− µE(e) for all e ∈ E,
• µA(a) = µA(a), νA(a) = 1− µA(a) for all a ∈ A.

By including non-membership functions νV , νE , and νA, G′ retains the structure of G while
extending it to account for non-membership degrees. If all non-membership degrees are set to
0, G′ reduces to a Fuzzy Mixed Graph. Furthermore, if all membership degrees are set to 1,
G′ reduces to a Mixed Graph.

Therefore, Intuitionistic Fuzzy Mixed Graphs generalize both Fuzzy Mixed Graphs and
Mixed Graphs.

Definition 3.7 (Neutrosophic Mixed Graph). (cf. [32]) A Neutrosophic Mixed Graph

G = (V,E,A, TV , IV , FV , TE , IE , FE , TA, IA, FA)

is defined as:

• V : the set of vertices.
• E: the set of undirected edges.
• A: the set of directed edges (arcs).
• TV , IV , FV : V → [0, 1] are the truth-membership, indeterminacy-membership, and

falsity-membership functions for vertices, respectively, satisfying for each v ∈ V :

0 ≤ TV (v) + IV (v) + FV (v) ≤ 3.

• Similarly, TE , IE , FE : E → [0, 1] are the membership functions for undirected edges,
and TA, IA, FA : A → [0, 1] are the membership functions for directed edges, satisfying
analogous conditions.

• For each undirected edge e = {u, v} ∈ E, the edge membership functions satisfy:

TE(e) ≤ min{TV (u), TV (v)}, IE(e) ≥ max{IV (u), IV (v)}, FE(e) ≥ max{FV (u), FV (v)}.

• For each directed edge a = (u, v) ∈ A, the arc membership functions satisfy:

TA(a) ≤ min{TV (u), TV (v)}, IA(a) ≥ max{IV (u), IV (v)}, FA(a) ≥ max{FV (u), FV (v)}.

Theorem 3.8. A Neutrosophic Mixed Graph generalizes Intuitionistic Fuzzy Mixed Graphs,
Fuzzy Mixed Graphs, and Mixed Graphs.

Proof. Let

G = (V,E,A, TV , IV , FV , TE , IE , FE , TA, IA, FA)

be a Neutrosophic Mixed Graph. To show that it generalizes other types of graphs, we consider
the following cases:
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An Intuitionistic Fuzzy Mixed Graph is defined by vertex membership µV , vertex non-
membership νV , edge membership µE , edge non-membership νE , arc membership µA, and arc
non-membership νA, satisfying 0 ≤ µ+ ν ≤ 1.

Set:
TV (v) = µV (v), IV (v) = 0, FV (v) = νV (v),

TE(e) = µE(e), IE(e) = 0, FE(e) = νE(e),

TA(a) = µA(a), IA(a) = 0, FA(a) = νA(a).

The neutrosophic membership functions now satisfy the Intuitionistic Fuzzy Mixed Graph
conditions:

0 ≤ T + F = µ+ ν ≤ 1, I = 0.

Hence, a Neutrosophic Mixed Graph reduces to an Intuitionistic Fuzzy Mixed Graph under
these mappings.

A Fuzzy Mixed Graph is defined by vertex membership σ, edge membership µE , and arc
membership µA, satisfying µE(e) ≤ min{σ(u), σ(v)} for edges and µA(a) ≤ min{σ(u), σ(v)}
for arcs.

Set:
TV (v) = σ(v), IV (v) = 0, FV (v) = 1− σ(v),

TE(e) = µE(e), IE(e) = 0, FE(e) = 1− µE(e),

TA(a) = µA(a), IA(a) = 0, FA(a) = 1− µA(a).

The neutrosophic membership functions now satisfy the Fuzzy Mixed Graph conditions:

TE(e) ≤ min{TV (u), TV (v)}, TA(a) ≤ min{TV (u), TV (v)}.

