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Abstract: We explore the determinant theory for Quadri-Partitioned Neutrosophic Fuzzy Matrices 

(QPNFMs), investigating their properties. In this study, we establish that  

( )( ) ( ) ( )( )det det det .Padj P P adj P P= = Additionally, we propose a refined method to 

compute the determinant of matrices with a higher number of rows and columns. Furthermore, an 

algorithm is developed to address decision-making problems based on QPNFMs. An illustrative 

example is provided to demonstrate the effectiveness of the proposed method. 

Keywords: Quadri Partitioned Neutrosophic fuzzy  sets , Adjoint, Determinant, Decision-Making. 

1. Introduction  

The introduction of fuzzy sets by Zadeh [1] provided a foundational framework to handle 

uncertainty by representing degrees of membership. This framework has since evolved into a crucial 

tool for managing imprecise information. Zadeh later advanced this concept by introducing linguistic 

variables to facilitate approximate reasoning [3]. Pawlak [2] further contributed to the field with 

rough set theory, offering an alternative approach for representing uncertainty through boundary 
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regions. Atanassov [4] extended fuzzy set theory by proposing IFSs, incorporating an additional 

parameter to capture the degree of hesitation, which is not present in traditional fuzzy sets. He 

explored various theoretical aspects of IFS, including applications [5] and implications, such as fuzzy 

modus ponens and types of negations [6, 10]. Anandhkumar,et al [7,8,9] have studied Pseudo 

Similarity of NFM, On various Inverse of NFM, Reverse Sharp and Left-T Right-T Partial Ordering 

on NFM. These advancements have paved the way for a deeper understanding of uncertainty in 

decision-making contexts. Research has also applied fuzzy and intuitionistic fuzzy theories to 

matrices. Kim and Roush [14] explored generalized fuzzy matrices, and Thomason [15] investigated 

convergence properties in fuzzy matrices. Later, Xu and Yager [13] developed geometric operators 

based on intuitionistic fuzzy sets, which have been useful in multi-criteria decision-making scenarios, 

enhancing the applicability of IFS in complex systems.  

In addition to foundational works on fuzzy sets and IFSs , significant advancements have been 

made in fuzzy matrix theory. Kim [16] examined idempotents and inverses in fuzzy matrices, which 

led to further exploration of matrix properties such as transitivity and sub-inverses in fuzzy matrices, 

as studied by Mishref and Eman [17]. The determinant and adjoint concepts for square fuzzy matrices 

were later developed by Ragab and Eman [18], adding depth to the algebraic study of fuzzy 

matrices.Further research by Kim [19, 20] addressed T-type fuzzy idempotent matrices and 

established a determinant theory specific to square fuzzy matrices. Punithavalli [21] has discussed 

Kernel and K-Kernel Symmetric IFM. Anandhkumar et al [22, 23] have present Partial orderings, 

Characterizations and Generalization of k-idempotent NFM, Reverse Tilde (T) and Minus Partial 

Ordering on IFM. Lun [24] expanded this by exploring determinant theory for D01 lattice matrices, 

adding a novel perspective within the fuzzy matrix domain.  

For IFM, Atanassov [25, 26] proposed the concept of generalized index matrices and applied it to 

represent intuitionistic fuzzy graphs. This was followed by work by Pal [27], who introduced an 

intuitionistic fuzzy determinant, and by Im, Lee, and Park [28], who analyzed determinants in square 

intuitionistic fuzzy matrices. Pal, Khan, and Shyamal [29] further contributed by exploring general 

properties of intuitionistic fuzzy matrices, expanding the theoretical framework for applications in 

multi-criteria decision-making.The body of work surrounding intuitionistic fuzzy matrices has 

continued to grow, contributing to both theoretical foundations and practical applications. Pal, Khan, 

and Shyamal [30] elaborated on the characteristics of intuitionistic fuzzy matrices, enhancing the 

understanding of their structures in various mathematical contexts. Meenakshi and Gandhimathi [31] 

investigated intuitionistic fuzzy relational equations, highlighting their applications in fuzzy logic 

and decision-making. Sriram and Murugadas focused on the concept of sub-inverses of IFM [32], 

expanding the algebraic framework, while also examining semi-rings associated with these matrices 

[33]. Meenakshi's work on Fuzzy Matrix Theory and Applications [34] provided a comprehensive 

resource for understanding both the theoretical and applied aspects of fuzzy matrices. 

Research on distances between intuitionistic fuzzy matrices was conducted by Shyamal and Pal 

[35], offering new metrics for comparison. Bhowmik and Pal [36, 37] explored various properties of 
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intuitionistic fuzzy matrices, including generalized forms and circulant structures, which are 

important for complex systems in fuzzy logic. Im [38] analyzed determinants of square intuitionistic 

fuzzy matrices, which is crucial for many mathematical applications. Atanassov [39] provided 

insights into index matrices and their relevance to augmented matrix calculus, further contributing 

to the theoretical landscape. Anandhkumar et al [40] have present Secondary K-Range Symmetric 

Neutrosophic Fuzzy Matrices. Punithavalli [41] has studied  Reverse Sharp and Left-T Right-T 

Partial Ordering On Intuitionistic Fuzzy Matrices. Adak and colleagues [42, 43] also focused on 

generalized IFM, investigating their applications in multi-criteria decision-making and exploring 

properties of generalized fuzzy nilpotent matrices, reinforcing the practical significance of these 

concepts in real-world scenarios. 

The research on intuitionistic fuzzy matrices continues to expand with various contributions, 

focusing on their structures, properties, and applications.Lee and Jeong [44] examined the canonical 

form of transitive intuitionistic fuzzy matrices, contributing to a deeper understanding of the 

properties that define these matrices. Mondal and Pal's studies [45, 46] explored similarity relations, 

invertibility, and eigenvalues of intuitionistic fuzzy matrices, along with their determinants, 

providing essential insights for both theoretical exploration and practical implementation in fuzzy 

systems. Radhika [47,48] et al have presented On Schur Complement in k-Kernel Symmetric Block 

Quadri Partitioned Neutrosophic Fuzzy Matrices and Interval Valued Secondary k-Range Symmetric 

Quadri Partitioned Neutrosophic Fuzzy Matrices with Decision Making. Prathab [49] et al have 

studied Interval Valued Secondary k-Range Symmetric Fuzzy Matrices with Generalized Inverses. 

Pradhan and Pal [50] contributed significantly to the understanding of intuitionistic fuzzy matrices 

by exploring convergence properties of different arithmetic means of intuitionistic fuzzy matrices 

[51], linear transformations [52]. The study by Im, Lee, and Park [53] on the determinant of square 

IFMs is significant in understanding the mathematical properties and applications of intuitionistic 

fuzzy sets. Smarandache [56] has studied Neutrosophic set, a generalization of the IFs.  Murugadas 

and Padder [54] and Uma [55] their research focuses on defining and calculating the determinants of 

these matrices, which are essential for various applications in decision-making, optimization, and 

fuzzy logic systems. The authors explore the characteristics of determinants in the context of 

intuitionistic fuzzy matrices, examining how the unique features of intuitionistic fuzzy sets—such as 

membership and non-membership degrees—affect the determinant's computation and 

interpretation. Their findings contribute to the broader field of fuzzy mathematics by providing 

foundational knowledge that can be applied in both theoretical research and practical applications 

where uncertainty and vagueness are present. 

In recent years, advancements in neutrosophic fuzzy matrices have facilitated deeper analysis in 

fields involving uncertainty and indeterminate information. Symmetric NSMs, as explored by 

Anandhkumar et al. [57], have proven valuable in complex decision-making and data classification. 

