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Abstract: This study presents a detailed analysis of the Falkner-Skan equation under uncertainty by 

employing neutrosophic numbers to represent the uncertainty in no slip conditions and the 

parameter �̃�. By applying appropriate similarity transformation, partial differential equation (PDE) 

are converted into ordinary differential equation (ODE). Both the Shooting Method and the 

Homotopy Perturbation Method (HPM) are utilized to solve ODE’s. These ODE’s are then 
transmuted into neutrosophic differential equation (NDE) by employing (Α̃, Β,̃ Γ̃)𝑐𝑢𝑡approach. The 

parameter �̃� and no slip conditions are taken as triangular and trapezoidal neutrosophic numbers. 

The results are presented graphically to illustrate the comparative effectiveness of these methods. 

The analysis reveals that use of trapezoidal neutrosophic numbers and triangular neutrosophic 

numbers in Falkner-Skan equation gives strong neutrosophic solution. A 3D error analysis is 

conducted to compare the performance of triangular and trapezoidal neutrosophic numbers, 

highlighting their relative accuracy in solving the Falkner-Skan equation under varying degrees of 

uncertainty. 

 

Keywords:  Falkner-Skan Equation; Neutrosophic set; Triangular Neutrosophic Number; 

Trapezoidal Neutrosophic Number; Homotopy Perturbation Method. 

 

1. Introduction 

Classical set theory is widely applied in various real-world contexts to organize, categorize, and 

analyze information. A classical set incorporates elements that satisfy factual membership properties. 

Fuzzy set theory is an extension of classical set theory popularized by Zadeh [1] in 1965 that deals 

with uncertainty and imprecision. It is highly effective in controlling ambiguities emerging from an 

element’s vagueness in a set, although it is incapable to simulate all forms of uncertainty encountered 
in various real-world physical problems with incomplete information. The abstraction of fuzzy set is 

recognized as Intuitionistic fuzzy sets invented in 1986 by Atanassov [2–5]. Each element in 

Intuitionistic fuzzy set has membership and non-membership values where their sum is greater than 

or equal to one. Later, in 1998, Smarandache [6–8] introduced Neutrosophic set theory, further 

generalizing classical, fuzzy, and intuitionistic fuzzy set theories. It is designed to handle various types 
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of uncertainties, including incomplete, indeterminate, and inconsistent information in real world. 

They are characterized by three membership functions: truth, falsity, and indeterminacy, each of 

which can take values in the range ]0-,1+ [. 

 

Differentiation is crucial in science and engineering for modeling and solving various problems 

involving rates of change. Many real-world problems come with uncertain or imprecise parameters, 

which traditional differential equations struggle to handle. Fuzzy differential equations (FDE) handle 

uncertainty by representing variables with fuzzy sets. Bede et al. [9] investigated first order linear 

FDE’s under various interpretations and demonstrated that the behavior of the solutions varies 
depending on the interpretation used. Vasavi et al. [10] applied fuzzy logic to Newton’s law of cooling 
using different interpretations of fuzzy differential equations. They utilize a specific mathematical 

method (variation of constants) to find solutions that can better reflect the actual behavior of systems 

under uncertainty. Further, to improve upon fuzzy differential equations, intuitionistic fuzzy 

differential equations were developed. Ettoussi et al. [11] explored how intuitionistic fuzzy differential 

equations can be solved uniquely and exist using method of successive approximation and discusses 

the continuity of these solutions in the context of fuzzy set theory. In engineering, science, economics, 

and other fields, many systems are influenced by factors that cannot be precisely measured or 

predicted. Neutrosophic differential equations allow for a more accurate and realistic modeling of 

these systems by capturing all facets of uncertainty. Moi et al. [12] has examined second order 

boundary value problem through neutrosophic differential equation. Many problems involving 

multicriteria decision making problems [13], medical diagnostics [14], pattern recognition [15] and 

mine safety [16] have all been solved extensively with neutrosophic differential equation. 

 

A 𝒩𝑛𝑢𝑚𝑏𝑒𝑟  is an extension of classical numbers and fuzzy numbers designed to handle uncertainty, 

indeterminacy, and vagueness more comprehensively. Parikh et al. [17] investigated logistic growth 

model that incorporates neutrosophic logic to better predict population dynamics, particularly when 

dealing with uncertainties and potential deviations. Bhaumik et al. [18] introduces a new ranking 

approach for handling uncertainty in game theory using single-valued triangular neutrosophic 

numbers by applying bi-matrix games. He demonstrated how neutrosophic logic can enhance 

decision-making processes in uncertain environments. Shanmugapriya et al. [19] explores a 

neutrosophic method to solve a system of first-order differential equations using Trapezoidal 

Neutrosophic Numbers. They incorporated (Α̃, Β,̃ Γ̃)𝑐𝑢𝑡, the approach accounts for varying levels of 

truth, indeterminacy, and falsity. 

 

An important tool for understanding fluid flow dynamics under pressure gradients is the Falkner-

Skan equation, which forms the basis of boundary layer theory. Its relevance and adaptability in the 

field of fluid dynamics are demonstrated by its applications in engineering design, theoretical 

analysis, numerical validation, and larger flow issues. Han [20] applied finite difference method for 
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finding numerical solution of Falkner-Skan wedge flow equation. Parand et al. [21] studied 

magnetohydrodynamics (MHD) Falkner-Skan wedge flow equation by leveraging the orthogonal Sinc 

functions to approximate solutions on semi-infinite domains with high accuracy. Elnady et al. [22] 

examined the solution of the Falkner–Skan equation by addressing the challenge of its semi-infinite 

domain. He tackled this by truncating the domain to a finite interval and then used a Chebyshev series 

to approximate the solution. Bararnia et al. [23] applied Homotopy Analysis Method (HAM) to solve 

the momentum and energy equation of Falkner-Skan wedge flow equation in incompressible fluid by 

using trial and error and Padé approximation. Shanmugapriya et al. [24, 25] and Gopi Krishna et al. 

[26] have studied fluid flow in wedge using various techniques. 

 

Zulqarnain et al [27] employed a triangular fuzzy number to capture uncertainties and uses numerical 

methods to investigate how various parameters affect flow and heat transfer. He studied tri-hybrid 

nanofluid model incorporating 𝐴𝑙2𝑂3, 𝐶𝑢, 𝑇𝑖𝑂2 in engine oil over a Riga wedge. Siddique et al [28] 

investigated the thermal properties of a second-grade hybrid nanofluid (𝐴𝑙2𝑂3 + 𝐶𝑢/𝐸𝑂) over a Riga 

wedge, considering factors like heat source, stagnation point, and nonlinear thermal radiation in fuzzy 

environment. Shanmugapriya et al [29] explores the effects of endothermic/exothermic chemical 

reactions, thermal radiation, thermophoresis, and Brownian diffusion on the flow and heat transfer of 

a Casson hybrid nanofluid over a moving wedge under fuzzy environment. 

 

1.1 Research gap 

In the literature survey mentioned above, researchers have developed various methods to solve the 

Falkner-Skan equation, including similarity transformations, series solutions, and numerical methods 

like the finite difference method. However, but no research has addressed solutions using triangular 

and trapezoidal neutrosophic numbers. This research seeks to address this gap by examining 

neutrosophic solutions to the Falkner-Skan Boundary Layer Wedge flow equation through the 

application of both the shooting method and the Homotopy Perturbation Method (HPM). 

 

1.2 Objective 

The aim of this study is to investigate Falkner-Skan equation using  𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. 

The ODE’s are transformed into NDE’s with the help of  (Α̃, Β,̃ Γ̃)𝑐𝑢𝑡. The 𝒩𝑛𝑢𝑚𝑏𝑒𝑟 are applied in no slip conditions and wedge angle parameter. The shooting 

method via MATLAB and HPM via MAPLE were utilized to handle NDE’s. The outcomes are 
validated through available literature, 2D and 3D plots. 