Hence, a Neutrosophic Mixed Graph reduces to a Fuzzy Mixed Graph under these mappings.
A Mixed Graph is defined by vertices V , undirected edges E, and directed arcs A, without

any membership functions.
Set:

TV (v) = 1, IV (v) = 0, FV (v) = 0,

TE(e) = 1, IE(e) = 0, FE(e) = 0,

TA(a) = 1, IA(a) = 0, FA(a) = 0.

The neutrosophic membership functions become constant, making the Neutrosophic Mixed
Graph equivalent to a Mixed Graph.

By appropriately setting the neutrosophic membership functions, a Neutrosophic Mixed
Graph can reduce to an Intuitionistic Fuzzy Mixed Graph, a Fuzzy Mixed Graph, or a Mixed
Graph. Therefore, a Neutrosophic Mixed Graph generalizes all these graph types.
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Definition 3.9 (Turiyam Neutrosophic Mixed Graph). A Turiyam Neutrosophic Mixed Graph

G = (V,E,A, tV , ivV , fvV , lvV , tE , ivE , fvE , lvE , tA, ivA, fvA, lvA)

consists of:

• V : the set of vertices.
• E: the set of undirected edges.
• A: the set of directed edges (arcs).
• For each vertex v ∈ V , the membership functions tV (v), ivV (v), fvV (v), lvV (v) ∈ [0, 1]

represent the truth, indeterminacy, falsity, and liberal state values, respectively, satis-
fying:

0 ≤ tV (v) + ivV (v) + fvV (v) + lvV (v) ≤ 4.

• Similar membership functions are defined for edges and arcs, satisfying analogous con-
ditions.

• For each undirected edge e = {u, v} ∈ E, the edge membership functions satisfy:

tE(e) ≤ min{tV (u), tV (v)},

ivE(e) ≥ max{ivV (u), ivV (v)},

fvE(e) ≥ max{fvV (u), fvV (v)},

lvE(e) ≥ max{lvV (u), lvV (v)}.

• For each directed edge a = (u, v) ∈ A, the arc membership functions satisfy similar
conditions.

Theorem 3.10. A Turiyam Neutrosophic Mixed Graph generalizes Neutrosophic Mixed
Graphs, Intuitionistic Fuzzy Mixed Graphs, Fuzzy Mixed Graphs, and Mixed Graphs.

Proof. Let

G = (V,E,A, tV , ivV , fvV , lvV , tE , ivE , fvE , lvE , tA, ivA, fvA, lvA)

be a Turiyam Neutrosophic Mixed Graph. To prove that it generalizes other types of graphs,
we consider the following cases:

A Neutrosophic Mixed Graph is defined with truth-membership (T ), indeterminacy-
membership (I), and falsity-membership (F ) functions for vertices, edges, and arcs.

Set:

tV (v) = TV (v), ivV (v) = IV (v), fvV (v) = FV (v), lvV (v) = 0,

tE(e) = TE(e), ivE(e) = IE(e), fvE(e) = FE(e), lvE(e) = 0,

tA(a) = TA(a), ivA(a) = IA(a), fvA(a) = FA(a), lvA(a) = 0.
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Under this mapping, the Turiyam Neutrosophic Mixed Graph reduces to a Neutrosophic Mixed
Graph by ignoring the liberal membership component (lv).

An Intuitionistic Fuzzy Mixed Graph is defined with membership (µ) and non-membership
(ν) functions for vertices, edges, and arcs, satisfying 0 ≤ µ+ ν ≤ 1.

Set:
tV (v) = µV (v), ivV (v) = 0, fvV (v) = νV (v), lvV (v) = 0,

tE(e) = µE(e), ivE(e) = 0, fvE(e) = νE(e), lvE(e) = 0,

tA(a) = µA(a), ivA(a) = 0, fvA(a) = νA(a), lvA(a) = 0.

Under this mapping, the Turiyam Neutrosophic Mixed Graph reduces to an Intuitionistic
Fuzzy Mixed Graph.