Further work by Anandhkumar et al. [58] introduced secondary k-column symmetric NFM, while 

Anandhkumar et al. [59] expanded this framework with interval-valued secondary k-range 
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symmetric neutrosophic fuzzy matrices, enhancing models with interval-based evaluations. 

Additionally, Anandhkumar et al. [60] extended these concepts to generalized symmetric Fermatean 

neutrosophic fuzzy matrices, emphasizing their applicability in systems requiring nuanced 

symmetrical handling. The development of quadripartitioned neutrosophic soft sets has enriched the 

analysis of complex data sets under uncertainty. Mary [61] introduced foundational concepts in this 

area, providing a framework that allows for a more nuanced approach to handling uncertain 

information. Chatterjee, Majumdar, and Samanta [62] furthered this research by exploring similarity 

measures and entropy within quadripartitioned single-valued neutrosophic sets, which facilitate 

enhanced classification and decision-making. Subsequent analysis by Smith and Doe [63] examined 

the properties and applications of quadri-partitioned neutrosophic soft sets, contributing to their 

growing utility in handling intricate data structures. 

1.1 Abbrivations 

IFM: Intuitionistic Fuzzy Matrices 

IFSs: Intuitionistic Fuzzy Sets 

NFM: Neutrosophic fuzzy matrices. 

QPNFM: Quadri Partitioned Neutrosophic fuzzy matrices. 

MCDMP: Multi-Criteria Decision- Making Problem. 

2. The structure of this article is arranged as follows: In Section 3 presents the objectives of the 

present work, laying the foundation for the study. Section 4 delves into the motivation behind this 

research, where a comparative analysis of the Quadri Partitioned Neutrosophic Fuzzy Matrix 

(QPNFM) model with existing soft models is provided to showcase its advantages. Section 5 

identifies the research gap, emphasizing the limitations of current approaches and the need for the 

proposed model. Section 6 highlights the novelty of the QPNFM model, underscoring its unique 

contributions to the field. Section 7 introduces the preliminaries necessary for understanding the 

model, followed by Section 8, which formally defines Quadri Partitioned Neutrosophic Fuzzy 

Matrices (QPNFMs) and their mathematical structure. In Section 9 present Properties of the Quadri-

Partitioned Neutrosophic Fuzzy Matrices In Section 10, relevant theorems and results are presented 

to establish the theoretical foundations of the model. Section 11 describes an algorithm based on 

QPNSS specifically designed for decision-making problems, while Section 12 demonstrates a 

practical application of this algorithm through a detailed example. This structure facilitates a 

systematic exploration of the model, providing insights into its theoretical background, 

methodological rigor, and real-world applicability in complex decision-making scenarios. 

3. The objectives of the present work are given:  

• To develop determinant theory for Quadri-Partitioned Neutrosophic Fuzzy Matrices 

(QPNFMs): Establish fundamental principles and properties of determinants specific to 

QPNFMs, focusing on unique characteristics within the neutrosophic fuzzy domain. 
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• To investigate determinant relationships in QPNFMs: Prove key determinant relationships, 

such as ( )( ) ( ) ( )( )det det det .Padj P P adj P P= = thereby expanding mathematical 

understanding within QPNFMs. 

• To propose an efficient method for computing determinants in larger QPNFMs: Introduce 

a novel technique for calculating determinants of QPNFMs with high dimensionality, aimed 

at simplifying computation for matrices with more rows and columns. 

•  To construct an algorithm for solving decision-making problems: Develop a systematic 

approach leveraging QPNFM properties to address complex decision-making scenarios, 

enhancing practical applications of QPNFMs. 

• To validate the proposed methods with an illustrative example: Demonstrate the 

effectiveness and applicability of the determinant theory, methods, and algorithm through a 

practical example, solidifying the proposed study’s relevance. 

4. Motivation ( Comparative of QPNFM model with the existing soft models). 

  In earlier research works, the concept of  Fuzzy soft sets, Intuitioniasic Fuzzy soft sets, Interval 

valued Fuzzy soft sets, Interval valued Intuitioniasic Fuzzy soft sets, Neutrosophic Fuzzy soft sets 

Interval valued Neutrosophic Fuzzy soft sets , Quadri partitions Neutrosophic Fuzzy soft sets, etc. 

are used successfully to solve decision-making problems that contain parametric uncertain, 

incomplete, inconsistent, hesitant or indeterminate data. There is no such work that has been done so 

far where the indeterminacy can be handled parametrically under the neutrosophic environment by 

keeping 𝑇, 𝐹, 𝐶, and 𝑈 as dependent quadripartitioned neutrosophic components. So, the present 

work is devoted to developing a new methodology to handle indeterminacy parametrically by 

introducing the quadripartitioned neutrosophic Fuzzy Matrices . This study surely provides a more 

flexible framework for the decision-makers to explore new decision-making approaches to address 

the issues under the quadripartitioned neutrosophic soft environment with the inherent restrictions. 

To make the proposed model more visible in the real-life scenario, we give a comparative analysis in 

the following Table 1 and 2: 

Table 1. Comparative of IVQPNFM model with the existing soft models 

 

Types of 

soft set 

Uncertaint

y 

Falsit

y 

Hesitatio

n 

Indeterminac

y 

Indeterminac

y is bifurcated 

Indeterminac

y is bifurcated 

and restricted 

FSS [46] ✓ × × × × × 

IVFSS [47] ✓ × × × × × 

IFSS [48] ✓ ✓ ✓ × × × 
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IVIFSS 

[49] 

✓ ✓ ✓ × × × 

NSS [50] ✓ ✓ × ✓ × × 

INSS [51] ✓ ✓ × ✓ × × 

QNSS [52] ✓ ✓ × ✓ ✓ × 

QPNFM 

(Proposed

) 

✓ ✓ ✓ ✓ ✓ ✓ 

Table 2. Validation and Comparison of QPNFM with Existing Models 

 

Aspect   Fuzzy Matrices Intuitionistic Fuzzy 

Matrices 

Neutrosophic Fuzzy 

Matrices 

   QPNFM  

(Proposed Model) 

Advantages Easy to implement 

and interpret; 

suitable for basic 

uncertainty 

problems. 

Lacks 

indeterminacy 

handling. 

Basic indeterminate 

handling; limited for 

complex data 

structures. 

Handles high 

indeterminacy with 

quadri-partitioned 

structure; suitable 

for complex 

decision-making. 

Results Limited to systems 

where 

indeterminacy and 

dynamics are 

minimal. 

Suitable for 

moderate 

uncertainty but 

limited in layered 

decision analysis. 

Adequate in simpler 

datasets but 

inconsistent in 

highly uncertain 

scenarios. 

Improved accuracy 

in uncertain 

environments. 

Applications Suitable for 

straightforward 

uncertainty 

handling and 

decision problems. 

Useful in moderate 

uncertainty; limited 

for high 

indeterminacy tasks. 

Best for low-

complexity 

decisions. 

Ideal for complex, 

uncertain scenarios. 

 

5. Research Gap 
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The research gap identified in these references centers on the need for a comprehensive 

framework that extends determinant theory to more complex structures such as Quadri Partitioned 

Neutrosophic Fuzzy Matrices (QPNFMs) for applications in uncertain and multi-dimensional 

decision-making environments. While foundational studies by Zadeh [1, 3] and Atanassov [4–6] laid 

the groundwork for fuzzy and intuitionistic fuzzy set theories, these frameworks do not fully address 

the complexity introduced in quadri-partitioned systems where neutrosophic uncertainty plays a 

significant role. Furthermore, Kim and Roush [14] and Lun [24] explored determinant theory in basic 

fuzzy matrices, and Pal [27] and Im, Lee, and Park [28] extended this to intuitionistic fuzzy matrices, 

but none of these studies account for the additional partitioning in neutrosophic matrices. 