 

1.3 Novelty 

The novelty of the present study is 
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i. The behavior of Falkner-Skan wedge flow equation in neutrosophic environment has not 

been addressed previously. 

ii. The wedge angle parameter �̃� within the Falkner-Skan equation and no slip conditions are 

taken as 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 through (Α̃, Β,̃ Γ̃)𝑐𝑢𝑡 approach covering a range of 

possible behavior. 

iii. A comparative analysis of mean values and error profiles for 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and  𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 

are determined which highlights the performance in controlling uncertainty. 

 

1.4 Applications 

The use of trapezoidal and triangular neutrosophic numbers into the Falkner-Skan equation 

provides noteworthy benefits across several engineering domains through efficient uncertainty 

management: 

i. Aerodynamics: By incorporating neutrosophic numbers into the design process, designers 

of automobiles and aircraft may better account for uncertainties in pressure gradients and 

flow conditions, resulting in more resilient and efficient designs that minimize drag and 

improve performance in ever changing situations. 

ii. Industrial Heat Transfer: The use of neutrosophic numbers in heat exchangers and cooling 

systems makes designs more dependable and maintains efficiency in the face of temperature 

and flow rate variations, which is essential for energy-intensive businesses. 

The above application shows how the Falkner-Skan equation’s use of neutrosophic numbers 
improves fluid dynamics designs’ performance and dependability by taking into account the 
inherent uncertainties of real-world scenarios. 

 

The basic concepts of 𝒩𝑠𝑒𝑡, (Α̃, Β,̃ Γ̃)𝑐𝑢𝑡 of a 𝒩𝑠𝑒𝑡, 𝒩𝑛𝑢𝑚𝑏𝑒𝑟 , 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟, (Α̃, Β,̃ Γ̃)𝑐𝑢𝑡of   𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟, 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟,(Α̃, Β,̃ Γ̃)𝑐𝑢𝑡of   𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟, and the 𝑠𝑡𝑟𝑜𝑛𝑔𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 of NDE are introduced in § 2.The 

mathematical formulation of Falkner-Skan equation is derived in § 3. In § 4, the equation is 

transmuted into neutrosophic equation and application of shooting method and HPM for 

neutrosophic governing equation. Finally, § 5 contains profile graphs, tables, neutrosophic analysis 

and comparative analysis of shooting method and HPM. The conclusion is given in § 6. 

 

Abbreviation Description 𝒩𝑠𝑒𝑡 Neutrosophic Set 𝒩𝑛𝑢𝑚𝑏𝑒𝑟 Neutrosophic Number (Α̃, Β,̃ Γ̃)𝑐𝑢𝑡 (Α̃, Β,̃ Γ̃) cut 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 Triangular Neutrosophic Number (Α̃, Β̃, Γ̃)𝑐𝑢𝑡 of a 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 (Α̃, Β,̃ Γ̃) cut of Triangular Neutrosophic Number 



Neutrosophic Sets and Systems, Vol. 79, 2025     192  

 

 

 

 

 

B. Amudha, M. Shanmugapriya, R. Sundareswaran, Said Broumi, Numerical and Semi Analytical Scheme for developing a 

solution to Falkner Skan equation in Neutrosophic environments 

𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 Trapezoidal Neutrosophic Number (Α̃, Β̃, Γ̃)𝑐𝑢𝑡 of a 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 (Α̃, Β,̃ Γ̃) cut of Trapezoidal Neutrosophic Number 𝑠𝑡𝑟𝑜𝑛𝑔𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  Strong Solution 𝑤𝑒𝑎𝑘𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  Weak Solution 𝑡𝑟𝑢𝑡ℎ𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 Truth function 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  Indeterministic function 𝑓𝑎𝑙𝑠𝑖𝑡𝑦𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  Falsity function 𝑇𝑟𝑖𝒩 velocity Triangular Neutrosophic Velocity 𝑇𝑟𝑎𝑝𝒩 velocity Trapezoidal Neutrosophic Velocity 

 

 

2. Preliminaries 

In this § 2, we recall a few preliminary concepts of neutrosophic set theory and some notations for 

better understanding. 

 

Definition 2.1. 

The universal set is typically denoted by 𝑋 and is defined as the set of all objects or elements relevant 

to a discussion or problem. 

 

Definition 2.2.[30] 

Let 𝑋 be a universe set. A 𝒩𝑠𝑒𝑡 (𝒩�̃�) on 𝑋 is defined as 𝒩�̃� = {〈𝒯𝒩�̃�(𝓍), ℐ𝒩�̃�(𝓍), ℱ𝒩�̃�(𝓍)〉: 𝓍 ∈ 𝑋}, where 𝒯𝒩�̃�(𝓍), ℐ𝒩�̃�(𝓍), ℱ𝒩�̃�(𝓍): 𝑋 → ]0,1[ − + represents the degree of certainty, degree of hesitation and degree 

of falseness respectively of the element 𝓍 ∈ 𝑋 such that 0 ≤ − 𝒯𝒩�̃�(𝓍), +ℐ𝒩�̃�(𝓍) + ℱ𝒩�̃�(𝓍) ≤ 3+.   

 

Definition 2.3.[31] 

The (Α̃, Β,̃ Γ̃)𝑐𝑢𝑡 of  𝒩𝑠𝑒𝑡 is  defined as 𝒩�̃�(Α̃,Β,̃Γ̃) = {〈𝒯𝒩�̃�(𝓍), ℐ𝒩�̃�(𝓍), ℱ𝒩�̃�(𝓍)〉: 𝓍 ∈ 𝑋, 𝒯𝒩�̃�(𝓍) ≥ Α̃, ℐ𝒩�̃�(𝓍) ≤Β,̃ ℱ𝒩�̃�(𝓍) ≤ Γ̃}, where Α̃, Β,̃ Γ̃ ∈ [0,1], such that 0 ≤ Α̃ + Β̃ + Γ̃ ≤ 3. 

 

Definition 2.4.[31] 

A 𝒩𝑠𝑒𝑡  defined on the set of real numbers ℝ is a 𝒩𝑛𝑢𝑚𝑏𝑒𝑟 if it satisfies the following properties: 

i. 𝒩�̃� is normal if ∃ 𝓍0 ∈ ℝ:𝒯𝒩�̃�(𝓍0) = 1. (ℐ𝒩�̃�(𝓍0) = ℱ𝒩�̃�(𝓍0) = 0). 
ii. 𝒩�̃� is convex for the 𝑡𝑟𝑢𝑡ℎ𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝒯𝒩�̃�(𝓍). (𝑖𝑒)𝒯𝒩�̃�(𝜍𝓍1 + (1 − 𝜍)𝓍2) ≥ min (𝒯𝒩�̃�(𝓍1), 𝒯𝒩�̃�(𝓍2) ), 

for all 𝓍1, 𝓍2 ∈ ℝ and 𝜍 ∈ [0,1]. 
iii. 𝒩�̃� is concave set for the 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ℐ𝒩�̃�(𝓍) and 𝑓𝑎𝑙𝑠𝑖𝑡𝑦𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ℱ𝒩�̃�(𝓍). (𝑖𝑒) ℐ𝒩�̃�(𝜍𝓍1 + (1 − 𝜍)𝓍2) ≥ max (ℐ𝒩�̃�(𝓍1), ℐ𝒩�̃�(𝓍2) ) and (𝑖𝑒)ℱ𝒩�̃�(𝜍𝓍1 + (1 − 𝜍)𝓍2) ≥ max (ℱ𝒩�̃�(𝓍1), ℱ𝒩�̃�(𝓍2) ), for all 𝓍1, 𝓍2 ∈ ℝ and 𝜍 ∈ [0,1]. 
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Definition 2.5.[31] 

A 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 is a subset of 𝒩�̃� in ℝ with the following 𝑡𝑟𝑢𝑡ℎ𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 , 𝑓𝑎𝑙𝑠𝑖𝑡𝑦𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  is defined as  

 