A Fuzzy Mixed Graph is defined with membership functions for vertices (σ), edges (µE),
and arcs (µA).

Set:
tV (v) = σ(v), ivV (v) = 0, fvV (v) = 1− σ(v), lvV (v) = 0,

tE(e) = µE(e), ivE(e) = 0, fvE(e) = 1− µE(e), lvE(e) = 0,

tA(a) = µA(a), ivA(a) = 0, fvA(a) = 1− µA(a), lvA(a) = 0.

Under this mapping, the Turiyam Neutrosophic Mixed Graph reduces to a Fuzzy Mixed Graph.
A Mixed Graph is defined by vertices (V ), undirected edges (E), and directed arcs (A),

without any membership functions.
Set:

tV (v) = 1, ivV (v) = 0, fvV (v) = 0, lvV (v) = 0,

tE(e) = 1, ivE(e) = 0, fvE(e) = 0, lvE(e) = 0,

tA(a) = 1, ivA(a) = 0, fvA(a) = 0, lvA(a) = 0.

The Turiyam Neutrosophic Mixed Graph becomes equivalent to a Mixed Graph under these
mappings.

By appropriately setting the membership functions, a Turiyam Neutrosophic Mixed Graph
can reduce to Neutrosophic Mixed Graphs, Intuitionistic Fuzzy Mixed Graphs, Fuzzy Mixed
Graphs, or Mixed Graphs. Thus, it generalizes all these types of graphs.

Definition 3.11 (Plithogenic Mixed Graph). A Plithogenic Mixed Graph

G = (V,E,A, adfV , adfE , adfA, aCfV , aCfE , aCfA)

is defined as:

• V : the set of vertices.
• E: the set of undirected edges.
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• A: the set of directed edges (arcs).
• adfV : V → [0, 1]s is the attribute degree function for vertices, assigning to each vertex
v ∈ V an s-tuple adfV (v) = (a1(v), a2(v), . . . , as(v)).

• adfE : E → [0, 1]s is the attribute degree function for undirected edges.
• adfA : A → [0, 1]s is the attribute degree function for directed edges.
• aCfV : V × V → [0, 1]t is the contradiction degree function for vertices.
• aCfE and aCfA are the contradiction degree functions for undirected edges and arcs,

respectively.

These functions satisfy the following conditions:

(1) Edge Attribute Degree Constraint:
• For each undirected edge e = {u, v} ∈ E:

adfE(e) ≤ adfV (u) ∧ adfV (v),

where ∧ denotes the minimum operation taken component-wise.
• For each directed edge a = (u, v) ∈ A:

adfA(a) ≤ adfV (u) ∧ adfV (v).

(2) Contradiction Function Constraints:
• The contradiction functions satisfy:

aCfV (u, u) = 0, aCfV (u, v) = aCfV (v, u), ∀u, v ∈ V.

• Similar properties hold for aCfE and aCfA.

Additionally, plithogenic operations and aggregation functions can be defined to handle
complex relationships among the attributes.

Example 3.12. (cf. [14]) The following examples of Plithogenic Mixed Graph are provided.

• When s = t = 1, G is called a Plithogenic Fuzzy Mixed Graph.
• When s = 2, t = 1, G is called a Plithogenic Intuitionistic Fuzzy Mixed Graph.
• When s = 3, t = 1, G is called a Plithogenic Neutrosophic Mixed Graph.
• When s = 4, t = 1, G is called a Plithogenic Turiyam Neutrosophic Mixed Graph.

We explore the mathematical properties of Uncertain Mixed Graphs. The theorems are
presented below.

