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Abstract: The exponential distribution is a widely used lifetime model with 

applications spanning numerous disciplines. The DUS transformation extends the 

applicability of the exponential distribution by improving its flexibility for diverse 

real-world scenarios. This study proposes the Neutrosophic DUS Exponential 

Distribution (NDUS-ED), an extension of the DUS Exponential Distribution, 

designed to effectively address and quantify uncertainty, inconsistency, and 

indeterminacy in data. Key statistical properties of NDUS-ED, including quantiles, 

moments, moment-generating functions, and order statistics, are derived under 

neutrosophic conditions. The performance of estimated parameters is evaluated 

through simulation, revealing superior results with larger sample sizes, 

particularly in managing imprecise and indeterminate data. Finally, the proposed 

distribution is applied to an actual dataset, and the results are compared with those 

of the Neutrosophic Exponential Distribution and the DUS Exponential 

Distribution, demonstrating superior performance. 

Keywords: Neutrosophy; DUS transformation; Probability distribution; 

Exponential distribution 

 

 

1. Introduction 

The idea of vagueness or ambiguity is often used nowadays to solve a variety of real-

world issues. Classical statistics is the term used to describe statistics, which 

primarily works with numerical data. We can't always obtain numerical data in its 

precise form in the real world because of the indeterminacy of data. Numerous 

advancements have been made recently to model such imprecise situations by 

taking fuzzy logic and neutrosophy into consideration [1-4]. In order to address 

indeterminacy or partially ambiguous aspects in the data, Smarandache [5] 

proposed neutrosophic statistics. In 1995, he presented the idea of neutrosophic logic 

by denoting the components as T, I, and F, which stand for truth, indeterminate, and 
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falsehood, respectively.  Neutrosophic is a multiple-valued logic that defines 

imprecise probability, fuzzy logic and classical logic. This logic has been applied in 

various domains of science and engineering.  

Probability distributions have become an integral part of all scientific study. These 

probabilistic frameworks describe many real-world unforeseen occurrences [6].  

Many studies have been conducted using probability distributions that incorporates 

neutrosophic logic [7]. Patro et al. [8] developed the neutrosophic probability 

distributions, such as the normal and binomial distributions and presented related 

case studies. Alhabib et al. [9] introduced neutrosophic Poisson, uniform, and 

exponential distributions by generalizing the respective classical distributions. 

Alhasan et al. [10] proposed and studied the neutrosophic Weibull distribution and 

the neutrosophic version of its related family of distributions. Aslam [11] introduced 

the neutrosophic Rayleigh distribution under the neutrosophic statistics and 

discussed its various properties.  

Sherwani et al. [12] extended the classical beta distribution to a neutrosophic 

environment and proposed neutrosophic beta distribution. They have established 

many statistical characteristics of the distribution and the results were validated by 

applying the distribution on two real life datasets. Khan et al. [13] established 

gamma distribution under indeterminacy with applications to complex data 

analysis. Khan et al. [14] derived neutrosophic lognormal distribution and data from 

Nitrogen oxide emissions of Denmark was used to validate the established 

characteristics of the distribution. Ahsan-ul-Haq [15] proposed the neutrosophic 

Kumaraswamy distribution to analyze bounded data sets under an indeterminacy 

environment. 

In 2023, more distributions pertaining to imprecise data were introduced. 

Norouzirad et al. [16] introduced neutrosophic generalized Rayleigh distribution 

and shown that the distribution is ideal to model skewed lifetime data. Rao [17] 

established neutrosophic log-logistic distribution model in complex alloy metal 

melting point applications. Alanaz et al. [18] proposed neutrosophic exponentiated 

inverse Rayleigh distribution to describe diverse survival data with indeterminacies.  

Neutrosohic beta-Lindley distribution was established by Algamal et al. [18] and 

modeled bladder cancer data. Neutrosophic Birnbaum-Saunders distribution for 

imprecise data was introduced by Hassan et al. [19] and the results were validated 

through datasets based on alloy melting points and lifetime of batteries. 

