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Abstract 

Chronic kidney disease (CKD) represents a significant global health challenge in 

society, and early detection of risk is essential for on-time treatment and intervention. 

This research suggests a novel machine-learning technique to create a reliable and 

accurate CKD risk prediction model by combining neutrosophic logic with various 

classification algorithms. We use neutrosophic logic to address the inherent imprecision 

and uncertainty in medical data, resulting in a more realistic portrayal of real-world 

scenarios. We measure the effectiveness of the proposed neutrosophic logic-based 

models using various metrics, including precision, specificity, and sensitivity. The 

results show that the neutrosophic logic method is better than traditional machine 

learning methods at finding people who are likely to develop CKD because it is more 

accurate and stable. This study illustrates the potential for incorporating neutrosophic 

logic into machine learning frameworks to improve risk prediction in medical fields. 
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1. Introduction 

Chronic kidney disease (CKD) represents a significant public health challenge. This condition 

arises when the kidneys lose their ability to perform essential functions, such as regulating blood 

pH, water, and electrolyte balance. The kidneys remove waste products through urine as the 

body's natural filtration system. CKD not only impairs kidney function but can also impact 

surrounding organs, exacerbating health complications. The emerging field of health informatics, 

which focuses on managing health data, encompasses the collection, storage, retrieval, and 

analysis of medical information. It enhances communication and maximizes healthcare resources 

and insights, guided by ethical principles rooted in information science to address complex health 

challenges [1, 2]. Renal diseases, including CKD, primarily result from nephron dysfunction. 

Essential processes, such as balancing pH, hydration, and sodium levels, become compromised 

when kidney function declines. The kidneys, which serve as a biological filter, lose their ability 

to remove waste, causing long-term organ deterioration. CKD progressively advances through 

five stages, with minimal symptoms in the early stages, making detection challenging. Early 

diagnosis, however, is critical. The fourth stage severely compromises kidney function, requiring 

timely intervention to improve kidney health. In the fifth and final stage, the kidneys fail, 

rendering them unable to clear excess waste and fluids from the body. This stage, known as 

kidney failure, requires dialysis or kidney transplantation, as no other cure is available. 

The asymptomatic nature of CKD in its early phases limits early detection and narrows 

preventative options. Early diagnosis and treatment are essential to controlling CKD progression. 

Identifying risk factors and symptoms at the onset can reduce disease incidence and manage 

health complications in CKD patients. CKD patients who remain undiagnosed face worsening 

health outcomes. Early medical intervention is crucial; procedures like organ transplantation and 

dialysis, when conducted under professional supervision, can lower mortality rates. Routine 

medical checkups, especially for monitoring blood pressure and managing diabetes, are the best 

way to reduce CKD risk. Physicians should maintain comprehensive records of patients' CKD 

histories, ensuring data completeness for accurate diagnoses and effective treatment planning. 

In recent years, CKD cases have risen due to population growth and lifestyle factors [3, 4]. 

Recovery from renal diseases is challenging [5, 6]. Image-based feature extraction is also helpful 

in identifying renal conditions. Studies [7, 8] have utilized computer-aided diagnosis (CAD) 

systems to analyze kidney characteristics for early disease detection. Researchers have used 

machine learning (ML) methods to predict CKD risk [9,10,11,12]. Central to artificial 

intelligence (AI), deep learning develops algorithms enabling computers to learn patterns [13, 

14]. Research in [15, 16] compares various ML algorithms, while [17, 18, 44] proposes using 

MATLAB with a limited dataset to detect early-stage diseases by implementing learning 

algorithms. Researchers [19,20,21] have also applied data mining techniques to accurately 

identify CKD. 