𝒯𝒩�̃�(𝓍) = {  
  ( 𝓍−𝒶1𝒶2−𝒶1)𝜔𝒩�̃�                 𝑖𝑓 𝒶1 ≤ 𝓍 ≤ 𝒶2𝜔𝒩�̃�                          𝑖𝑓 𝓍 = 𝒶2( 𝒶3−𝓍𝒶3−𝒶2)                       𝑖𝑓 𝒶2 ≤ 𝓍 ≤ 𝒶30                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

   
ℐ𝒩�̃�(𝓍) = {  

  ( 𝒶2−𝓍𝒶2−𝒶1) 𝛿𝒩�̃�                𝑖𝑓 𝒶1 ≤ 𝓍 ≤ 𝒶2𝛿𝒩�̃�                         𝑖𝑓 𝓍 = 𝒶2( 𝓍−𝒶3𝒶3−𝒶2)                     𝑖𝑓 𝒶2 ≤ 𝓍 ≤ 𝒶31                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                                                                                                     (2.1)  

ℱ𝒩�̃�(𝓍) = {  
  ( 𝒶2−𝓍𝒶2−𝒶1) 𝜀𝒩�̃�                 𝑖𝑓 𝒶1 ≤ 𝓍 ≤ 𝒶2𝜀𝒩�̃�                          𝑖𝑓 𝓍 = 𝒶2( 𝓍−𝒶3𝒶3−𝒶2)                       𝑖𝑓 𝒶2 ≤ 𝓍 ≤ 𝒶31                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  

where 0 − ≤ 𝒯𝒩�̃�(𝓍) + ℐ𝒩�̃�(𝓍) + ℱ𝒩�̃�(𝓍) ≤ 3+, 𝓍 ∈ 𝒩�̃�. 
 

Definition 2.6.[31] 

The (Α̃, Β̃, Γ̃)𝑐𝑢𝑡 of a 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 = 〈(𝒶1, 𝒶2, 𝒶3); 𝜔𝒩�̃� , 𝛿𝒩�̃� , 𝜀𝒩�̃�〉 is defined as follows: 𝒩�̃�(Α̃,Β,̃Γ̃) = [𝒯�̃�𝑠1(Α̃), 𝒯�̃�𝑠2(Α̃); ℐ�̃�𝑠1(Β̃), ℐ�̃�𝑠2(Β̃); ℱ�̃�𝑠1(Γ̃), ℱ�̃�𝑠2(Γ̃)], where  𝒯�̃�𝑠1(Α̃) = [𝒶1 + Α̃(𝒶2 − 𝒶1)]𝜔𝒩�̃�, 𝒯�̃�𝑠2(Α̃) = [𝒶3 − Α̃(𝒶3 − 𝒶2)]𝜔𝒩�̃� ℐ�̃�𝑠1(Α̃) = [𝒶2 − Β̃(𝒶2 − 𝒶1)]𝛿𝒩�̃�, ℐ�̃�𝑠2(Α̃) = [𝒶2 + Β̃(𝒶3 − 𝒶2)]𝛿𝒩�̃�                                                             (2.2) ℱ�̃�𝑠1(Α̃) = [𝒶2 − Γ̃(𝒶2 − 𝒶1)]𝜀𝒩�̃�, ℱ�̃�𝑠2(Α̃) = [𝒶2 + Γ̃(𝒶3 − 𝒶2)]𝜀𝒩�̃� 
Here 0 ≤ Α̃ ≤ 1, 0 ≤ Β̃ ≤ 1, 0 ≤ Γ̃ ≤ 1 and 0 − ≤ Α̃ + Β̃ + Γ̃ ≤ 3+ and is displayed in Figure 1. 
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Figure 1. Membership function of 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 
Definition 2.7.[32] 

A 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟  is a subset of 𝒩�̃� in ℝ with the following 𝑡𝑟𝑢𝑡ℎ𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 , 𝑓𝑎𝑙𝑠𝑖𝑡𝑦𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  is defined as  

 

𝒯𝒩�̃�(𝓍) = {  
  ( 𝓍−𝒶1𝒶2−𝒶1)𝜔𝒩�̃�                 𝑖𝑓 𝒶1 ≤ 𝓍 ≤ 𝒶2𝜔𝒩�̃�                                  𝑖𝑓 𝒶2 ≤ 𝓍 ≤ 𝒶3( 𝒶4−𝓍𝒶4−𝒶3)                       𝑖𝑓 𝒶3 ≤ 𝓍 ≤ 𝒶40                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  

ℐ𝒩�̃�(𝓍) = {  
  ( 𝒶2−𝓍𝒶2−𝒶1) 𝛿𝒩�̃�                 𝑖𝑓 𝒶1 ≤ 𝓍 ≤ 𝒶2𝛿𝒩�̃�                                    𝑖𝑓 𝒶2 ≤ 𝓍 ≤ 𝒶3( 𝒶4−𝓍𝒶4−𝒶3)                       𝑖𝑓 𝒶3 ≤ 𝓍 ≤ 𝒶41                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                                                                                            (2.3)         
ℱ𝒩�̃�(𝓍) = {  

  ( 𝒶2−𝓍𝒶2−𝒶1) 𝜀𝒩�̃�                 𝑖𝑓 𝒶1 ≤ 𝓍 ≤ 𝒶2𝜀𝒩�̃�                                    𝑖𝑓 𝒶2 ≤ 𝓍 ≤ 𝒶3( 𝒶4−𝓍𝒶4−𝒶3)                       𝑖𝑓 𝒶3 ≤ 𝓍 ≤ 𝒶41                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
  

where 0 − ≤ 𝒯𝒩�̃�(𝓍) + ℐ𝒩�̃�(𝓍) + ℱ𝒩�̃�(𝓍) ≤ 3+, 𝓍 ∈ 𝒩�̃�. 
 

Definition 2.8.[32] 

The (Α̃, Β̃, Γ̃)𝑐𝑢𝑡 of a 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 = 〈(𝒶1, 𝒶2, 𝒶3, 𝒶4); 𝜔𝒩�̃� , 𝛿𝒩�̃� , 𝜀𝒩�̃�〉 is defined as follows: 𝒩�̃�(Α̃,Β,̃Γ̃) = [𝒯𝒩𝑠1̃(Α̃), 𝒯𝒩𝑠2̃(Α̃); ℐ𝒩𝑠1̃(Β̃), ℐ𝒩𝑠2̃(Β̃); ℱ𝒩𝑠1̃(Γ̃), ℱ𝒩𝑠2̃(Γ̃)], where  𝒯𝒩𝑠1̃(Α̃) = [𝒶1 + Α̃(𝒶2 − 𝒶1)]𝜔𝒩�̃�, 𝒯𝒩𝑠2̃(Α̃) = [𝒶4 − Α̃(𝒶4 − 𝒶3)]𝜔𝒩�̃� ℐ𝒩𝑠1̃(Α̃) = [𝒶2 − Β̃(𝒶2 − 𝒶1)]𝛿𝒩�̃�, ℐ𝒩𝑠2̃(Α̃) = [𝒶3 + Β̃(𝒶4 − 𝒶3)]𝛿𝒩�̃�                                                               (2.4) ℱ𝒩𝑠1̃(Α̃) = [𝒶2 − Γ̃(𝒶2 − 𝒶1)]𝜀𝒩�̃�, ℱ𝒩𝑠2̃(Α̃) = [𝒶3 + Γ̃(𝒶4 − 𝒶3)]𝜀𝒩�̃� 
Here 0 ≤ Α̃ ≤ 1, 0 ≤ Β̃ ≤ 1, 0 ≤ Γ̃ ≤ 1 and 0 − ≤ Α̃ + Β̃ + Γ̃ ≤ 3+ and is displayed in Figure 2. 
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Figure 2. Membership function of 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 
Definition 2.9.[32] Let the solution of the neutrosophic differential equation be 𝑦(𝓍) and its (Α̃, Β̃, Γ̃)𝑐𝑢𝑡 be [𝑦(𝓍, Α̃, Β̃, Γ̃)] = [(𝑦1(𝓍, Α̃), 𝑦2(𝓍, Α̃), 𝑦1′(𝓍, Β̃), 𝑦2′(𝓍, Β̃), 𝑦1′′(𝓍, Γ̃), 𝑦2′′(𝓍, Γ̃))]. The solution 

is a 𝑠𝑡𝑟𝑜𝑛𝑔𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  

i. 
𝑑𝑦1(𝓍,Α̃)𝑑Α̃ > 0, 𝑑𝑦2(𝓍,Α̃)𝑑Α̃ < 0, ∀ Α̃ ∈ [0,1], 𝑦1(𝓍, 1) ≤ 𝑦2(𝓍, 1). 