Neutrosophic Topp-Leone distribution for interval-valued data analysis [20] was 

proposed by Ahsan-ul-Haq [20]. Under indeterminacy, discrete geometric 

distribution was introduced by Khan et al. [21] with emphasis to reliability functions 

and relevant case studies. Jamal et al.  [22] proposed neutrosophic BURR III to model 

COVID 19 data. Recently, Aslam [23] established the neutrosophic negative 
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binomial distribution and developed algorithms for generating data based on this 

distribution. 

A common lifetime distribution among the classical distributions is the exponential 

distribution, which is simple in terms of the closeness of its cumulative density 

function (cdf) and other statistics. Since exponential distribution have fixed failure 

rate constraint, transformations are applied to arrive at more robust and meaningful 

distribution. One such transformation is DUS transformation [24]. The DUS 

transformation yields a parsimonious distribution since it has no additional 

parameters, making it simple to understand. When the exponential distribution 

undergoes the DUS transformation, it leads to the DUS-exponential distribution 

(DUS-ED) which is a more robust distribution. Considering the exponential 

distribution using neutrosophic reasoning Duan et al. [25] presented neutrosophic 

exponential distribution. Later, in 2022 Khan et al. [26] developed the neutrosophic 

design of the exponential model with application to lifetime failures (in hours) of air 

conditioning instrument used in 720-Boeing planes.  

This study proposes a new lifetime distribution the neutrosophic DUS-exponential 

distribution (NDUS-ED), an extension of DUS-exponential distribution intended to 

efficiently capture and quantify uncertainty, inconsistency, and indeterminacy. The 

primary purpose of the proposed distribution is to incorporate the indeterminate 

information about the variables under study into the existing classical distribution. 

It is necessary to consider indeterminacy of the study parameters in practical 

situations and integrate it with the proposed model to present a system.  

    This paper is structured as follows: Section 2 introduces the proposed model and 

corresponding plots. Statistical properties are derived in section 3. The parametric 

estimation is done in section 4. Simulation study is explained in section 5. Real data 

set study is included in section 6. Conclusions are given in section 7. 

2. Proposed Model 

    Neutrosophic DUS-Exponential Distribution (NDUS-ED) 

      Let 𝑓(𝑥) and 𝐹(𝑥) be the pdf and cdf of the baseline distribution respectively, 

then the pdf g(x) of the distribution obtained by DUS transformation of the baseline 

distribution is given by  

𝑔(𝑥) =
1

(𝑒(1) − 1)
𝑓(𝑥)𝑒𝐹(𝑥)                                                                                  (1) 

 

Now, the corresponding cdf and hazard function are given by  

                      𝐺(𝑥) =
1

(𝑒(1) − 1)
[𝑒𝐹(𝑥) − 1]                                                                                (2) 
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and 

              ℎ(𝑥) =
1

(𝑒(1)−𝑒𝐹(𝑥))
𝑓(𝑥)𝑒𝐹(𝑥)                                                                                  (3)        

 

respectively.  

The neutrosophic random variable X, which equals the distance between 

successive events in a Poisson process, follows the neutrosophic exponential 

distribution (NED) model with the following neutrosophic density function  

 

𝑓𝑁(𝑥) =  𝜃𝑁 𝑒−𝜃𝑁𝑥 , 𝑥 > 0, 𝜃𝑁  ∈ [𝜃𝐿 , 𝜃𝑈], 𝜃𝑁 > 0                                             (4)  

   

The corresponding neutrosophic cumulative distribution function 

 

𝐹𝑁(𝑥) =  1 − 𝑒−𝜃𝑁𝑥 , 𝑥 > 0, 𝜃𝑁  ∈ [𝜃𝐿 , 𝜃𝑈], 𝜃𝑁 > 0                                           (5)  

 

Now, using (1), (2), and (3), neutrosophic- DUS exponential model is proposed. 