Machine learning heavily depends on convolutional learning techniques and systems. The term 

"network" in this context generally refers to computer-based systems that mimic neural 

processes, facilitating machine learning [22, 23]. Early detection of conditions allows healthcare 

providers to implement preventive measures to reduce potential risks [24]. The proposed 

approach ranks risk factors based on their significant impact on kidney health [25, 26]. Artificial 

intelligence (AI), also known as knowledge-based systems, enables computers to perform 

decision-making processes like human experts. These systems use sophisticated algorithms to 

address complex challenges [27, 28, 45]. 

  

Renal disease poses a global health challenge, particularly in regions like Taiwan, where the 

Taiwan Society of Nephrology has reported a substantial increase in renal disease cases, 
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surpassing one hundred thousand. Statistics from the United States Renal Data System (USRDS) 

also indicate that Taiwan leads globally in end-stage kidney disease incidence and mortality rates 

[29, 30]. We recommend dietary management to lower the risk of kidney failure [31]. Due to its 

asymptomatic nature, renal disease often goes undiagnosed until advanced stages, limiting 

primary prevention options [32, 33]. Early detection and treatment are, therefore, essential for 

managing chronic kidney disease (CKD) progression [34]. 

  

An adaptive intelligent model reference system and a feed-forward neural network adaptable to 

fluctuating conditions could address this challenge. Fuzzy logic (FL) provides decision-making 

capabilities like human reasoning, preserving several properties from classical logic systems 

[36]. Expert systems, incorporating specialist knowledge about specific diseases, enable 

computers to make accurate health assessments and are applicable across a wide range of medical 

and non-medical fields [37–40]. These systems leverage accumulated information to aid users in 

making informed decisions and reaching conclusions after performing numerous evaluations. 

Intelligent machine designs, tailored for real-time applications, often build such systems, 

achieving success rates above 70% in various practical scenarios [41–43]. 

  

Chronic kidney disease (CKD) is a prominent public health concern. It arises when kidney 

function deteriorates, affecting the body's ability to regulate pH, water, and electrolyte levels. 

The kidneys, functioning as natural blood filters, expel waste via urine, but CKD can impair these 

processes and damage neighboring organs. The prevalence of kidney disease has increased 

significantly due to factors like lifestyle habits and population growth. Kidney disease recovery 

remains a substantial challenge for affected individuals [2–4]. 

2. Literature survey 

Various studies have applied machine learning and expert systems for diagnosing and predicting 

kidney diseases. For example, Akgundogdu et al. [23] suggested a neuro-fuzzy inference system 

to aid in renal failure diagnosis. Babalola [24] developed an online expert system for kidney 

disease diagnosis and management, while Boukenze [25] suggested a predictive model for 

chronic kidney disease using data mining and classification methods. Rivera [26] introduced a 

mobile expert system based on fuzzy logic for diagnosing kidney diseases, and Ahmed et al. [27] 

also used a fuzzy expert system approach. Yadollahpour [28] created an ANFIS-based decision 

support system to predict CKD progression, while Muslim [29] implemented a Mamdani fuzzy 

inference system for CKD diagnosis. In addition, Polat et al. [30] employed support vector 

machines with feature selection for CKD diagnosis, and Subasi et al. [31] used a random forest 

model for the same purpose. Gharibdousti et al. [32] focused on CKD prediction through data 

mining, and Chen et al. [33] introduced two fuzzy classifiers for diagnosing CKD patients. 

Abdelaziz et al. [34] combined IoT and cloud computing in a machine-learning model for CKD 

prediction within intelligent cities. Almansour et al. [35] utilized neural networks and support 

vector machines to forecast CKD. 

 

3. Preliminaries 

3.1. Crisp Sets 

A crisp set is a fundamental idea in set theory, wherein each element of the universal set 

is either a member of the set or not. The membership of an element in a crisp set is 

defined by a membership function: 
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𝜇𝐴(𝑥) = if {{
1, 𝑥 ∈ A
0, 𝑥 ∉ A

 

 

3.2. Fuzzy Sets 

A fuzzy set is a mathematical construct proposed by Lotfi A. Zadeh in 1965 to characterize sets 

having indistinct boundaries, allowing elements to possess differing levels of membership. In 

contrast to crisp sets, which have binary membership (0 or 1), fuzzy sets permit partial 

membership as determined by a membership function: 

                 𝜇𝐴(𝑥): 𝑈 → [0,1]where: 

• 𝜇𝐴(𝑥) = 1 represents that 𝑥 ∈ 𝐴. 