ii. 
𝑑𝑦1′(𝓍,Β̃)𝑑Β̃ < 0, 𝑑𝑦2′(𝓍,Β̃)𝑑Β̃ > 0, ∀ Β̃ ∈ [0,1], 𝑦1′(𝓍, 0) ≤ 𝑦2′(𝓍, 0).                                                                 (2.5) 

iii. 
𝑑𝑦1′′(𝓍,Γ̃)𝑑Γ̃ < 0, 𝑑𝑦2′′(𝓍,Γ̃)𝑑Γ̃ > 0, ∀ Γ̃ ∈ [0,1], 𝑦1′′(𝓍, 0) ≤ 𝑦2′′(𝓍, 0). 

Otherwise the solution is 𝑤𝑒𝑒𝑘𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 

 

3. Falkner-Skan Equation 

The Falkner-Skan equation is a third-order nonlinear ordinary differential equation (ODE) that arises 

in the study of boundary layer flows over a wedge. Named after V.M. Falkner and S.W. Skan, this 

equation generalizes the Blasius equation for boundary layer flows over a flat plate to include the 

effects of a pressure gradient. The governing equation is derived from the boundary layer equations, 

which are simplifications of the Navier-Stokes equations for high Reynolds number flows where 

viscous effects are confined to thin regions near solid boundaries. The solution to the Falkner–Skan 

equation is significant in fluid dynamics as it describes the behavior of the laminar boundary layer 

over an infinite wedge. The wedge has a vertex angle of �̃�𝜋, where 0 ≤ �̃� ≤ 2.The parameter �̃� controls 

the shape and flow characteristics of the boundary layer. The range 0 ≤ �̃� ≤ 2 indicates different flow 

regimes: 1) �̃� = 0 represents the boundary layer over a flat plate (Blasius solution). 2) 0 < �̃� < 1 

describes accelerating flows, where the flow speed increases as it moves along the surface. 3) �̃� = 1: 
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Represents a stagnation point flow, where the fluid approaches the surface perpendicularly. 4) 1 <�̃� ≤ 2: Describes decelerating flows, where the flow speed decreases along the surface. 

For a steady, incompressible, two-dimensional boundary layer flow over a wedge, the boundary 

layer equations in Cartesian coordinates (𝓍, 𝓎) are: [33] 𝜕𝓊𝜕𝓍 + 𝜕𝓋𝜕𝓎 = 0                                                                                                                                                                     (3.1) 
𝓊𝜕𝓊𝜕𝓍 + 𝓋 𝜕𝓋𝜕𝓎 = 𝒰𝑑𝒰𝑑𝓍 + 𝜛𝜕2𝓊𝜕𝓎2                                                                                                                                  (3.2) 
with boundary conditions 

 𝓊 = 0,𝓋 = 0 𝑎𝑡 𝓎 = 0 and 𝓊(𝓍,𝓎) = 𝒰(𝑥) 𝑎𝑠 𝓎 → ∞.                                                                                   (3.3)  
Here 𝓊and 𝓋 are the velocity components in the 𝓍 and 𝓎 directions, respectively. 𝒰 is the external 

velocity at the edge of the boundary layer. 𝜛 is the kinematic viscosity of the fluid. 

3.1  Similarity Transformation 

To simplify these equations, we introduce a similarity variable 𝜁 and a stream function 𝜒 defined as: 

[34]  

𝜁 = 𝓎√𝒸(𝓂 + 1)2𝜛𝑓 𝓍𝓂−1  , 𝜒(𝓍, 𝓎) = [ 2𝒸𝜛𝑓𝓂+ 1𝓍𝓂+1]0.5 𝑓(𝜁)                                                                               (3.4) 
where  𝑓(𝜁) is the dimensionless stream function. The velocity components can be expressed in terms 

of 𝑓(𝜁) as:  𝓊 = 𝜕𝜒𝜕𝓎 = 𝒸𝓍𝓂𝑓′(𝜁), 𝓋 = −𝜕𝜒𝜕𝓍 = [−𝜛𝑓𝒸𝓍𝓂−1(𝓂 + 1)2 ]0.5 [𝜁𝑓′(𝜁) (𝓂 − 1)(𝓂 + 1) + 𝑓(𝜁)]                            (3.5) 
Substituting these into the boundary layer equations and simplifying, we obtain the Falkner-Skan 

equation: 𝑓′′′ + 𝑓𝑓′ + �̃�[1 − (𝑓′)2] = 0                                                                                                                                  (3.6) 
where  �̃� is the Falkner-Skan parameter related to the pressure gradient and is defines as: �̃� = 2𝓂𝓂+1. 
Here, m is related to the external velocity 𝒰(𝑥) as 𝒰(𝑥) ∝ 𝑥𝓂. 

The boundary conditions for the Falkner-Skan equation are: 𝑓( 𝜁) = 0,  𝑓′( 𝜁) = 0     𝑎𝑠 𝜁 →  0  𝑓′(𝜁) → 1                          𝑎𝑠 𝜁 → ∞}                                                                                                                         (3.7) 
These conditions correspond to the no-slip condition at the wall and the matching of the velocity to 

the external flow far from the wall. 
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The Falkner-Skan equation is used to analyze the effects of pressure gradients on boundary layer 

flows. Positive �̃� (or 𝓂 > 0) corresponds to a favorable pressure gradient (accelerating flow), while 

negative �̃� (or 𝓂 < 0) corresponds to an adverse pressure gradient (decelerating flow). 

4. Methodology 

 

4.1 Application of numerical technique 

We can use the shooting method to solve boundary value problem (BVP) by converting them into 

initial value problem (IVP). By transforming the third-order ODE into a first-order ODE and solved 

using MATLAB’s numerical solvers. The shooting method involves guessing the initial conditions 
for the IVP at 𝜁 = 0, integrating the first-order ODE, and adjusting the guessed initial conditions to 

satisfy the boundary conditions at the other endpoint (as 𝜁 → ∞). The tolerance level in the case of 

the present problem is 10−6. It is highly sensitive to initial guesses for the unknown initial conditions, 

and poor choices can be to diverges or incorrect solutions. This method may not always converge 

particularly for highly nonlinear coupled equations. These challenges make this method to less 

reliable in certain situation. 

Let 𝑓 = 𝑖1, 𝑓′ = 𝑖2, 𝑓′′ = 𝑖3. 