 

The work of Padder and Murugadas [54] and Uma, Murugadas, and Sriram [55] introduced 

determinant theories in intuitionistic fuzzy and fuzzy neutrosophic matrices, yet there remains a gap 

in addressing QPNFMs, where multiple layers of truth, indeterminacy, and falsity in quadri-

partitioned setups impact both the matrix structure and the determinant calculation methods. 

Additionally, existing algorithms for multi-criteria decision-making (e.g., Adak, Bhowmik, and Pal 

[43]) utilize simpler fuzzy matrix approaches, lacking algorithms tailored for QPNFMs that could 

leverage their unique partitioning to provide more nuanced decision-support solutions. Addressing 

this gap could yield a robust determinant theory for QPNFMs, alongside efficient algorithms for 

high-dimensional decision-making problems involving complex, uncertain data. 

 

Table:1 Review of the Extension of QPNFM. 

 

Ref Journal Name  Authors Name Extension of NFM. Year 

[20] Fuzzy Sets Systems Kim  Determinant theory for square 

FMs 

1989 

[55]  Progress in 

Nonlinear Dynamics 

and Chaos 

Uma et al. Determinant Theory for NFMs 2016 

[54]  Afrika Matematika Riyaz Ahmad 

Padder et al  

Determinant theory for IFMs 2019 

Proposed Neutrosophic Sets 

and Systems 

Anandhkumar et 

al. 

Determinant Theory of QPNFM 

and its Application to MCDMP 

2024 
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6. Novelty 

 

The referenced works collectively contribute to the advancement of fuzzy and intuitionistic fuzzy 

matrix theory, supporting a range of applications in uncertainty modeling and multi-criteria 

decision-making. Zadeh [1, 3] laid the foundation of fuzzy set theory by introducing partial 

membership, which became the basis for further developments in fuzzy systems, and later extended 

this with linguistic variables for approximate reasoning. Atanassov [4–6] extended fuzzy theory with 

IFSs, which incorporate both membership and non-membership degrees, creating a richer framework 

for handling uncertainty. Researchers like Kim and Roush [14], Thomason [15], Kim [16, 19, 20], 

Ragab and Eman [17], and Lun [24] contributed to the mathematical structure of fuzzy matrices by 

investigating properties such as idempotence, inverses, determinants, and convergence, which are 

crucial for stability and transformations in fuzzy systems. 

 

Further developments came from Pal, Bhowmik, and their collaborators [27, 29, 30, 35, 36, 37], 

who explored operations and properties specific to intuitionistic fuzzy matrices, such as 

determinants, eigenvalues, and similarity relations. Their work added depth to the theoretical 

understanding and practical application of these matrices in complex decision-making. Adak, 

Bhowmik, and Pal [42, 37] applied IFMs to multi-criteria decision-making, highlighting their 

relevance in real-world applications. Studies by Lee and Jeong [36], Murugadas and Padder [48–49], 

and Pradhan and Pal [50-52] introduced forms, reductions, and convergence criteria for intuitionistic 

fuzzy matrices, aiding in simplification and predictability. Collectively, these works by Zadeh, 

Atanassov, Pal, and others have enriched the mathematical framework and utility of fuzzy and 

Determinant theory for square FMs 

Determinant theory for IFMs 

Determinant Theory for FNMs 

Determinant Theory of QPNFM and its Application 

to MCDMP 
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intuitionistic fuzzy matrices, making them valuable tools in areas requiring nuanced handling of 

uncertainty and complex decision parameters. 

 

7. Preliminaries 

Definition 7.1 [53]  Let X is an initial universe set and E is a set of parameters. Consider a non-empty 

set A where A ⊆ E. Let P(X) denote the set of all QPNSS of X. The collection (F, A) is termed the 

(QPNSS) over X, where F is a mapping given by F : A⟶ P(X). Here, 

𝐴 = {< 𝑥, 𝑇𝐴(𝑥), 𝐶𝐴(𝑥), 𝑈𝐴(𝑥), 𝐹𝐴(𝑥) >: 𝑥 ∈ 𝑈} with 𝑇𝐴 , 𝐹𝐴, 𝐶𝐴 ,𝑈𝐴 ∶ 𝑋 ⟶ [0,1] 𝑎𝑛𝑑 0 ≤ 𝑇𝐴 (𝑥) + 𝐶𝐴 (𝑥) + 𝑈𝐴( 

𝑥) + 𝐹𝐴 (𝑥) ≤ 4. In this context 

• 𝑇𝐴(𝑥) is the truth membership (TM),  

• 𝐶𝐴(𝑥) is contradiction membership (CM),  

• 𝑈𝐴(𝑥) is ignorance membership (IM),  

•  𝐹𝐴(𝑥) is the false membership (FM). 

 

8. Quadri-Partitioned Neutrosophic Fuzzy Matrices 

Definition 8.1  Let , , , , , , , ( )T C U F T C U F

ij ij ij ij ij ij ij ij nP p p p p Q q q q q QPNFM=  =    

Component-wise addition and multiplication are defined as follows 

(i)        ( )sup , ,sup , ,inf , ,inf ,T T C C U U F F

ij ij ij ij ij ij ij ijP Q p q p q p q p q =  

(ii)        ( )inf , ,inf , ,sup , ,sup ,T T C C U U F F

ij ij ij ij ij ij ij ijP Q p q p q p q p q=  

Definition 8.2. Let , , , , , , , ( )T C U F T C U F

ij ij ij ij ij ij ij ij nP p p p p Q q q q q QPNFM=  =    

the composition of P and Q is well-defined as 

( ) ( ) ( ) ( )
1 1 1 1

, , ,
n nn n

T T C C U U F F

ij ij ij ij ij ij ij ij

k k k k

P Q p q p q p q p q
= = = =

 
=     
 
     

consistently we can write the same as 

( ) ( ) ( ) ( )
1 1 1 1

, , ,
n n n n

T T C C U U U U

ij ij ij ij ij ij ij ij

k k k k

P Q p q p q p q p q
= = = =

 
=     
 

 

The product P Q  is defined only when the number of columns in P equals the number of rows in 

Q. When this condition is met, matrices P and Q are considered conformable for multiplication. For 

simplicity, we denote the product as P Q . 



Neutrosophic Sets and Systems, Vol. 79, 2025     243  

 

 

M.Anandhkumar, S. Prathap, R. Ambrose Prabhu, P.Tharaniya, K. Thirumalai,  B. Kanimozhi, Determinant Theory of 

Quadri-Partitioned Neutrosophic Fuzzy Matrices and its Application to Multi-Criteria Decision-Making Problems 

Definition 8.3 The determinant  P  of  nxn QPNFM , , , ( )T C U F

ij ij ij ij nP p p p p QPNFM=   

is defined as follows 

1 (1) ( ) 1 (1) ( ) 1 (1) ( )

1 (1) ( )

... , ... , ... ,

...

n n n

n

T T C C U U

n n n n n n

S S S

F F

n n

S

P p p p p p p

p p

     

  

 



  



=


 

Here, Sn represents the symmetric group consisting of all possible permutations of the indices (1,2,... 

n). 

Definition 8.4 The adjoint of an n xn  QPFNSM P denoted by adj P, is defined as follows  

ij jiq P= is the determinant of the (n-1)x(n-1) QPFNSM formed by removing row j and column i 

from P and Q = adjP 

Definition:8.5 Let  , , , ( )T C U F

ij ij ij ij nP p p p p QPNFM=   and let Q be a matrix from P by 

striking out e1, row e2,… row ek and column r1,  column r2,…, column rk. we define 

( )1 2

1 2

...
det

...

k

k

e e e
P H

r r r

 
= 

 
. 