• 𝜇𝐴(𝑥) = 0 represents that 𝑥 ∉ A. 

• 0 < 𝜇𝐴(𝑥) < 1 represents partial membership, meaning 𝑥 belongs to A to some degree. 

3.3 Neutrosophic set  

 

A neutrosophic set is a mathematical framework introduced by Florentin Smarandache in 1999 

to handle uncertainty, vagueness, and indeterminacy in information. It extends fuzzy set theory 

by incorporating three degrees of membership for each element, rather than just one. 

Each element in a neutrosophic set is characterized by three independent membership values �̈�, 

𝐼,̈ �̈�: 

For every element ∈ U , the condition 0 ≤ �̈��̈�(𝑥) + 𝐼�̈̈�(𝑥) +  �̈��̈�(𝑥) ≤ 3  

Formally, a neutrosophic set 𝐴 is defined as: 

𝐴 = (𝑥, ( �̈��̈�(𝑥), 𝐼�̈̈�(𝑥), �̈��̈�(𝑥)) : 𝑥 ∈ 𝑋 . where �̈��̈�(𝑥) ,𝐼�̈̈�(𝑥) ,�̈��̈�(𝑥)  is truth, Indeterminacy and 

falsity membership degree 

4. Material and method 

In this research article, we designed a neutrosophic -based machine-learning model to 

predict the probability of CKD. Here, we have employed data from the dataset we 

collected from the Kaggle website(www.kaggle.com). The data sheet included patient-

level data that involved many medical and lab variables regarding CKD; some of the 

relevant medical and laboratory variables that might be involved in such research are 

age, specific gravity, random blood glucose, blood pressure, sodium, potassium, 

hemoglobin, red &white blood cell count. The neutrosophic model was chosen as it can 
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capture the natural uncertainty and imprecision that comes with medical data, making it 

very suitable for healthcare applications where some boundary cases cannot be classified 

easily. Preprocessing involved handling missing values and outliers, with normalization 

or standardization applied where necessary to all variables. Clinical thresholds and 

ranges are thus employed to set neutrosophic membership functions for the variables; 

however, categories like low, medium, and high may apply based on each variable's 

standard medical interpretation. This framework for a neutrosophic-based machine 

learning model demonstrates how integration between neutrosophic logic and machine 

learning could enhance the interpretability and effectiveness of a predictive model for 

CKD. 

Neutrosophic Feature Selection 

Features initially established in a system could have been both relevant and irrelevant to 

the task. In this sense, feature selection methods can filter out redundant and unwanted 

features that often form part of the system; these methods could be based on a filter, 

wrapper, or an embedding method. Neutrosophic Sets (NS), a generalization of crisp, 

fuzzy, and intuitionistic sets, assist individuals in making more informed decisions by 

illustrating the interplay between truth, falsehood, and indeterminacy. This interaction 

mirrors the uncertain and vague nature of human thought processes. Raut.at.el published 

numerous research papers related to Neutrosophic and Fermatean Neutrosophic Sets [44, 

45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. However, traditional Multi-Criteria 

Decision Making (MCDM) methods often overlook such nuanced data. By using an 

analytical hierarchy process to combine feedback from developers and users in a 

neutrosophic environment, we can fix the fact that knowledge isn't always accurate or 

consistent. This will also enhance the system's dependability across all its components. 
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                        Figure 1 Heat map showing the correlation between the features 
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Figure2 3D surface plot for blood urea serum creatinine & blood glucose 

 

 

Figure 3 3D Surface plot for Hemoglobin potassium & Sodium 

 

Figure 4 3D Surface plot for WBC, RBC&PCV 
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Table 1 Distribution of clinical parameters among CKD and NOCKD patients. 