Then the system of equations becomes 

[𝑖1′𝑖2′𝑖3′ ] = [
𝑖2𝑖3−𝑖1𝑖3 − �̃�[1 − (𝑖2)2]]                                                                                                                                     (4.1) 

along with boundary conditions 𝑖1(𝜁) = 𝑖2(𝜁) = 0,   𝑎𝑠 𝜁 →  0 and 𝑖2(𝜁) = 1 𝑎𝑠 𝜁 → ∞                                                                                      (4.2) 
4.1.1    Formulation of Falkner-Skan  Equation in Neutrosophic Environment 

In the neutrosophic context, the function 𝑓(𝜁) and its derivatives will have three components each:  Α̃ (truth), Β̃ (indeterminacy), and Γ̃ (falsity). Denote these as: 𝑓(𝜁) = (𝑓(𝜁, Α̃), 𝑓(𝜁, Β̃), 𝑓(𝜁, Γ̃))                                                                                                                              (4.3) 
This means that for the function 𝑓(𝜁) its derivatives, and the constants, we will consider three 

corresponding components. The neutrosophic form of the Falkner-Skan equation can then be written 

as a set of three coupled differential equations: 𝑓′′′(𝜁, Α̃) + 𝑓(𝜁, Α̃)𝑓′(𝜁, Α̃) + �̃�Α̃ [1 − (𝑓′(𝜁, Α̃))2] = 0𝑓′′′(𝜁, Β̃) + 𝑓(𝜁, Β̃)𝑓′(𝜁, Β̃) + �̃�Β̃ [1 − (𝑓′(𝜁, Β̃))2] = 0𝑓′′′(𝜁, Γ̃) + 𝑓(𝜁, Γ̃)𝑓′(𝜁, Γ̃) + �̃�Γ̃ [1 − (𝑓′(𝜁, Γ̃))2] = 0 }  
                                                                                     (4.4) 

with the transformed boundary condition 
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𝑓(𝜁, Α̃) = 0̃,  𝑓′(𝜁, Α̃) = 0̃ 𝑎𝑠 𝜁 →  0  ,  𝑓′(𝜁, Α̃) → 1 𝑎𝑠 𝜁 → ∞𝑓(𝜁, Β̃) = 0̃,  𝑓′(𝜁, Β̃) = 0̃𝑎𝑠 𝜁 →  0  ,  𝑓′(𝜁, Β̃) → 1 𝑎𝑠 𝜁 → ∞ 𝑓(𝜁, Γ̃) = 0̃,  𝑓′(𝜁, Γ̃) = 0̃ 𝑎𝑠 𝜁 →  0  ,  𝑓′(𝜁, Γ̃) → 1 𝑎𝑠 𝜁 → ∞}                                                                       ( 4.5) 
where the neutrosophic velocity profile   𝑓′(𝜁, Α̃) = [f ′(𝜁, Α̃), f ′(𝜁, Α̃)] , 0 ≤ Α̃ ≤ 1. The term f ′(𝜁, Α̃) and  f ′(𝜁, Α̃) represents the lower and upper bounds of the neutrosophic velocity, respectively for Α̃ (truth). 

Similarly,   𝑓′(𝜁, Β̃) = [f ′(𝜁, Β̃), f ′(𝜁, Β̃)] ,  𝑓′(𝜁, Γ̃) = [f ′(𝜁, Γ̃), f ′(𝜁, Γ̃)], 0 ≤ Β̃ ≤ 1, 0 ≤ Γ̃ ≤ 1  for Β̃ 

(indeterminacy) and Γ̃ (falsity), respectively and 0 − ≤ Α̃ + Β̃ + Γ̃ ≤ 3+. 

 

4.2 Application of semi-analytic technique 

The basic concept of the HPM to a non-linear differential equation is  𝑅(𝐶) − 𝑠(Λ̃) = 0, Λ̃ ∈ Ω                                                                                                                                        (4.6) 
The corresponding boundary conditions are  𝑍 (𝐶, 𝜕𝐶𝜕𝑛) = 0 , Λ̃ ∈ Γ                                                                                                                                                      (4.7) 
where 𝑅 is a general non-linear differential operator, B is a boundary operator, 𝑠(Λ̃) a known 

analytical function and Λ̃ the boundary of domain Ω. 

The operator 𝑅 can be divided into two namely L and N, where L is the linear operator, while N is a 

non-linear operator of Eq. (4.6) which can be written as: 𝐿(𝐶) + 𝑁(𝐶) − 𝑠(Λ̃) = 0, Λ̃ ∈ Ω                                                                                                                                 (4.8) 
Define a homotopy as follows: ℋ(𝑓, 𝜉) = (1 − 𝜉)[𝐿(𝑓)] + 𝜉[𝑁(𝑓)] = 0,                                                                                                                (4.9) 
where 𝜉 = [0,1] is an embedding parameter. 

Its accuracy depends on the initial approximation, and poor choices may lead to inaccurate solutions. 

This method may also produce dual solutions, depending on how the homotopy id constructed, 

creating ambiguity in selecting the correct one. Moreover, it doesn’t guarantee convergence highly 
nonlinear coupled equations. 

For Falkner-Skan equation, 𝐿(𝑓) = 𝑓′′′ and 𝑁(𝑓) = 𝑓′′′ + 𝑓𝑓′ + �̃�[1 − (𝑓′)2]. Now construct the 

homotopy as: (1 − 𝜉)𝑓′′′ + 𝜉 [𝑓′′′ + 𝑓𝑓′ + �̃�[1 − (𝑓′)2]] = 0                                                                                                   (4.10) 
Assume a solution in the form of a power series in 𝜉: 

𝑓 = 𝑓0 + 𝜉𝑓1 + 𝜉2𝑓2 +⋯ =∑𝜉𝑗𝑓𝑗𝑛
𝑗=1                                                                                                                        (4.11) 

Substituting Eq. (4.11) into Eq. (4.10), we get the co-efficient of different powers of 𝜉: 𝜉0: 𝑓0′′′ = 0                                                                                                                                                                     (4.12) 𝑓0(0) = 𝑓0′(0) = 0 , 𝑓0′(∞) = 1 𝜉1: 𝑓1′′′ = −𝑓0𝑓0′′ − �̃�[1 − (𝑓0′)2]                                                                                                                               (4.13) 
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𝑓1(0) = 𝑓1′(0) = 0 , 𝑓1′(∞) = 0 𝜉2: 𝑓2′′′ = −𝑓0𝑓1′′ − 𝑓0′′𝑓1 + 2�̃�𝑓0′𝑓1′                                                                                                                          (4.14) 𝑓2(0) = 𝑓2′(0) = 0 , 𝑓2′(∞) = 0 

Solving (4.12), (4.13) and (4.14), we have  𝑓0(𝜁) = 𝜁22𝜁∞                                                                                    𝑓1(𝜁) = − 𝑘60 𝜁5 − �̃�6 𝜁3                                                                
𝑓2(𝜁) = [((1 − �̃�)𝑘 + (𝑘/10)1764 ) 𝜁8 + ((2�̃�/3) − �̃�2120 ) 𝜁6]𝜁∞ }  

  
                                                                           (4.15)  

 

4.2.1 Formulation of Falkner-Skan Equation in Neutrosophic Environment 

We introduce a neutrosophic approach to solve uncertainty parameter �̃� and boundary condition, 

using 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟  and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. Our methodology involves applying (Α̃, Β̃, Γ̃)𝑐𝑢𝑡to represent 

various degrees of truth, indeterminacy, and falsity. We developed a solution procedure that 

integrates these neutrosophic numbers into HPM. 

(1 − 𝜁) 𝑓′′′(𝜁, Α̃) + 𝜁 [𝑓′′′(𝜁, Α̃) + 𝑓(𝜁, Α̃)𝑓′(𝜁, Α̃) + �̃�Α̃ [1 − (𝑓′(𝜁, Α̃))2]] = 0
(1 − 𝜁)𝑓′′′(𝜁, Β̃) + 𝜁 [𝑓′′′(𝜁, Β̃) + 𝑓(𝜁, Β̃)𝑓′(𝜁, Β̃) + �̃�Β̃ [1 − (𝑓′(𝜁, Β̃))2]] = 0
(1 − 𝜁)𝑓′′′(𝜁, Γ̃) + 𝜁 [𝑓′′′(𝜁, Γ̃) + 𝑓(𝜁, Γ̃)𝑓′(𝜁, Γ̃) + �̃�Γ̃ [1 − (𝑓′(𝜁, Γ̃))2]] = 0 }   

                                       (4.16) 
with the transformed boundary condition 𝑓(𝜁, Α̃) = 0̃,  𝑓′(𝜁, Α̃) = 0̃ 𝑎𝑠 𝜁 →  0  ,  𝑓′(𝜁, Α̃) → 1 𝑎𝑠 𝜁 → ∞𝑓(𝜁, Β̃) = 0̃,  𝑓′(𝜁, Β̃) = 0̃ 𝑎𝑠 𝜁 →  0  ,  𝑓′(𝜁, Β̃) → 1 𝑎𝑠 𝜁 → ∞ 𝑓(𝜁, Γ̃) = 0̃,  𝑓′(𝜁, Γ̃) = 0̃ 𝑎𝑠 𝜁 →  0  ,  𝑓′(𝜁, Γ̃) → 1 𝑎𝑠 𝜁 → ∞ }                                                                    ( 4.17) 
where the neutrosophic velocity profile   𝑓′(𝜁, Α̃) = [f ′(𝜁, Α̃), f ′(𝜁, Α̃)] , 0 ≤ Α̃ ≤ 1. The term f ′(𝜁, Α̃) and  f ′(𝜁, Α̃) represents the lower and upper bounds of the neutrosophic velocity, respectively for Α̃ (truth). 