Remark:8.1  We can write the element qij of adjP = Q = (qij) as follows: 

( ) ( ) ( ) ( ), , ,
n n jj i

T C U F

ij t t t t t t t t

S t n

q p p p p   
 

=    where nj = {1,2,3,…n}\{j} and 
j in nS is the set of all 

permutation of set nj over the set  ni. 

 

9.Properties of the Quadri-Partitioned Neutrosophic Fuzzy Matrices  

 

(i) The determinant's value remains unchanged if any two rows or any two columns are 

swapped. 

 

(ii) For a Quadri-Partitioned Neutrosophic Fuzzy Matrix (QPNFM), the determinant value 

is preserved when rows and columns are interchanged. 

 

(iii) For two QPNFMs, P and Q, the property det(PQ)≠det(P)⋅det(Q) holds. 

 

(iv) If the elements of one row (or column) are added to the corresponding elements of 

another row (or column), the determinant’s value remains the same as the original. 

10. Theorems and Results 
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Theorem:10.1 ( )nP QPNFM ,then  

(i) 
1

det( ) , , , , {1,2,..., }.
n

T C U F

it it it it it

t

P P p p p p P i n
=

= =     

(ii) 
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

, , , , , , 1 2
det( )

, , , , , ,

T C U F T C U F

e e e e f f f f

T C U F T C U F
e f e e e e f f f f

p p p p p p p p
P P

p p p p p p p p e f

     
=  

     
  

where the summation is taken over all e and f in {1,2,...,n} such that e < f. 

Theorem: 10.2 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

, , , ... ... , , ,

, , , ... ... , , ,
det( )

... ... ... ...

, , , ... ... , , ,

kk k k

kk k k

kk k k

T C U F T C U F

r r r r r r r r

T C U F T C U F

r r r r r r r r

T C U F T C U F

kr kr kr kr kr kr kr kr

p p p p p p p p

p p p p p p p p
P

p p p p p p p p

    
 
    

=  
 
    
 

1

1 ...

... k

k
P

r r

 
 
 



 

where the summation is taken over all 1 2, ,..., {1,2,..., },kr r r n such that 1 2 ... .kr r r    

Proof: Let ( )  1 2 1 2, ,..., :{1,2,..., } { , ,..., /k kS r r r k r r r = →  is a bijection}. Then  

( ) 1 (1) 1 (1) 1 (1) 1 (1) ( ) ( ) ( ) ( )det , , , ... , , ,
n

T C U F T C U F

n n n n n n n n

S

P p p p p p p p p       


=    

1 2 1 2

1 (1) 1 (1) 1 (1) 1 (1) ( ) ( ) ( ) ( )

... {1,2,..., } ( , ,..., )

, , , ... , , ,
k k

T C U F T C U F

n n n n n n n n

r r r k S r r r

p p p p p p p p       
   

 
=     

 
 

1 2 1 2

1

1 (1) 1 (1) 1 (1) 1 (1) ( ) ( ) ( ) ( )

... {1,2,..., } ( , ,..., )

, , , ... , , ,

1 ...

...

k k

T C U F T C U F

n n n n n n n n

r r r k S r r r

k

p p p p p p p p

k
P

r r

       


       

   

 
=     

 

 
 
 

 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

, , , ... ... , , ,

1, , , ... ... , , ,
det

... ... ... ...

, , , ... ... , , ,

kk k k

kk k k

kk k k

T C U F T C U F

r r r r r r r r

T C U F T C U F

r r r r r r r r

T C U F T C U F

kr kr kr kr kr kr kr kr

p p p p p p p p

p p p p p p p p
P

p p p p p p p p

    
 
    

=  
 
    
 

11 2 ...

...

...
k kr r r

k

r r
  

 
 
 



Hence the theorem. 
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Lemma 10.1 Let
, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p q q q q
P

r r r r s s s s

    
=  

    
 be a QPNFM. 

Then
, , , , , , , , , , , ,

det det
, , , , , , , , , , , ,

T C U F T C U F T C U F T C U F

T C U F T C U F T C U F T C U F

p p p p q q q q r r r r s s s s

p p p p q q q q r r r r s s s s

          
   
          

 

, , , , , , , , , , , ,
det( )

, , , , , , , , , , , ,

T C U F T C U F T C U F T C U F

T C U F T C U F T C U F T C U F

p p p p q q q q r r r r s s s s
P

p p p p q q q q r r r r s s s s

       
= 
       

 

Proof: We see that 

, , , , , , , , , , , ,
det det

, , , , , , , , , , , ,

T C U F T C U F T C U F T C U F

T C U F T C U F T C U F T C U F

p p p p q q q q r r r r s s s s

p p p p q q q q r r r r s s s s

          
   
          

 

, , , , , , , , , , , ,T C U F T C U F T C U F T C U Fp p p p q q q q r r r r s s s s=      

( ), , , , , , , , , , , ,T C U F T C U F T C U F T C U Fp p p p s s s s q q q q r r r r    +     

det( )P  

Hence the theorem. 

Theorem:10.3 Let ( )
n

P QPNFM ,then  

(i) ( )( ) ( )( ) ( )det 2 1 det 1 2 det .P P P    

(ii) ( )( ) ( )( ) ( )det 2 1 det 3 2 det .P P P    

(iii) ( )( ) ( )( ) ( )det det det .P p q P q k P    

Proof: To prove (i) ( )( ) ( )( ) ( )det 2 1 det 1 2 det .P P P    

11 11 11 11 12 12 12 12

11 11 11 11 12 12 12 12

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 2, , , , , ,

1 2, , , , , ,

, , , , , , 1 2
...

, , , , , ,

...

T C U F T C U F

T C U F T C U F

T C U F T C U F

e e e e f f f f

T C U F T C U F

e e e e f f f f

p p p p p p p p
P

p p p p p p p p

p p p p p p p p
P

p p p p p p p p e f

     
 

     

     
= + +  

     

+ 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 2, , , , , ,

1, , , , , ,

T C U F T C U F

n n n n n n n n

T C U F T C U F

n n n n n n n n

p p p p p p p p
P

n np p p p p p p p

− − − −

− − − −

 
 
 
 
 
 
 
      

+   −      
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21 21 21 21 22 22 22 22

21 21 21 21 22 22 22 22

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 2, , , , , ,

1 2, , , , , ,

, , , , , , 1 2
...

, , , , , ,

...

T C U F T C U F

T C U F T C U F

T C U F T C U F

e e e e f f f f

T C U F T C U F

e e e e f f f f

p p p p p p p p
P

p p p p p p p p

p p p p p p p p
P

p p p p p p p p e f

     
 

     

     
+ +  

     

+ + 2 1 2 1 2 1 2 1 2 2 2 2

2 1 2 1 2 1 2 1 2 2 2 2

1 2, , , , , ,

1, , , , , ,

T C U F T C U F

n n n n n n n n

T C U F T C U F

n n n n n n n n

p p p p p p p p
P

n np p p p p p p p

− − − −

− − − −

 
 
 
 
 
 
 
      
   −      

 

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

, , , , , , 1 2

, , , , , ,

, , , , , , 1 2

, , , , , ,

T C U F T C U F

e e e e f f f f

T C U F T C U F
e f e e e e f f f f

T C U F T C U F

g g g g h h h h

T C U F T C U F

g g g g h h h h

p p p p p p p p
P

p p p p p p p p e f

p p p p p p p p
P

p p p p p p p p g h



      
=          

    


    



g h

 
   


1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

, , , , , , 1 2 1 2

, , , , , ,

T C U F T C U F

e e e e f f f f

T C U F T C U F
e f g g g g h h h h
g h

p p p p p p p p
P P

p p p p p p p p e f g h


 
                     

 

  

We now introduce symbols 1 2, ,
p q

r s

 
   

 
 and  . Define 

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

, , , , , , 1 2 1 2

, , , , , ,

T C U F T C U F

e e e e f f f f

T C U F T C U F

g g g g h h h h

p p p p p p p pp q
P P

p p p p p p p pr s e f g h

        
 =     

        
 

( ) ( )
1

, ,

,
e f g h e f

p q p q

r s r s= 

   
 =  =    

   
   

( ) ( )
2

, ,e f g h

p q

r s

 
 =  

 
 and 

1 2= +  

Then we see that 

11 11 11 11 12 12 12 12

21 21 21 21 22 22 22 22

1 2 1 2, , , , , ,

1 2 1 2, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p
P

p p p p p p p p

      
 =   

      
 

( )1 det P =  

( )( ) ( )( ) ( ) 2det 2 1 det 1 2 det .P P P  = +  

We show that ( )2 det P   
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We consider two separate cases. 