The neutrosophic density function (npdf) and neutrosophic cumulative distribution 

function (ncdf) of the proposed distribution respectively are  

 

         𝑔𝑁(𝑥) =  
1

(𝑒(1)−1)
𝜃𝑁 𝑒−𝜃𝑁𝑥 𝑒(1−𝑒−𝜃𝑁𝑥)

, 𝑥 > 0, 𝜃𝑁  ∈ [𝜃𝐿 , 𝜃𝑈], 𝜃𝑁 > 0                         (6)       

 

                and 

 𝐺𝑁(𝑥) =  
1

𝑒(1) − 1
[ 𝑒(1−𝑒−𝜃𝑁𝑥)

− 1] ,   𝑥 > 0, 𝜃𝑁  ∈ [𝜃𝐿, 𝜃𝑈], 𝜃𝑁 > 0                           (7)   

 

The hazard function is given by 

 

ℎ𝑁(𝑥) =  
1

𝑒(1) − 𝑒(1−𝑒−𝜃𝑁𝑥)
 𝜃𝑁 𝑒−𝜃𝑁𝑥 𝑒(1−𝑒−𝜃𝑁𝑥)

, 𝑥 > 0, 𝜃𝑁  ∈ [𝜃𝐿, 𝜃𝑈], 𝜃𝑁 > 0     (8) 

 

 

 

 

 

 

 

 

 

 

 

 

The plots of npdf are given below. 



Neutrosophic Sets and Systems, Vol. 79, 2025     112  

 

 

Megha.C.M, Divya.P.R,  and Sajesh.T.A, Neutrosophic DUS Exponential Distribution 

                 

                                     (a)                                                       (b) 

   .          

Figure 1 Density graph of neutrosophic DUS-exponential 

(a) 𝜃𝑁 𝜖 [1.5,2.5]                 (b) 𝜃𝑁 𝜖 [3.5,4.5]. 

 

 

The plots of ncdf are given below. 

             
(a)                                                    (b)                 

 

Figure 2 Cumulative Density graph of neutrosophic DUS-exponential                                       

(a) 𝜃𝑁 𝜖 [0.25,0.75]  (b)  𝜃𝑁 𝜖 [1.5,2.5]. 

 

   

 

 

 

 

 

 

 

 

The plots of hazard function are given below. 
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                            (a)                                                     (b) 

     

Figure 3. Hazard function graph of neutrosophic  DUS-exponential 

(a) 𝜃𝑁 𝜖 [0.5,0.75]   (b) 𝜃𝑁 𝜖 [2.5,3.5] 

3. Statistical Properties 

The main properties like moments, moment generating function, cumulant 

generating function, characteristic function, quantiles and order statistics are 

studied below.   

                           

3.1. Moments 

 

The rth moment of the distribution, 𝜇𝑟
′  is given by  

 

𝜇𝑟
′ =  ∫ 𝑥𝑟  

1

(𝑒(1)−1)
𝜃𝑁 𝑒−𝜃𝑁𝑥 𝑒(1−𝑒−𝜃𝑁𝑥)∞

0
𝑑𝑥                                                     (9) 

 

To solve (9) we use exponential expansion 𝑒𝑧 =  ∑
𝑧𝑗

𝑗!

∞
𝑗=0   and binomial series of 

expansion (1 − 𝑧)𝑎 =  ∑ (−1)(𝑎𝐶𝑗
∞
𝑗=0 )𝑧𝑗 .                                                                   Now 

Equation (9) takes the form 

 

𝜇𝑟
′ =  

1

𝜃𝑁
𝑟 (𝑒(1) − 1)

∑ ∑
(−1)𝑛

𝑚!

∞

𝑛=0

∞

𝑚=0

 (𝑚𝐶𝑛)
Γ(𝑟 + 1)

(𝑛 + 1)𝑟+1
                                       (10) 

 

Put r = 1, then we get  

𝐸(𝑋) =  
1

𝜃𝑁(𝑒(1) − 1)
∑ ∑

(−1)𝑛

𝑚!