Similarly, 𝑓′(𝜁, Β̃) = [f ′(𝜁, Β̃), f ′(𝜁, Β̃)] ,  𝑓′(𝜁, Γ̃) = [f ′(𝜁, Γ̃), f ′(𝜁, Γ̃)], 0 ≤ Β̃ ≤ 1, 0 ≤ Γ̃ ≤ 1 for Β̃ 

(indeterminacy) and Γ̃ (falsity), respectively and 0 − ≤ Α̃ + Β̃ + Γ̃ ≤ 3+. 

 

The 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟   and 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 are transformed using (Α̃, Β̃, Γ̃)𝑐𝑢𝑡 technique shown in Table 1 and 

2. 

 Crisp 

value  

𝓝𝒏𝒖𝒎𝒃𝒆𝒓 Alpha cut 

approach 

Beta cut 

approach 

Gamma cut 

approach 𝑻𝒓𝒊𝓝𝒏𝒖𝒎𝒃𝒆𝒓 [0.01-0.4] [0.2,0.4,0.6;0.7,0.3,0.5] [(0.2+0.2Α̃)0.7, 

(0.6 – 0.2Α̃)0.7] 

[(0.4-0.2Β̃)0.3, 

(0.4 + 0.2Β̃)0.3] 

[(0.4-0.2Γ̃)0.5, 

(0.4 + 0.2Γ̃)0.5] 
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Table 1. Parametric form of 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟   and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟  for wedge angle parameter �̃� 

 

Table 2. Parametric form of 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟   and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟  for no slip conditions 

 

4.3 Validation 

To check the accuracy of the numerical and semi-analytic scheme, the results of 𝑓′′(0) of Falkner-

Skan equation was compared with Zhang et al. [35] and Salama [36]. 

Table 3. Comparison of 𝑓′′(0) for various values of �̃� 

 

 

 

 

 

 

 

 

 

5. Result and discussion 

In this section, we concentrated on the neutrosophic analysis of Falkner-Skan equation. The 

uncertainty of wedge angle parameter �̃� and no slip conditions are considered as 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. The governing equation is transformed as a NDE’s, are numerically solved using the 

shooting method and HPM. The solution process involves application of the (Α̃, Β̃, Γ̃)𝑐𝑢𝑡 techniques.  

 

5.1     Profile graph of Falkner-Skan Equation via Shooting Method  

Figure 3 illustrates that the velocity distribution within the boundary layer increases as  �̃�  is 

augmented. The observed trends show that controlling the wedge angle parameter �̃�  is an effective 

𝑻𝒓𝒂𝒑𝓝𝒏𝒖𝒎𝒃𝒆𝒓 [0.01-0.4] [0.2,0.4,0.6,0.8;0.7,0.3,0.5] [(0.2+0.2Α̃)0.7, 

(0.8 – 0.2Α̃)0.7] 

[(0.4-0.2Β̃)0.3, 

(0.6 + 0.2Β̃)0.3] 

[(0.4-0.2Γ̃)0.5, 

(0.6 + 0.2Γ̃)0.5] 

 No slip 

Conditions  

Crisp 

value  

𝓝𝒏𝒖𝒎𝒃𝒆𝒓 Alpha cut 

approach 

Beta cut 

approach 

Gamma cut 

approach 𝑻𝒓𝒊𝓝𝒏𝒖𝒎𝒃𝒆𝒓 𝑓(𝜁) = 0̃,  [0.01-0.4] [0.1,0.3,0.5; 

0.6,0.4,0.2] 

[(0.1+0.2Α̃)0.6, 

(0.5 – 0.2Α̃)0.6] 

[(0.3-0.2Β̃)0.4, 

(0.3 + 0.2Β̃)0.4] 

[(0.3-0.2Γ̃)0.2, 

(0.3 + 0.2Γ̃)0.2]  𝑓′(𝜁) = 0̃ [0.01-0.4] [0.2,0.4,0.6; 

0.7,0.3,0.5] 

[(0.2+0.2Α̃)0.7, 

(0.6 – 0.2Α̃)0.7] 

[(0.4-0.2Β̃)0.3, 

(0.4 + 0.2Β̃)0.3] 

[(0.4-0.2Γ̃)0.5, 

(0.4 + 0.2Γ̃)0.5] 𝑻𝒓𝒂𝒑𝓝𝒏𝒖𝒎𝒃𝒆𝒓 𝑓(𝜁) = 0̃ [0.01-0.4] [0.1,0.3,0.5,0.7; 

0.6,0.4,0.2] 

[(0.1+0.2Α̃)0.6, 

(0.7 – 0.2Α̃)0.6] 

[(0.3-0.2Β̃)0.4, 

(0.5 + 0.2Β̃)0.4] 

[(0.3-0.2Γ̃)0.2, 

(0.5+ 0.2Γ̃)0.2]  𝑓′(𝜁) = 0̃ [0.01-0.4] [0.2,0.4,0.6,0.8; 

0.7,0.3,0.5] 

[(0.2+0.2Α̃)0.7, 

(0.8 – 0.2Α̃)0.7] 

[(0.4-0.2Β̃)0.3, 

(0.6 + 0.2Β̃)0.3] 

[(0.4-0.2Γ̃)0.5, 

(0.6 + 0.2Γ̃)0.5] 

�̃� Zhang et al. 

[35] 

Salama 

[36] 

Present 

(Shooting method) 

Present 

(HPM) 

-0.15 0.216362 0.216362 0.216362 0.288217 

-0.1 0.319270 0.319270 0.319269 0.359690 

0 0.469600 0.469600 0.469599 0.493155 

0.5 0.927680 0.927680 0.927680 0.970833 

1 1.232587 1.232588 1.232587 1.132440 
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strategy to modulate boundary layer characteristics, particularly in applications requiring specific 

flow acceleration. 

 

Figure 3. Behavior of  𝑓′(𝜁) against �̃� 

5.1.1 Neutrosophic Analysis using shooting method 

 Case 1:  No slip condition as 𝓝𝒏𝒖𝒎𝒃𝒆𝒓 
The no slip conditions are taken as 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. From Figure 4 and 5, we see that f ′(𝜁, Α̃)  is increasing and f ′(𝜁, Α̃) is decreasing for all Α̃ ∈ [0,1], f ′(𝜁, Α̃) ≤ f ′(𝜁, Α̃)   in both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 
and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. 
 

 

 
Figure 4. 𝑇𝑟𝑖𝒩 velocity for 𝑓(0) at 𝜁 = 3 Figure 5. 𝑇𝑟𝑎𝑝𝒩 velocity for 𝑓(0) at 𝜁 = 3 
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From Figure 6 and 7, we see that f ′(𝜁, Β̃)  is decreasing and f ′(𝜁, Β̃) is increasing for all Β̃ ∈ [0,1], f ′(𝜁, Β̃) ≤ f ′(𝜁, Β̃)   in both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 which implies that neutrosophic solution 

exist. 

 

 

 

 

From Figure 8 and 9, it shows that f ′(𝜁, Γ̃)  is decreasing and f ′(𝜁, Γ̃) is increasing for all Γ̃ ∈ [0,1], f ′(𝜁, Γ̃) ≤ f ′(𝜁, Γ̃)   in both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. Hence by Definition 2.9, the solution of (3.6), 𝑓′(𝜁, �̃�, Β̃, Γ̃) is a strong neutrosophic solution. 