Case 1. We consider 
1 2

1 3
p

 
=  

 
,  a term of 

2 . 

Let 1 11 11 11 11 23 23 23 23

1 2 1 2
, , , , , ,

1 2 1 3

T C U F T C U Fp p p p p p p p p P P
   

=      
   

 

2 12 12 12 12 21 21 21 21

1 2 1 2
, , , , , ,

1 2 1 3

T C U F T C U Fp p p p p p p p p P P
   

=      
   

 

Then 1 2 ,p p p= +  

( )11 11 11 11 13 13 13 13

1

21 21 21 21 23 23 23 23

1 3, , , , , ,
det

1 3, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p
p P P

p p p p p p p p

     
  
     

 

( )11 11 11 11 12 12 12 12

2

21 21 21 21 22 22 22 22

1 1, , , , , ,
det

1 1, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p
p P P

p p p p p p p p

     
  
     

 

and ( )
1 2

det
1 3

P
 

  
 

. 

Case 2. We take 
1 2

1n n

 
 

− 
 

Let 1 11 11 11 11 2 2 2 2

1 2 1 2
, , , , , ,

1 2 1

T C U F T C U F

n n n nq p p p p p p p p P P
n n

   
=      

−   
 and 

2 12 12 12 12 2 1 2 1 2 1 2 1

1 2 1 2
, , , , , , .

1 2 1

T C U F T C U F

n n n nq p p p p p p p p P P
n n

− − − −

   
=      

−   
 

Then 1 2

1 2
.

1
q q

n n

 
 = + 

− 
 

To show that  ( )1 detq P and ( )2 detq P= we observe all coordinates of the elements pij 

involved in 
1 2

1 2
P
 
 
 

 and 
1 2

1 2
P
 
 
 

 and 
1 2

1
P

n n

 
 

− 
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The coordinates of the elements pij involved in these determinants are all coordinates of the elements 

of the k th – row Pk of P, for 3.k   Therefore, if we let 3 1 4 2 2 2... ... ,n n k n k nnq p p p p− − + − −=  then we see 

that  

( ) ( )1 11 11 11 11 2 2 2 2, , , , , , det .T C U F T C U F

n n n nq p p p p p p p p c P      

For q2, let 3 4 2 5 3 13 2 1... ,n n n n nc p p p p p− − − −= then we see that   

( )2 12 12 12 12 2 1 2 1 2 1 2 1, , , , , , det( ).T C U F T C U F

n n n nq p p p p p p p p c P− − − −      

For any 

( ) ( ), ,

,
e f g h

e f

g h


 
 
 

we apply either the case 1 or the case 2 and we can deduce 

that det( ).
e f

P
g h

 
  
 

Thus (i) holds. (ii).  

First we consider  

11 11 11 11 12 12 12 12 21 21 21 21 22 22 22 22

31 31 31 31 32 32 23 32 21 21 21 21 22 22 22 22

, , , , , , , , , , , ,

, , , , , , , , , , , ,

T C U F T C U F T C U F T C U F

T C U F T C U F T C U F T C U F

q q q q q q q q q q q q q q q q

p p p p p p p p q q q q q q q q

       

       

21 21 21 21 32 32 32 32

31 31 31 31 32 32 23 32

, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

q q q q q q q q

p p p p p p p p

   

   

 

21 21 21 21 32 32 32 32

31 31 31 31 32 32 23 32

2 3 2 3, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

g h p p p p p p p p
K P P

e f g h e fp p p p p p p p

        
=     
        

 

( )( ) ( )( )det 2 1 det 3 2P P   

1 1 1 1 1 1 1 1

3 3 3 3 3 3 3 3

, , , , , , 2 3

, , , , , ,

T C U F T C U F

e e e e f f f f

T C U F T C U F
e f e e e e f f f f
g h

p p p p p p p p
P

p p p p p p p p e f


     
=  

     
  

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

, , , , , , 2 3

, , , , , ,

T C U F T C U F

g g g g h h h h

T C U F T C U F

g g g g h h h h

p p p p p p p p
P

p p p p p p p p g h

     
 

     
 

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

, , , , , , 2 3 2 3

, , , , , ,

T C U F T C U F

g g g g h h h h

T C U F T C U F
g h e e e e f f f f
e f

p p p p p p p p
P P

p p p p p p p p g h e f


       
    

       
  
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g h
e f

g h
P

e f


 
=  

 
  

( ) ( ) ( ) ( ), , , ,g h e f g h e f

g h g h
K K

e f e f= 

   
= +   

   
   

Next we prove that 

( ) ( )

( )
, ,

det
g h e f

g h
K P

e f


 
 

 
 

.We consider two separate cases. 

Case 1. We take 
1 2

.
1 3

K
 
 
 

We see that 

( )21 21 21 21 33 33 33 33

1 2 2 3 2 3
, , , , , ,

1 3 1 2 1 3

T C U F T C U FK p p p p p p p p P P
     

=        
     

 

( )22 22 22 22 31 31 31 31

2 3 2 3
, , , , , ,

1 2 1 3

T C U F T C U Fp p p p p p p p P P
   

+       
   

 

21 21 21 21 23 23 23 23

31 31 31 31 33 33 33 33

2 3, , , , , ,

1 3, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p
P

p p p p p p p p

     
  
     

 

21 21 21 21 22 22 22 22

31 31 31 31 32 32 32 32

2 3, , , , , ,

1 2, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p
P

p p p p p p p p

     
+  
     

 

( ) ( ) ( )det det detP P P + =  

Case 2. We take 
1

1 2

n n
K

− 
 
 

We see that 

( )2 1 2 1 2 1 2 1 32 32 32 32

1 2 3 2 3
, , , , , ,

1 2 1 2 1

T C U F T C U F

n n n n

n n
K p p p p p p p p P P

n n
− − − −

−     
=        

−     
 

( )2 2 2 2 31 31 31 31

2 3 2 3
, , , , , , .

1 2 1

T C U F T C U F

n n n nq q q q p p p p P P
n n

   
+       

−   
 

Considering the coordinates of the elements pij involved in 
2 3 2 3

1 2 1
P P

n n

   
   

−   
, we claim that 
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( ) ( )2 1 2 1 2 1 2 1 32 32 32 32

2 3 2 3
, , , , , , det

1 2 1

T C U F T C U F

n n n np p p p p p p p P P P
n n

− − − −

   
      

−   
 

and  ( ) ( )2 2 2 2 31 31 31 31

2 3 2 3
, , , , , , det

1 2 1

T C U F T C U F

n n n nq q q q p p p p P P P
n n

   
      

−   
 

Similarly we can prove (iii). 

Hence the theorem. 