∞

𝑛=0

∞

𝑚=0

 (𝑚𝐶𝑛)
1

(𝑛 + 1)2
                                       (11) 

 

The expression for V(X) is given in equation (12) 
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 𝑉(𝑋) =  
1

𝜃𝑁
2 (𝑒(1)−1)

[∑ ∑
(−1)𝑛

𝑚!
∞
𝑛=0

∞
𝑚=0  (𝑚𝐶𝑛)

Γ(3)

(𝑛+1)3 −

                                                                       
1

(𝑒(1)−1)
 {∑ ∑

(−1)𝑛

𝑚!
∞
𝑛=0

∞
𝑚=0  (𝑚𝐶𝑛)

1

(𝑛+1)2}
2

]        (12) 

 

3.2 Moment Generating Function 

 

If X ~ NDUS-ED, the moment generating function is derived as 

 
             𝑀𝑋(t) = 𝐸(𝑒𝑡𝑋) 

                        =  
𝜃𝑁

𝑒(1)−1
 ∑ ∑

(−1)𝑛

𝑚!
∞
𝑛=0

∞
𝑚=0  (𝑚𝐶𝑛)

Γ(1)

(𝜃𝑁(𝑛+1)−𝑡)
                                               (13) 

 

3.3 Cumulant Generating Function 

 

The cumulant generating function of X, where X ~NDUS-ED is given as  

 

 

             𝐾𝑋(t) =  log 𝑀𝑋(t) 

 

              = log [
𝜃𝑁

𝑒(1)−1
 ∑ ∑

(−1)𝑛

𝑚!
∞
𝑛=0

∞
𝑚=0  (𝑚𝐶𝑛)

Γ(1)

(𝜃𝑁(𝑛+1)−𝑡)
]                               (14) 

 

 

3.4 Characteristic Function 

 

The characteristic function of X, where X ~NDUS-ED is as follows 

 

               𝜑𝑋(𝑡) = 𝐸(𝑒𝑖𝑡𝑋) 

 

       =  
𝜃𝑁

𝑒(1)−1
 ∑ ∑

(−1)𝑛

𝑚!
∞
𝑛=0

∞
𝑚=0  (𝑚𝐶𝑛)

Γ(1)

(𝜃𝑁(𝑛+1)−𝑖𝑡)
                                    (15) 

 

 

3.5 Quantile Function 

 

The pth quantile function, denoted by Q(p) of NDUS-ED is obtained by solving 

 

𝐺𝑁(𝑄(𝑝)) = 𝑝, 0 < 𝑝 < 1. 

 

The quantile function is given by 
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                𝑄(𝑝) =  
− ln(1 − ln(𝑝(𝑒(1) − 1) + 1))

𝜃𝑁
                                                          (16) 

 

While setting 𝑝 =  
1

4
, we get the first quartile 𝑄1, setting 𝑝 =  

1

2
, we get the second 

quartile/Median 𝑄2 and setting 𝑝 =  
3

4
, we get the third quartile 𝑄3.  

 

3.6 Order Statistics 

 

The hazard rate function plays a vital role in the domains of survival analysis 

and reliability theory. This makes the relevance of order statistics in the domains. 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be n independently and identically random variables with the 

corresponding order statistics 𝑋(1), 𝑋(2), … , 𝑋(𝑛) from NDUS-ED with the density 

function 𝑔𝑁(𝑥)(6) and the distribution function 𝐺𝑁(𝑥)(7). The pdf and cdf of the rth 

order statistics are given respectively by 𝑔𝑟(𝑥) and 𝐺𝑟(𝑥) 

 

      𝑔𝑟(𝑥) =  
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
𝐺𝑁

(𝑟−1)(𝑥)[1 − 𝐺𝑁(𝑥)](𝑛−𝑟) 𝑔𝑁(𝑥) 

              =  
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
 [

1

𝑒(1) − 1
[ 𝑒(1−𝑒−𝜃𝑁𝑥) − 1]]

(𝑟−1)

  