 

 

 

 

From Figure 10 and 11, we see that f ′(𝜁, Α̃)  is increasing and f ′(𝜁, Α̃) is decreasing for all Α̃ ∈ [0,1], f ′(𝜁, Α̃) ≤ f ′(𝜁, Α̃)   in both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. 

Figure 6. 𝑇𝑟𝑖𝒩 velocity for 𝑓(0) at 𝜁 = 3 

 

Figure 7. 𝑇𝑟𝑎𝑝𝒩 velocity for 𝑓(0) at 𝜁 = 3 

 

Figure 8. 𝑇𝑟𝑖𝒩 velocity for 𝑓(0) at 𝜁 = 3 

 

Figure 9. 𝑇𝑟𝑎𝑝𝒩 velocity for 𝑓(0) at 𝜁 = 3 

 



Neutrosophic Sets and Systems, Vol. 79, 2025     203  

 

 

 

 

 

B. Amudha, M. Shanmugapriya, R. Sundareswaran, Said Broumi, Numerical and Semi Analytical Scheme for developing a 

solution to Falkner Skan equation in Neutrosophic environments 

 

 

 

From Figure 12 and 13, we see that f ′(𝜁, Β̃)  is decreasing and f ′(𝜁, Β̃) is increasing for all Β̃ ∈ [0,1], f ′(𝜁, Β̃) ≤ f ′(𝜁, Β̃)   in both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 which implies that neutrosophic solution 

exist. 

 
 

 

From Figure 14 and 15, it shows that f ′(𝜁, Γ̃)  is decreasing and f ′(𝜁, Γ̃) is increasing for all Γ̃ ∈ [0,1], f ′(𝜁, Γ̃) ≤ f ′(𝜁, Γ̃)   in both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. Hence by Definition 2.9, the solution of (3.6), 𝑓′(𝜁, �̃�, Β̃, Γ̃) is a strong neutrosophic solution. 

Figure 10. 𝑇𝑟𝑖𝒩 velocity for 𝑓′(0) at 𝜁 = 3 

 

Figure 11. 𝑇𝑟𝑎𝑝𝒩 velocity for 𝑓′(0) at 𝜁 = 3 

 

Figure 12. 𝑇𝑟𝑖𝒩 velocity for 𝑓′(0) at 𝜁 = 3 

 

Figure 13. 𝑇𝑟𝑎𝑝𝒩 velocity for 𝑓′(0) at 𝜁 = 3 
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Case 2:   Wedge angle parameter �̃� as 𝓝𝒏𝒖𝒎𝒃𝒆𝒓 
Figure 16 and 17 depicts the neutrosophic velocity profiles 𝑓′(𝜁, �̃�) corresponding to the truth 

component of the 𝒩𝑛𝑢𝑚𝑏𝑒𝑟. The wedge angle parameter �̃�  is taken as 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 [0.2, 0.4, 0.6;0.7, 0.3, 

0.5] and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 [0.2, 0.4, 0.6, 0.8;0.7, 0.3, 0.5] in the Falkner-Skan equation at fixed 𝜁 = 3. The 

velocity profiles are plotted along the x-axis represents the various cuts �̃�, Β̃, Γ̃, the y-axis corresponds 

to the uncertainty parameter 𝜁, and the z-axis represents 𝑓′(𝜁, �̃�). The figures shows that f ′(𝜁, Α̃)  is 

strictly increasing and f ′(𝜁, Α̃) is strictly decreasing for all Α̃ ∈ [0,1], f ′(𝜁, Α̃) ≤ f ′(𝜁, Α̃) in both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. 

 

 

 

 

Figure 14. 𝑇𝑟𝑖𝒩 velocity for 𝑓′(0) at 𝜁 = 3 

 

Figure 15. 𝑇𝑟𝑎𝑝𝒩 velocity for 𝑓′(0) at 𝜁 = 3 

 

Figure 16. 𝑇𝑟𝑖𝒩 velocity for 𝑡𝑟𝑢𝑡ℎ𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 at 𝜁 = 3 

Figure 17. 𝑇𝑟𝑎𝑝𝒩 velocity for 𝑡𝑟𝑢𝑡ℎ𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 at 𝜁 = 3 
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From Figure 18 and 19 illustrates that the neutrosophic velocity profile focusing on the 

indeterminacy. We see that f ′(𝜁, Β̃)  is strictly decreasing and f ′(𝜁, Β̃) is strictly increasing for all Β̃ ∈[0,1], f ′(𝜁, Β̃) ≤ f ′(𝜁, Β̃)   in both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. 

 

 

 

 

From Figure 20 and 21 displays 𝑓′(𝜁, Γ̃) associated with the falsity. It shows that f ′(𝜁, Γ̃)  is strictly 

decreasing and f ′(𝜁, Γ̃) is strictly increasing for all Γ̃ ∈ [0,1], f ′(𝜁, Γ̃) ≤ f ′(𝜁, Γ̃)   in both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. Hence by Definition 2.9, the solution of (3.6), 𝑓′(𝜁, �̃�, Β̃, Γ̃) is a strong neutrosophic 

solution. 

 

 

 

       

5.2 Profile graph of Falkner-Skan Equation via HPM 

The velocity profile of �̃� is displayed in Figure 22. The velocity profiles steepen near the wall, 

indicating that the flow accelerates more rapidly with higher �̃� values. This behavior is attributed to 

Figure 18. 𝑇𝑟𝑖𝒩 velocity for 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 at 𝜁 = 3 

 

Figure 19. 𝑇𝑟𝑎𝑝𝒩 velocity for 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 at 𝜁 = 3 

Figure 20. 𝑇𝑟𝑖𝒩 velocity for 𝑓𝑎𝑙𝑠𝑖𝑡𝑦𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 at 𝜁 = 3 

 

Figure 21. 𝑇𝑟𝑎𝑝𝒩 velocity for 𝑓𝑎𝑙𝑠𝑖𝑡𝑦𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 at 𝜁 = 3 
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the enhanced favorable pressure gradient associated with larger �̃� values, which effectively 

accelerates the fluid particles adjacent to the surface. 

 

 

5.2.1 Neutrosophic Analysis using HPM 

Case 1:  No slip condition as 𝓝𝒏𝒖𝒎𝒃𝒆𝒓 
The no slip conditions are taken as 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. From Figure 23 and 24, we see that f ′(𝜁, Α̃)  is increasing and f ′(𝜁, Α̃) is decreasing for all Α̃ ∈ [0,1], f ′(𝜁, Α̃) ≤ f ′(𝜁, Α̃)   in both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 
and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. 

 

 

 

Figure 22. Behavior of 𝑓′(𝜁) against �̃� 

Figure 23. 𝑇𝑟𝑖𝒩 velocity for 𝑓(0) at 𝜁 = 3 

 

Figure 24. 𝑇𝑟𝑎𝑝𝒩 velocity for 𝑓(0) at 𝜁 = 3 
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From Figure 25 and 26, we see that f ′(𝜁, Β̃)  is decreasing and f ′(𝜁, Β̃) is increasing for all Β̃ ∈ [0,1], f ′(𝜁, Β̃) ≤ f ′(𝜁, Β̃)   in both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 which implies that neutrosophic solution 

exist. 

 

 

 

From Figure 27 and 28, it shows that f ′(𝜁, Γ̃)  is decreasing and f ′(𝜁, Γ̃) is increasing for all Γ̃ ∈ [0,1], f ′(𝜁, Γ̃) ≤ f ′(𝜁, Γ̃)   in both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. Hence by Definition 2.9, the solution of (3.6), 𝑓′(𝜁, �̃�, Β̃, Γ̃) is a strong neutrosophic solution. 

 

 

 

From Figure 29 and 30, we see that f ′(𝜁, Α̃)  is increasing and f ′(𝜁, Α̃) is decreasing for all Α̃ ∈ [0,1], f ′(𝜁, Α̃) ≤ f ′(𝜁, Α̃)   in both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. 