Theorem 3.13. A Plithogenic Mixed Graph generalizes the Neutrosophic Mixed Graph,
Turiyam Neutrosophic Mixed Graph, and Fuzzy Mixed Graph. Specifically, by choosing appro-
priate dimensions and components of the attribute degree functions in the Plithogenic Mixed
Graph, the Plithogenic Mixed Graph reduces to these specific types of mixed graphs.
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Proof. Consider a Plithogenic Mixed Graph

G = (V,E,A, adfV , adfE , adfA, aCfV , aCfE , aCfA)

where:

• adfV : V → [0, 1]s, assigning to each vertex v ∈ V an s-tuple adfV (v) =

(a1(v), a2(v), . . . , as(v)).
• adfE : E → [0, 1]s, assigning to each undirected edge e ∈ E an s-tuple adfE(e) =

(a1(e), a2(e), . . . , as(e)).
• adfA : A → [0, 1]s, assigning to each directed edge a ∈ A an s-tuple adfA(a) =

(a1(a), a2(a), . . . , as(a)).

To recover specific Mixed Graphs:

(1) Fuzzy Mixed Graph:
Set s = 1. Let the attribute degree function for vertices and edges be:

adfV (v) = σ(v), adfE(e) = µE(e), adfA(a) = µA(a),

where σ(v), µE(e), and µA(a) are the vertex membership function, edge membership
function, and arc membership function in the Fuzzy Mixed Graph.

The edge attribute degree constraints in the Plithogenic Mixed Graph become:

µE(e) ≤ min{σ(u), σ(v)}, for e = {u, v} ∈ E,

µA(a) ≤ min{σ(u), σ(v)}, for a = (u, v) ∈ A,

which match the conditions in the Fuzzy Mixed Graph definition.
(2) Neutrosophic Mixed Graph:

Set s = 3. Let the attribute degree functions be:

adfV (v) = (TV (v), IV (v), FV (v)),

adfE(e) = (TE(e), IE(e), FE(e)),

adfA(a) = (TA(a), IA(a), FA(a)),

where TV (v), IV (v), FV (v) are the truth, indeterminacy, and falsity membership func-
tions of vertices, and similarly for edges and arcs.

The edge attribute degree constraints become:

TE(e) ≤ min{TV (u), TV (v)}, IE(e) ≥ max{IV (u), IV (v)}, FE(e) ≥ max{FV (u), FV (v)},

which correspond to the conditions in the Neutrosophic Mixed Graph.
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(3) Turiyam Neutrosophic Mixed Graph:
Set s = 4. Let the attribute degree functions be:

adfV (v) = (tV (v), ivV (v), fvV (v), lvV (v)),

adfE(e) = (tE(e), ivE(e), fvE(e), lvE(e)),

adfA(a) = (tA(a), ivA(a), fvA(a), lvA(a)),

where tV (v), ivV (v), fvV (v), lvV (v) are the truth, indeterminacy, falsity, and liberal
state values for vertices, and similarly for edges and arcs.

The edge attribute degree constraints become:

tE(e) ≤ min{tV (u), tV (v)},

ivE(e) ≥ max{ivV (u), ivV (v)},

fvE(e) ≥ max{fvV (u), fvV (v)},

lvE(e) ≥ max{lvV (u), lvV (v)},

which match the conditions in the Turiyam Neutrosophic Mixed Graph definition.

Thus, by appropriately choosing the dimension s and mapping the components of the at-
tribute degree functions, the Plithogenic Mixed Graph reduces to the specific types of Mixed
Graphs: Fuzzy Mixed Graph, Neutrosophic Mixed Graph, and Turiyam Neutrosophic Mixed
Graph.

Theorem 3.14. In a Plithogenic Mixed Graph G, the contradiction degree function aCfV :

V × V → [0, 1]t is symmetric and satisfies aCfV (u, u) = 0 for all u ∈ V , i.e.,

aCfV (u, v) = aCfV (v, u), ∀u, v ∈ V,

aCfV (u, u) = 0, ∀u ∈ V.

Proof. By the definition of a Plithogenic Mixed Graph, the contradiction degree function aCfV

must satisfy:

aCfV (u, u) = 0, ∀u ∈ V,

aCfV (u, v) = aCfV (v, u), ∀u, v ∈ V.