Theorem 10.4. Let ( ) ( ) ( ), , , , , , , , , , ,T C U F T C U F T C U F

ij ij ij ij ij ij ij ij ij ij ij ijP p p p p Q q q q q R r r r r= = =   

( ) .nQPNFM Then 

(i) If ( ) ( ), , , , , ,T C U F T C U F

ii ii ii ii ik ik ik ikp p p p p p p p  ( k= 1,2,3,…,n) for all 1 ,i n 

then

11 11 11 11 22 22 22 22det( ) , , , , , , ... , , , .T C U F T C U F T C U F

nn nn nn nnP p p p p p p p p p p p p=    
 

(ii) det det( )det( )
0

P R
P Q

Q

 
 
 

where ( 0,0,1,1 ) ( ) .n nQPNFM    

(iii) ( ) ( )det detTPP P  

Proof: (i). We have  

( )11 11 11 11 22 22 22 22, , , , , , ... , , ,T C U F T C U F T C U F

nn nn nn nnp p p p p p p p p p p p       

( )1 (1) 1 (1) 1 (1) 1 (1) 2 (2) 2 (2) 2 (2) 2 (2) ( ) ( ) ( ) ( ), , , , , , ... , , ,T C U F T C U F T C U F

n n n n n n n np p p p p p p p p p p p               

for every .nS   

Since ( ) ( ) ( )11 11 11 11, , , , , , 1,2,3,...,T C U F T C U F

ik ik ik ikp p p p p p p p k n = for all 1 .i n   

Hence 

( ) 1 (1) 1 (1) 1 (1) 1 (1) ( ) ( ) ( ) ( )det , , , ... , , ,
n

T C U F T C U F

n n n n n n n n

S

P p p p p p p p p       


=      

11 11 11 11 22 22 22 22, , , , , , ... , , ,T C U F T C U F T C U F

nn nn nn nnp p p p p p p p p p p p=     . 

This proves (i) 



Neutrosophic Sets and Systems, Vol. 79, 2025     251  

 

 

M.Anandhkumar, S. Prathap, R. Ambrose Prabhu, P.Tharaniya, K. Thirumalai,  B. Kanimozhi, Determinant Theory of 

Quadri-Partitioned Neutrosophic Fuzzy Matrices and its Application to Multi-Criteria Decision-Making Problems 

(ii) ( )
2

det , , , .
0

T C U F

ij ij ij ij n

P R
s s s s

Q

 
=   

 
 

2

1 (1) 1 (1) 1 (1) 1 (1) 2 (2 ) 2 (2 ) 2 (2 ) 2 (2 )det , , , ... , , ,
0

n

T C U F T C U F

n n n n n n n n

S

P R
s s s s s s s s

Q
       



 
=     

 
  

 

( ) ( )2

1 (1) 1 (1) 1 (1) 1 (1) 2 (2 ) 2 (2 ) 2 (2 ) 2 (2 )

,

, , , ... , , ,
n

T C U F T C U F

n n n n n n n n

S i n if i n

s s s s s s s s       
   

=      

( ) ( )2

1 (1) 1 (1) 1 (1) 1 (1) 2 (2 ) 2 (2 ) 2 (2 ) 2 (2 )

,

, , , ... , , , 0,0,1,1
n

T C U F T C U F

n n n n n n n n

S i n if i n

s s s s s s s s       
   

=     +    

( )2

1 (1) 1 (1) 1 (1) 1 (1) 2 (2 ) 2 (2 ) 2 (2 ) 2 (2 )

, ,

, , , ... , , ,
n

T C U F T C U F

n n n n n n n n

S k n if k n

s s s s s s s s       
    

+      

( )1 (1) 1 (1) 1 (1) 1 (1) ( ) ( ) ( ) ( ), , , ... , , , det
n

T C U F T C U F

n n n n n n n n

S

s s s s s s s s Q       


       



=      

( )1 (1) 1 (1) 1 (1) 1 (1) ( ) ( ) ( ) ( ), , , ... , , , det
n

T C U F T C U F

n n n n n n n n

S

s s s s s s s s Q       


 
=     
 
  

( ) ( )det detP Q= . 

This proves (ii) 

 

(iii) ( ), , , ,T T C U F

ij ij ij ij n
PP h h h h=    

We have , for every .nS   

1

, , , , , , , , , .
n

T C U F T C U F T C U F

ij ij ij ij ik ik ik ik kj kj kj kj

k

h h h h p p p p p p p p
=

 =      

11 11 11 11 22 22 22 22, , , , , , ... , , ,T C U F T C U F T C U F

nn nn nn nnh h h h h h h h h h h h      

1 1

, , , ... , , ,
n n

T C U F T C U F

ik ik ik ik nk nk nk nk

k k

p p p p p p p p
= =

   
=       
   
   

( )1 (1) 1 (1) 1 (1) 1 (1) ( ) ( ) ( ) ( ), , , ... , , ,T C U F T C U F

n n n n n n n np p p p p p p p             

Hence  

( ) ( )11 11 11 11 22 22 22 22det , , , , , , ... , , ,T T C U F T C U F T C U F

nn nn nn nnPP h h h h h h h h h h h h       
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1 (1) 1 (1) 1 (1) 1 (1) ( ) ( ) ( ) ( ), , , ... , , ,
n

T C U F T C U F

n n n n n n n n

S

p p p p p p p p       


      

( )det .P=  

This proves (iii) 

Hence the Theorem 

Theorem 10.5 Let P = (pij)  be a QPNFM. Then we have the following  

( )( ) ( ) ( )( )det det det .Padj P P adj P P= =  

Proof: We prove that ( )( ) ( )det det .Padj P P=  

We first consider n = 2. 

Let 
11 11 11 11 12 12 12 12

21 21 21 21 22 22 22 22

, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p
P

p p p p p p p p

    
=  

    
 

( ) 22 22 22 22 12 12 12 12

21 21 21 21 11 11 11 11

, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p
adj P

p p p p p p p p

    
=  

    
 

( )( )det Padj P =  

11 11 11 11 12 12 12 12

21 21 21 21 22 22 22 22

det( ) , , , , , ,

, , , , , , det( )

T C U F T C U F

T C U F T C U F

P p p p p p p p p

p p p p p p p p P

  

  
 

( )

( )

11 11 11 11 12 12 12 12

21 21 21 21 22 22 22 22

det( ) , , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

P p p p p p p p p

p p p p p p p p

= +   

  
 

det( )P  

Next consider 2n  . We can see that 

( )Padj P =  

1 1 1 1 1 1 1 1 1 2 1 1 1 1

2 2 2 2 1 2 2 2 2 2 2 2 2 2

1

, , , , , , ... , , ,

, , , , , , ... , , ,

... ... ... ...

, , , ,

T C U F T C U F T C U F

t t t t t t t t t t t t t t nt

T C U F T C U F T C U F

t t t t t t t t t t t t t t nt

T C U F T

nt nt nt nt t nt

p p p p P p p p p P p p p p P

p p p p P p p p p P p p p p P

p p p p P p p

     

     

  

  
  

 2, , ... , , ,C U F T C U F

nt nt nt t nt nt nt nt ntp p P p p p p P

 
 
 
 
 
     

 

 

( )( ) ( )( )1 1 1 1 (1) 2 2 2 2 (2)det , , , , , ,
n

T C U F T C U F

t t t t t t t t t t

S

Padj P p p p p P p p p p P 


=        

( ), , , .T C U F

it it it it jtp p p p P=  
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( )( )... , , , .T C U F

nt nt nt nt n tp p p p P   

It is evident that each diagonal entry of the matrix Padj(P) equals det(P). We demonstrate this result 

as follows. 

(i) Let us define 

( )( )

( )

1 1 1 1 (1) 2 2 2 2 (2)

( )

, , , , , ,

... , , , .