     [1 −
1

𝑒(1) − 1
[ 𝑒(1−𝑒−𝜃𝑁𝑥) − 1]]

(𝑛−𝑟)

 
1

(𝑒(1) − 1)
𝜃𝑁 𝑒−𝜃𝑁𝑥 𝑒(1−𝑒−𝜃𝑁𝑥)             (17) 

  𝐺𝑟(𝑥) =  ∑ 𝑛𝐶𝑘

𝑁

𝑘=𝑟

[𝐺𝑁(𝑥)]𝑘[1 − 𝐺𝑁(𝑥)](𝑛−𝑘) 

 

             = ∑ 𝑛𝐶𝑘
𝑁
𝑘=𝑟  [

1

𝑒(1)−1
[ 𝑒(1−𝑒−𝜃𝑁𝑥) − 1]]

𝑘

[1 −
1

𝑒(1)−1
[ 𝑒(1−𝑒−𝜃𝑁𝑥) − 1]]

(𝑛−𝑘)

(18)   

 

4. Method of Estimation 

     Here, the parameters are estimated using the method of maximum likelihood is 

discussed. Consider 𝑥1, 𝑥2, … , 𝑥𝑛 are n observations taken from NDUS-ED. Then, the 

likelihood function is given by 

𝐿(𝑥: 𝜃𝑁) =  ∏ 𝑔𝑁
𝑛
𝑖=1 (𝑥; 𝜃𝑁) 

                 =  ∏  
1

(𝑒(1) − 1)
𝜃𝑁 𝑒−𝜃𝑁𝑥 𝑒(1−𝑒−𝜃𝑁𝑥)

𝑛

𝑖=1

 

                 =  [
𝑒(1)

𝑒(1) − 1
]

𝑛

 𝜃𝑁
𝑛𝑒− (𝜃𝑁 ∑ 𝑥𝑖 )

𝑛
𝑖=1 𝑒−𝑒−( 𝜃𝑁 ∑ 𝑥𝑖 

𝑛
𝑖=1 )
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Now, the log-likelihood function is given by 

log 𝐿 = 𝑛𝑙𝑜𝑔(𝑒(1)) − 𝑛 log(𝑒(1) − 1) + 𝑛 log 𝜃𝑁 − 𝜃𝑁(∑ 𝑥𝑖
𝑛
𝑖=1 ) −  𝑒−( 𝜃𝑁 ∑ 𝑥𝑖 

𝑛
𝑖=1 )   

The maximum likelihood estimators are obtained by maximizing the log-likelihood 

function with respect to the unknown parameter 𝜃𝑁 

𝜕𝑙𝑜𝑔𝐿

𝜕𝜃𝑁
=  

𝑛

𝜃𝑁
− ∑ 𝑥𝑖

𝑛
𝑖=1 +  ∑ 𝑥𝑖

𝑛
𝑖=1 𝑒−( 𝜃𝑁 ∑ 𝑥𝑖 

𝑛
𝑖=1 )   

This equation has a non-linear form. Therefore, it can be numerically solved using 

the statistical software R by choosing arbitrary initial values. 

5. Simulation study 

     A comprehensive evaluation has been conducted in order to assess the MLE 

performance of the NDUS-ED.  The neutrosophic root mean square error (RMSEN) 

shows how well a model predicts the data; lower RMSEN values are indicative of 

higher model performance. The following definition of neutrosophic root mean 

square error have been used to evaluate the effectiveness of the neutrosophic 

maximum likelihood estimator:  

𝑅𝑀𝑆𝐸𝑁 =  √∑ (𝜃𝑁𝑖
−  𝜃𝑁)

2𝑁
𝑖=1

𝑁
 

The inversion approach is used to obtain the samples for the two interval measures  

 𝜃𝑁 𝜖 [1,2] and  𝜃𝑁 𝜖 [3,4] and the analysis is repeated for N=10,000 times. The analysis 

is carried out using R software. For sample sizes n= 10, 25, 40, 55, 70, RMSEN is 

computed. Table 1 displays the results of a study on the performance of 

measurements of the neutrosophic maximum likelihood (NML) estimator. 