These conditions ensure that the contradiction degree function is reflexive and symmetric, as
required.
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Theorem 3.15. In a Plithogenic Mixed Graph G, for any undirected edge e = {u, v} ∈ E, the
attribute degree function adfE(e) satisfies:

adfE(e) ≤ adfV (u) ∧ adfV (v),

where ∧ denotes the component-wise minimum of the attribute degree functions of u and v.

Proof. Let adfV (u) = (a1(u), a2(u), . . . , as(u)) and adfV (v) = (a1(v), a2(v), . . . , as(v)). Sim-
ilarly, let adfE(e) = (a1(e), a2(e), . . . , as(e)). By the edge attribute degree constraint in the
definition of a Plithogenic Mixed Graph, for each component i (1 ≤ i ≤ s):

ai(e) ≤ min{ai(u), ai(v)}.

This implies:

adfE(e) ≤ adfV (u) ∧ adfV (v),

where the inequality holds component-wise. Therefore, the attribute degree function of an
edge is bounded above by the component-wise minimum of the attribute degree functions of
its incident vertices.

Theorem 3.16. Any induced subgraph of a Plithogenic Mixed Graph G is also a Plithogenic
Mixed Graph.

Proof. Let

G = (V,E,A, adfV , adfE , adfA, aCfV , aCfE , aCfA)

be a Plithogenic Mixed Graph. Consider an induced subgraph

G′ = (V ′, E′, A′, adf ′
V , adf

′
E , adf

′
A, aCf ′

V , aCf ′
E , aCf ′

A)

, where V ′ ⊆ V , E′ ⊆ E ∩
(
V ′

2

)
, and A′ ⊆ A ∩ (V ′ × V ′).

Define the attribute degree functions adf ′
V , adf

′
E , adf

′
A and contradiction functions

aCf ′
V , aCf ′

E , aCf ′
A of G′ by restricting those of G to V ′, E′, A′. Since the original functions

satisfy the attribute degree and contradiction function constraints on G, their restrictions
satisfy the same constraints on G′. Hence, G′ inherits the properties of a Plithogenic Mixed
Graph and is itself a valid instance of the same structure.

Theorem 3.17. The underlying crisp graph of a Plithogenic Mixed Graph G is a mixed graph
G′ = (V,E,A).
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Proof. The crisp graph G′ is obtained by ignoring the attribute degree functions
adfV , adfE , adfA and the contradiction functions aCfV , aCfE , aCfA in G. These functions
do not alter the structure of the vertex set V , the undirected edges E, or the directed edges
A. Thus, removing them results in a mixed graph G′ = (V,E,A), which retains the original
structure of G without its additional plithogenic properties.

Theorem 3.18. A Plithogenic Mixed Graph generalizes the Plithogenic Graph.

Proof. A Plithogenic Graph is a special case of a Plithogenic Mixed Graph where the set
of directed edges A is empty. By setting A = ∅ in a Plithogenic Mixed Graph, we recover
a Plithogenic Graph. Therefore, the Plithogenic Mixed Graph generalizes the Plithogenic
Graph.

4. Future Directions of This Research

This section outlines the future directions of this research.
We aim to extend the concept of Mixed Hypergraphs [12, 36, 37, 64, 66] to the domain of

Uncertain Graphs, delving into their mathematical properties and exploring potential appli-
cations. Furthermore, we intend to define Mixed Superhypergraphs (cf. [15, 22, 31, 56, 57]),
investigating their characteristics and potential uses. Mixed Superhypergraphs expand the
concept of Mixed Graphs to superhypergraphs, incorporating both undirected and directed
superhypergraphs.

Additionally, this research aims to integrate its core concepts with those of hypersoft sets
[54] and superhypersoft sets [58, 61], facilitating a deeper examination of their theoretical
foundations and practical implications.
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