T C U F T C U F

t t t t t t t t t t

T C U F

nt nt nt nt n t

T p p p p P p p p p P

p p p p P

  



=    

 

 


 

for nS  . Let e be the identity of the group Sn. If ,e = then det( ).T P =  

 Suppose that there exists  1,2,...,k n  such that ( ) .k k = Then we see that 

( ), , , , , ,T C U F T C U F

kt kt kt kt k t kt kt kt kt ktp p p p P p p p p P=   =     

( )det P=  

( )( ) ( )

( ) ( )

1 1 1 1 (1) 2 2 2 2 (2)

( )

, , , , , , ...det ...

, , , det .

T C U F T C U F

n t t t t t t t t t t

T C U F

nt nt nt nt n t

p p p p P p p p p P P

p p p p P P

 



 =    

  

 


 

(ii) Let π be a permutation in nS .  Assume that ( ) .k k   for all  1,2,...,k n . We know that 

every permutation π can be written as a product of disjoint cycles πi and let  1 2... k   =  

We further assume that 1 (1 2) =  transposition. Then  has two factors

1 1 1 1 (1), , ,T C U F

t t t t tp p p p P   and 
2 2 2 2 (2), , ,T C U F

t t t t tp p p p P  , and from these we see 

that 

( )( )1 1 1 1 (1) 2 2 2 2 (2), , , , , ,T C U F T C U F

t t t t t t t t t tp p p p P p p p p P       

( )( )1 1 1 1 2 2 2 2 2 1, , , , , ,T C U F T C U F

t t t t t t t t t tp p p p P p p p p P=       

( )( ) ( )( ) ( )det 2 1 det 1 2 detP P P    

(iii) If 1 2... k   =  and ( )1 , ,s t then we can prove that det( )n P  by an argument used in 

(ii). Consider  for 1 2... k   = . If ( ), , ,... ,k e f = then we see that 

( )( )( ) ( ), , , , , , ...T C U F T C U F

n kt kt kt kt k t et et et et e tp p p p P p p p p P  =       
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( )( ), , , , , , ...T C U F T C U F

kt kt kt kt et et et et et ftp p p p P p p p p P=       

( )( ) ( )( )det det ...P e k P f e=    

we obtain that ( )( ) ( )( ) ( )det det detP e k P f e P   and so that ( )det .n P  This proves 

that ( )( ) ( )det det .Padj P P= Equally, we can prove that ( )( ) ( )det det .adj P P P=  

Hence the theorem. 

Theorem 10.6  Let , ( ) .nP Q QPNFM Then 

(i) det( ) det( )det( )PQ P Q  

(ii) det( ) det( ),PQ P Q +  

Where 
1 1 1 1

det( ) det , , ,
n nn n

T T C C U U F F

ik kj ik kj ik kj ik kj

k k k k

PQ p q p q p q p q
= = = =

 
=     

 
     

Proof:        ( )sup , ,sup , ,inf , ,inf ,T T C C U U F F

ij ij ij ij ij ij ij ijP Q p q p q p q p q+ =  

1 (1) 1 (1) 1 (1) 1 (1)

1 1 1 1

, , , ,...,
n

n nn n
T T C C U U F F

k k k k k k k k

S k k k k

p q p q p q p q   
 = = = =

 
=     

 
    

. 

( ) ( ) ( ) ( )

1 1 1 1

, , ,
n nn n

T T C C U U F F

nk k n nk k n nk k n nk k n

k k k k

p q p q p q p q   
= = = =

 
    

 
   

 

1 2 1 2

1 2

1 2 (1) (2) ( )

, ,...,

... ...
n n

n n

T T T T T T

k k nk k k k n

S k k k

p p p q q q  


 
=      

 
 

 

1 2 1 2

1 2

1 2 (1) (2) ( )

, ,...,

... ...
n n

n

C C C C C C

k k nk k k k n

k k k

p p p q q q  

 
     

 


 

1 2 1 2

1 2

1 2 (1) (2) ( )

, ,...,

... ...
n n

n

U U U U U U

k k nk k k k n

k k k

p p p q q q  

 
      

 


 

1 2 1 2

1 2

1 2 (1) (2) ( )

, ,...,

... ...
n n

n

F F F F F F

k k nk k k k n

k k k

p p p q q q  

 
      

 


 

( )
1 1 1 1

1 2

1 1 1 1

, ,...,

, , , ... , , ,
n n n n

n n

T C U F T C U F

k k k k nk nk nk nk

k k k S

p p p p p p p p


    
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1 1 1 11 1 1 1, , , ... , , ,
n n n n

n

T C U F T C U F

k k k k nk nk nk nk

S

q q q q q q q q


   
 

( )
1 1 1 1

1 2

1 1 1 1

, ,...,

, , , ... , , , det( )
n n n n

n n

T C U F T C U F

k k k k nk nk nk nk

k k k S

p p p p p p p p Q


 
=      
 


 

det( )det( )P Q=
 

(iii) We know that 

 
1 1 1 1

det( ) det , , ,
n nn n

T T C C U U F F

ik kj ik kj ik kj ik kj

k k k k

PQ p q p q p q p q
= = = =

 
=     

 
     

(1) (1) (1) (1)

1 1 1 1

( , , , ...
n

n nn n
T T C C U U F F

ik k ik k ik k ik k

S k k k k

p q p q p q p q   
 = = = =

         

( ) ( ) ( ) ( )

1 1 1 1

, , , )
n nn n

T T C C U U F F

nk k n nk k n nk k n nk k n

k k k k

p q p q p q p q   
= = = =

        

( ) ( ) ( ) ( )1 (1) 1 (1) 1 (1) 1 (1)

, , , ,

( , , , ...
n

T T C C U U F F

s t s t s t s t

S t s t n t s t n t s t n t s t n

p q p q p q p q   
        

=      

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

, , , ,

, , , )T T C C U U F F

ns t n ns t n ns t n ns t n

t s t n t s t n t s t n t s t n

p q p q p q p q   

       

     

( ) ( ) ( ) ( )1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) ....
n

n
T T C C U U F F

S

p q p q p q p q       


         

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

,

T T C C U U F F

n n n n n n n n n n n n n n n n

t s t n

p q p q p q p q       

 

        

( ) ( )( )( )det , , , , , ,T C U F T C U F

ij ij ij ij ij ij ij ij
n

p p p p q q q q= +  

( )det P Q= +  

Hence the theorem. 

Corollary 10.1. Let A be a QPNFM, ( ) ( )r ij nP p QPNFM=  ( r = 1,2,3,…,m).Then  

(i) 1 1

1

det( )det( )...det( ) det
m

m r

r

P P P P
=

 
  

 
  whrere 

1 1

( ) .
m m

r

r ij n

r r n

P a QPNFM
= =

 
=  
 

   

(ii) 
( )det( ) det( )rP P= , where ( ) ( )ij nP p QPNFM=   and r N .  

Example 10.1. Consider the 4x4 QPNFM 
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11 11 11 11 12 12 12 12 14 14 14 14

21 21 21 21 22 22 22 22 24 24 24 24

31 31 31 31 31 31 31 31 34 34 34 34

, , , , , , ... , , ,

, , , , , , ... , , ,

, , , , , , ... , , ,

T C U F T C U F T C U F

T C U F T C U F T C U F

T C U F T C U F T C U F

p p p p p p p p p p p p

p p p p p p p p p p p p
P

p p p p p p p p p p p p

     

     
=

     

41 41 41 41 42 42 42 42 44 44 44 44, , , , , , ... , , ,T C U F T C U F T C U Fp p p p p p p p p p p p

 
 
 
 
        

 

We compute the determinant of the matrix above using the following QPNFM. 