    Table 1 Performance of NML estimate of the NDUS-ED for simulated 

neutrosophic data 

 

               Sample size           RMSEN for 𝜃 𝜖 [1,2]             RMSEN 𝜃 𝜖 [3,4] 

10                   [0.2912116, 0.5996537]          [0.8736341, 1.199315] 

25                   [0.1740633, 0.4682503]          [0.5221849, 0.936499] 

40                   [0.1463233, 0.4443628]          [0.4389749, 0.888727] 

55                   [0.134346,  0.4342111]           [0.4030462, 0.868416] 

70                   [0.127095,  0.4286541]           [0.3812866, 0.857305] 

 

From the table, it can be seen that, as the sample size (n) increases RMSEN decreases 

for both θ ϵ [1,2] and θ ϵ [3,4]. The study concludes that the NML estimator offers 
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reliable and accurate parameter estimates by showing a steady increase in 

estimation accuracy with increasing sample size.  

The pdf and cdf plots of the simulated values are given below 

                   

                                  (a)                                                                 (b) 

Figure 4. Graphical overview of simulated values (a) pdf plot (b) cdf plot 

6. Real-World application 

In this section, a real dataset is used to illustrate the application of the proposed 

model. The data is taken from [27]. We use two statistical criteria, Akaike 

Information Criteria (AIC) and Bayesian Information Criteria (BIC) to test the 

performance of our proposed distribution. We have extracted the values of AIC and 

BIC of neutrosophic exponential distribution (NED) from [28] and DUS-exponential 

distribution (DUS-ED) from [24] and presented their values.  

    Table 2. AIC and BIC of NDUS-ED, NED and DUS-ED (DUS-exponential) 

distributions 

 

Distributions AIC BIC 

NDUS-ED 
NED 

DUS-ED 

(823.8715, 827.376) 
(825.8715, 829.3760) 

834.044 

 

(826.7235, 830.2281) 
(841.2796, 844.7842) 

836.896 

Table 2 shows the comparison between the proposed distribution with that of the 

other distributions. Here, we can observe that the AIC (823.8715, 827.376) and BIC 

(826.7235, 830.2281) values of the proposed distribution are lower than those of the 

other distributions. Lower AIC and BIC values indicate that the neutrosophic 

framework is producing accurate and trustworthy parameter estimates by 
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effectively interpreting data uncertainty.  The suggested model (6) is more accurate 

and adaptable in terms of imprecision and uncertainty when compared to the other 

distributions. 

7. Conclusions  

    In contrast to classical probability distributions, neutrosophic probability 

distributions take an intrusive approach to explaining and resolving a variety of 

real-world scenarios. A wide range of disciplines, including engineering, actuarial 

sciences, health sciences, etc. heavily rely on the exponential distribution. A 

neutrosophic DUS-exponential distribution has been developed to better account for 

the imprecisions that are frequently present in real-world data, especially when it 

comes to interval form. The generating functions, order statistics, and hazard rate 

function are among the properties of the suggested neutrosophic DUS-exponential 

distribution that have been established. Using the neutrosophic maximum 

likelihood estimation method, parameters were estimated, and a simulation study 

was used to assess the distribution's efficiency. This model's adaptability was further 

illustrated by using it on a real-world dataset and contrasting its results with those 

of the neutrosophic DUS-exponential distribution, neutrosophic exponential 

distribution and DUS-exponential distribution. Results show that the suggested 

NDUS-ED yields trustworthy outcomes while managing data uncertainty and 

indeterminacy.  

The NDUS-ED distribution could be extended or modified to accommodate 

different types of data distributions by introducing additional flexibility through 

parameterization or hybridization with other distributions. Adding shape 

parameters to account for skewness or heavy tails could make the distribution more 

adaptable to asymmetric or leptokurtic data. Developing multivariate versions of 

the NDUS-ED distribution could enable modeling of relationships and 

dependencies between multiple variables. 
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