Variable Group Mean Median SD P 

age CKD 54.54 59 17.3889 <0.001 

  NOCKD 46.517 46 15.63114   

blood 

pressure 
CKD 79.63 80 15.23405 <0.001 

  NOCKD 71.351 70 8.5435   

specific 

gravity 
CKD 1.01 1.01 0.00463 <0.001 

  NOCKD 1.022 1.02 0.00251   

blood 

glucose 

random 

CKD 175.42 143.5 92.08222 <0.001 

  NOCKD 107.722 107.5 18.56474   

blood 

urea 
CKD 72.39 53 58.58724 <0.001 

  NOCKD 32.799 33 11.45046   

serum 

creatinine 
CKD 4.41 2.25 6.95028 <0.001 

  NOCKD 0.869 0.9 0.25509   

sodium CKD 133.9 136 12.40283 <0.001 

  NOCKD 141.731 141 4.81787   

potassium CKD 4.88 4.3 4.32155 0.136 

  NOCKD 4.338 4.5 0.58726   

hemo CKD 10.65 10.9 2.18579 <0.001 

  NOCKD 15.188 15 1.27754   

white 

blood cell 

count 

CKD 9069.54 8800 3580.5213 <0.001 

  NOCKD 7705.59 7500 1839.771   

red blood 

cell count 
CKD 3.95 3.9 0.8653 <0.001 

  NOCKD 5.379 5.3 0.5961   

 

The relationship among the variables was shown using a heatmap(figure 1).Table 1, 

represented as mean ± standard deviation, indicates a significant difference between the 

patients in the CKD and NOCKD groups for all parameters except potassium, which has 

a p-value of 0.136. The age was calculated to be higher in CKD patients at 54.54 ± 17.39 

in comparison with NOCKD patients with an age of 46.52 ± 15.63(P<0.001). Blood 
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pressure was also higher among the patients of CKD, 79.63 ± 15.23, compared to the 

patients of NOCKD, 71.35 ± 8.54(P<0.001). Specific gravity was also lower in the CKD 

patients, 1.01 ± 0.0046 compared to 1.022 ± 0.0025 in the patients of NOCKD, and 

represented kidney dysfunction Ing. Random blood glucose was highly raised in the 

patients of CKD, 175.42 ± 92.08, as against 107.72 ± 18.56(P<0.001) in the patients of 

NOCKD, indicating poor glucose regulation among the former. Blood urea levels in 

CKD patients averaged 72.39 ± 58.59, which is much higher than 32.80 ± 

11.45(P<0.001) in NOCKD. At the same time, serum creatinine was markedly elevated 

in CKD patients at 4.41 ± 6.95 compared to 0.87 ± 0.26(P<0.001) in NOCKD, indicating 

impaired kidney function. There is a lower sodium level seen in patients with CKD, 

which was at 133.9 ± 12.40 compared to NOCKD, while potassium levels showed no 

statistical difference, with CKD being at 4.88 ± 4.32 while NOCKD stood at 4.34 ± 0.59. 

Hemoglobin levels presented a reduction in CKD patients at 10.65 ± 2.19 compared to 

NOCKD, at 15.19 ± 1.28, hence developing anemia. The patients with CKD had a higher 

WBC count than NOCKD with counts at 9069.54 ± 3580.52 versus NOCKD 7705.59 ± 

1839.77 and decreased RBC count at 3.95 ± 0.87 as against 5.38 ± 0.60 recorded for 

NOCKD suggesting that they had inflammation besides the RBC being relatively 

produced less. Figure 2, figure 3 figure 4 shows the 3-dimensional relationship among 

the variables. 
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Figure 5 Variable importance plot for Random Forest 

Table 2 Neutrosophic Based evaluation matrices for machine learning models. 