Figure 25. 𝑇𝑟𝑖𝒩 velocity for 𝑓(0) at 𝜁 = 3 

 

Figure 26. 𝑇𝑟𝑎𝑝𝒩 velocity for 𝑓(0) at 𝜁 = 3 

 

Figure 27. 𝑇𝑟𝑖𝒩 velocity for 𝑓(0) at 𝜁 = 3 

 

Figure 28. 𝑇𝑟𝑎𝑝𝒩 velocity for 𝑓(0) at 𝜁 =3
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From Figure 31 and 32, we see that f ′(𝜁, Β̃)  is decreasing and f ′(𝜁, Β̃) is increasing for all Β̃ ∈ [0,1], f ′(𝜁, Β̃) ≤ f ′(𝜁, Β̃)   in both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 which implies that neutrosophic solution 

exist. 

 

  

 

 

From Figure 33 and 34, it shows that f ′(𝜁, Γ̃)  is decreasing and f ′(𝜁, Γ̃) is increasing for all Γ̃ ∈ [0,1], f ′(𝜁, Γ̃) ≤ f ′(𝜁, Γ̃)   in both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. Hence by Definition 2.9, the solution of (3.6), 𝑓′(𝜁, �̃�, Β̃, Γ̃) is a strong neutrosophic solution. 

 

Figure 29. 𝑇𝑟𝑖𝒩 velocity for 𝑓′(0) at 𝜁 = 3 

 

Figure 30. 𝑇𝑟𝑎𝑝𝒩 velocity for 𝑓′(0) at 𝜁 = 3 

 

Figure 31. 𝑇𝑟𝑖𝒩 velocity for 𝑓′(0) at 𝜁 = 3 

 

Figure 32. 𝑇𝑟𝑎𝑝𝒩 velocity for 𝑓(0) at 𝜁 = 3 
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Case 2:   Wedge angle parameter �̃� as 𝓝𝒏𝒖𝒎𝒃𝒆𝒓 
Figure 35 and 36 demonstrates 𝑓′(𝜁, �̃�) derived from the truth aspect of the 𝒩𝑛𝑢𝑚𝑏𝑒𝑟. The analysis 

reveals that both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟,  f ′(𝜁, Α̃)  is strictly increasing and f ′(𝜁, Α̃) is strictly 

decreasing for all Α̃ ∈ [0,1], f ′(𝜁, Α̃) ≤ f ′(𝜁, Α̃). 
 

 

 

 

From Figure 37 and 38 showcases the neutrosophic velocity profile corresponding to the 

indeterminacy aspect. In both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 we see that f ′(𝜁, Β̃)  is strictly decreasing 

and f ′(𝜁, Β̃) is strictly increasing for all Β̃ ∈ [0,1], f ′(𝜁, Β̃) ≤ f ′(𝜁, Β̃). 
 

Figure 33. 𝑇𝑟𝑖𝒩 velocity for 𝑓(0) at 𝜁 = 3 

 

Figure 34. 𝑇𝑟𝑎𝑝𝒩 velocity for 𝑓(0) at 𝜁 = 3 

 

Figure 35. 𝑓′(𝜁, �̃�) at 𝜁 = 3 using 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 Figure 36. 𝑓′(𝜁, �̃�) at 𝜁 = 3 using 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 
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From Figure 39 and 40 presents the neutrosophic velocity profile related to the falsity aspect. Similar 

to the observations made for indeterminacy, the 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 reveals that f ′(𝜁, Γ̃)  is 

strictly decreasing and f ′(𝜁, Γ̃) is strictly increasing for all Γ̃ ∈ [0,1], f ′(𝜁, Γ̃) ≤ f ′(𝜁, Γ̃). Hence by 

Definition 2.9, the solution of (3.6), 𝑓′(𝜁, �̃�, Β̃, Γ̃) is a strong neutrosophic solution. 

 

 

 

5.3 Comparison of Shooting method and HPM 

We computed the absolute error between the values obtained from the Shooting method and the 

HPM for the 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟. The absolute errors were computed separately for each (Α̃, Β̃, Γ̃)𝑐𝑢𝑡. These errors were then visualized in a 3D plot, with the x-axis represents the cuts �̃�, Β̃, Γ̃, 

the y-axis corresponds to the uncertainty parameter �̃�, and the z-axis represents the absolute error. 

The analysis demonstrates that the choice between 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟and  𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟  impacts the 

Figure 37. 𝑓′(𝜁, Β̃) at 𝜁 = 3 using 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 
 

Figure 38. 𝑓′(𝜁, Β̃) at 𝜁 = 3 using 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 

 

Figure 39. 𝑓′(𝜁, Γ̃) at 𝜁 = 3 using 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 
 

Figure 40. 𝑓′(𝜁, Γ̃) at 𝜁 = 3 using 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 
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resulting velocity profiles significantly. Based on the results, 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 exhibits 

lower errors at higher cuts. 

 

 

 

 

 

Figure 41. Absolute Error of  𝑓′(𝜁, �̃�) 
using 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 Figure 42. Absolute Error of  𝑓′(𝜁, �̃�) 

using 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 
 

Figure 43. Absolute Error of  𝑓′(𝜁, Β̃) 
using 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 

 

Figure 44. Absolute Error of  𝑓′(𝜁, Β̃) 
using 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 
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The results, as shown in Table 4, indicate that the 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 exhibits higher truth mean values for 

both shooting method and HPM. However, the 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟consistently shows lower mean 

indeterminacy and falsity values. 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 gives a better performance in minimizing uncertainty 

and falsity. The Shooting Method slightly outperforms HPM in achieving a higher truth value for 

both types of 𝒩𝑛𝑢𝑚𝑏𝑒𝑟. The Shooting Method shows slightly lower indeterminacy for both types, 

indicates better performance in minimizing uncertainty. The Shooting Method again results in 

slightly lower falsity values, it is more effective in minimizing errors. 

 

 

Table 4. Comparison of Mean Values of Neutrosophic Velocity 

 Shooting Method  HPM 𝑻𝒓𝒊𝓝𝒏𝒖𝒎𝒃𝒆𝒓 𝑻𝒓𝒂𝒑𝓝𝒏𝒖𝒎𝒃𝒆𝒓 𝑻𝒓𝒊𝓝𝒏𝒖𝒎𝒃𝒆𝒓 𝑻𝒓𝒂𝒑𝓝𝒏𝒖𝒎𝒃𝒆𝒓 Α̃𝑐𝑢𝑡 0.203434 0.368977 0.205443 0.365649 Β̃𝑐𝑢𝑡 0.087186 0.110693 0.088047 0.109695 Γ̃𝑐𝑢𝑡 0.14531 0.184488 0.146745 0.182824 

 

6. Conclusion 

This study focused on neutrosophic analysis of Falkner-Skan boundary layer equation over wedge. 

The impact of wedge angle parameter �̃� on velocity profile has been studied by employing shooting 

method and HPM, the NDEs are solved numerically. The wedge parameter �̃� and no slip conditions 

are considered as 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 with the help of (Α̃, Β̃, Γ̃)𝑐𝑢𝑡 which control uncertainty. 

The key outcomes of this study are as follows:  

➢ The velocity profile curve 𝑓′(𝜁) upsurge for �̃� in both shooting method and HPM.  

Figure 45. Absolute Error of  𝑓′(𝜁, Γ̃) 
using 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 Figure 46. Absolute Error of  𝑓′(𝜁, Γ̃) 

using 𝑇𝑟𝑎𝑝𝒩𝑛𝑢𝑚𝑏𝑒𝑟 
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➢ The Shooting Method is considered superior for solving the Falkner-Skan equation under 

uncertainty with �̃�. 

➢ Mean values of 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 are compared, which show triangular 

membership function performs better than trapezoidal membership function in reducing 

uncertainty. 

➢ For both 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑇𝑟𝑖𝒩𝑛𝑢𝑚𝑏𝑒𝑟, the error was found to vary significantly across 

different cuts. 

➢ The neutrosophic concept has been applied to Falkner-Skan equation whose solution follows 

the conditions of strong neutrosophic solution in both methods.  
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