Matrices Navie 

Bays 

95% 

CI 

KNN 95% 

CI 

SVM 95% CI Logistic 

Regression 

95% CI Random 

Forest 

95% CI 

Accuracy 0.892 (0.865, 

0.919) 

 0.839 (0.825, 

0.929) 

 0.847  (0.834, 

0.930) 

 0.804  (0.734, 

0.820) 

0.892  (0.834, 

0.920) 

Sensitivity 0.896 (0.861, 

0.931) 

 0.881 (0.821, 

0.931) 

 0.877  0.861, 

0.941 

 0.834  0.811, 

0.931 

0.877  0.851, 

0.931 

Specificity 0.888 (0.847, 

0.929) 

 0.790 (0.747, 

0.919) 

 0.811  (0.734, 

0.870) 

 0.768  (0.734, 

0.820) 

0.905  (0.834, 

0.940) 

F1 Score 0.9 (0.874, 

0.926) 

 0.833 (0.824, 

0.896) 

 0.862  (0.834, 

0.920) 

 0.822  (0.814, 

0.920) 

0.883  (0.834, 

0.910) 

PPV 

(Precision) 

0.905 (0.871, 

0.939) 

 0.856 (0.811, 

0.889) 

 0.847  (0.824, 

0.920) 

 0.811  (0.804, 

0.920) 

0.889  (0.814, 

0.916) 

NPV 0.877 (0.834, 

0.920) 

 0.848 (0.834, 

0.920) 

 0.848  (0.824, 

0.928) 

 0.796  (0.734, 

0.820) 

0.895  (0.834, 

0.926) 

MCC 0.713    0.769    0.690    0.303   0.78   
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Figure 6 confusion matrices for all models 

 

Figure 7 ROC Curve for all fuzzy based machine learning models 
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5. Results 

The performance evaluation of Naïve Bayes, K-Nearest Neighbours (KNN), Support 

Vector Machine (SVM), Logistic Regression, and Random Forest across key metrics 

shows varying strengths. Figure 5 shows the variable importance of the best model. 

Naive Bayes and Random Forest lead with the highest accuracy at 0.892 (CIs: 0.865-

0.919 for Naïve Bayes, 0.834-0.920 for Random Forest), strong sensitivity (Naïve 

Bayes: 0.896, Random Forest: 0.877), and high F1 scores (Naïve Bayes: 0.9, Random 

Forest: 0.883). Random Forest achieved the best specificity (0.905) and MCC (0.78), 

indicating its robustness in minimizing false positives. KNN shows decent accuracy 

(0.839) and sensitivity (0.881), which is suitable for cases prioritizing true positives. 

SVM and Logistic Regression lag in specificity and F1 scores, with Logistic Regression 

showing the lowest accuracy (0.804) and MCC (0.303). In summary, Random Forest 

and Naïve Bayes provide balanced, reliable performance, while KNN can be considered 

for applications focused on high sensitivity. Figure 6 and figure 7 represents the 

confusion matrix and roc curve of all models. 

6. Conclusion 

This paper suggests a neutrosophic logic-based machine learning method for figuring out the risk 

of chronic kidney disease (CKD) so that early detection is more accurate. Combining fuzzy 

logic's capability to manage uncertain data with machine learning's pattern recognition, the model 

effectively identifies high-risk individuals with greater precision. The interpretability of fuzzy 

rules offers clinicians a clearer view of risk factors, aiding in decision-making and timely 

intervention. The results show that this hybrid approach is more accurate at predicting CKD than 

traditional models. This shows that it could help with proactive healthcare strategies and improve 

patient outcomes by stepping in early. 

7. Limitation 
 

The limitation of this study is that neutrosophic logic is rather complex, requiring significant 

computational and specialized knowledge for its implementation.  The effectiveness of this 

model also depends on the quality and completeness of input data, which can vary from one real-

world healthcare setting to another. Additionally, achieving interpretability for clinical decision-

making may present a challenge when compared to traditional methods. 
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