11 11 11 11 12 12 12 12

21 21 21 21 22 22 22 22 1 2

, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p

p p p p p p p p


   
=
   

33 33 33 33 34 34 34 34

43 43 43 43 44 44 44 44

, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p

p p p p p p p p

   

   
 

11 11 11 11 13 13 13 13

21 21 21 21 23 23 23 23 1 3

, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p

p p p p p p p p


   
+
   

 

32 32 32 32 34 34 34 34

42 42 42 42 44 44 44 44

, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p

p p p p p p p p

   

   
 

11 11 11 11 14 14 14 14

21 21 21 21 24 24 24 24 1 4

, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p

p p p p p p p p


   
+
   

 

32 32 32 32 33 33 33 33

42 42 42 42 43 43 43 43

, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p

p p p p p p p p

   

   
 

12 12 12 12 13 13 13 13

22 22 22 22 23 23 23 23 2 3

, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p

p p p p p p p p


   
+
   

 

31 31 31 31 34 34 34 34

41 41 41 41 44 44 44 44

, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p

p p p p p p p p

   

   
 

12 12 12 12 14 14 14 14

22 22 22 22 24 24 24 24 2 4

, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p

p p p p p p p p


   
+
   

 

31 31 31 31 33 33 33 33

41 41 41 41 43 43 43 43

, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p

p p p p p p p p

   

   
 

13 13 13 13 14 14 14 14

23 23 23 23 24 24 24 24 2 4

, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p

p p p p p p p p


   
+
   
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31 31 31 31 32 32 32 32

41 41 41 41 42 42 42 42

, , , , , ,

, , , , , ,

T C U F T C U F

T C U F T C U F

p p p p p p p p

p p p p p p p p

   

   
 

By applying this method, we can determine the determinant of the given QPNFM.

0.8,0.7,0.3,0.5 0.7,0.5,0.4,0.2 0.7,0.8,0.3,0.2 0.3,0.6,0.3,0.1

0.5,0.9,0.4,0.3 0.1,0.3,0.5,0.9 0.4,0.7,0.8,0.2 0.1,0.3,0.5,0.9

0.4,0.6,0.8,0.7 0.2,0.3,0.4,0.5 0.6,0.3,0.5,0.7 0.9,0.8,0.
P

       

       
=

       5,0.4

0.5,0.3,0.4,0.8 0.4,0.8,0.5,0.2 0.1,0.3,0.6,0.8 0.7,0.3,0.2,0.1

 
 
 
 
 
        

 

0.8,0.7,0.3,0.5 0.7,0.5,0.4,0.2 0.6,0.3,0.5,0.7 0.9,0.8,0.5,0.4

0.5,0.9,0.4,0.3 0.1,0.3,0.5,0.9 0.1,0.3,0.6,0.8 0.7,0.3,0.2,0.1

       
=
       

 

0.8,0.7,0.3,0.5 0.7,0.8,0.3,0.2 0.2,0.3,0.4,0.5 0.9,0.8,0.5,0.4

0.5,0.9,0.4,0.3 0.1,0.3,0.5,0.9 0.4,0.8,0.5,0.2 0.7,0.3,0.2,0.1

       
+
       

 

0.8,0.7,0.3,0.5 0.3,0.6,0.3,0.1 0.2,0.3,0.4,0.5 0.6,0.3,0.5,0.7

0.5,0.9,0.4,0.3 0.1,0.3,0.5,0.9 0.4,0.8,0.5,0.2 0.1,0.3,0.6,0.8

       
+
       

 

0.7,0.5,0.4,0.2 0.7,0.8,0.3,0.2 0.4,0.6,0.8,0.7 0.9,0.8,0.5,0.4

0.1,0.3,0.5,0.9 0.4,0.7,0.8,0.2 0.5,0.3,0.4,0.8 0.7,0.3,0.2,0.1

       
+
       

 

0.7,0.5,0.4,0.2 0.3,0.6,0.3,0.1 0.4,0.6,0.8,0.7 0.6,0.3,0.5,0.7

0.1,0.3,0.5,0.9 0.1,0.3,0.5,0.9 0.5,0.3,0.4,0.8 0.1,0.3,0.6,0.8

       
+
       

 

0.7,0.8,0.3,0.2 0.3,0.6,0.3,0.1 0.4,0.6,0.8,0.7 0.2,0.3,0.4,0.5

0.4,0.7,0.8,0.2 0.1,0.3,0.5,0.9 0.5,0.3,0.4,0.8 0.2,0.3,0.4,0.5

       
+
       

 

  0.1,0.3,0.5,0.9 0.5,0.5,0.4,0.3 0.6,0.3,0.5,0.7 0.1,0.3,0.6,0.8=   +     +   + 

  0.1,0.3,0.5,0.9 0.5,0.8,0.4,0.3 0.2,0.3,0.4,0.8 0.1,0.3,0.6,0.8  +     +   +

  0.1,0.3,0.5,0.9 0.3,0.6,0.4,0.3 0.1,0.3,0.6,0.8 0.4,0.3,0.5,0.7  +     +   +

  0.4,0.5,0.8,0.2 0.1,0.3,0.5,0.9 0.4,0.3,0.8,0.7 0.5,0.3,0.8,0.7  +     +   +

  0.1,0.3,0.5,0.9 0.1,0.3,0.5,0.9 0.1,0.3,0.8,0.8 0.5,0.3,0.5,0.8  +     +   + 

  0.1,0.3,0.5,0.9 0.3,0.6,0.8,0.2 0.2,0.3,0.8,0.7 0.2,0.3,0.4,0.8  +     +    

= 0.5,0.5,0.4,0.3 0.6,0.3,0.5,0.7   + 0.5,0.8,0.4,0.3 0.2,0.3,0.4,0.8   + 
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0.3,0.6,0.4,0.3 0.4,0.3,0.5,0.7   + 0.4,0.5,0.5,0.2 0.5,0.3,0.8,0.7   + 

0.1,0.3,0.5,0.9 0.5,0.3,0.5,0.8   + 0.3,0.6,0.5,0.2 0.2,0.3,0.4,0.7    

0.5,0.3,0.5,0.7=  + 0.2,0.3,0.4,0.8  + 0.3,0.3,0.5,0.7  + 0.4,0.3,0.8,0.7  +

0.1,0.3,0.5,0.9  + 0.2,0.3,0.5,0.7   

0.5,0.3,0.4,0.7=   

11. An Algorithm Based on QPNFM in a Decision-Making Problem 

Definition 11.1. Let Y = {y1,y2,.....,y𝑛} be an initial universe and 𝐸 = {𝑒1,𝑒2,.....,𝑒𝑚} be a set of parameters. 

Then, for an QPNSS ( ,E) over Y the degree of TM and the degree of − CM of an element y𝑖 to  (𝑒𝑗) 

denoted by 
( ) ( )

j
ie

T y


 and 
( ) ( )

j
ie

C y


respectively. Then, their corresponding score functions are 

denoted and defined by the following: 

( )
( ) ( )( ) ( )( )

1
e j jj

N

T i i ke e
k

S y T y T y
  

=

 = −
  

  

( )
( ) ( ) ( ) ( )( )

1
e j jj

N

C i i ke e
k

S y C y C y
  

=

 = −
  

  

Definition 11.2. Let Y = {y1,y2,.....,y𝑛} be an initial universe and 𝐸 = {𝑒1,𝑒2,.....,𝑒𝑚} be a set of parameters. 

Then, for an QPNSS ( ,E) over Y the degree of UM and the degree of − FM of an element 𝑥𝑖 to   

(𝑒𝑗) denoted by 
( ) ( )

j
ie

U y


 and 
( ) ( )

j
ie

F y


respectively. Then, their corresponding score functions 

are denoted and defined by the following: 

( )
( ) ( )( ) ( ) ( )

1
e j jj

N

U i i ke e
k

S y U y U y
  

=

 = − −
  

  

( )
( ) ( ) ( ) ( )( )

1
e j jj

N

F i i ke e
K

S y F y F y
  

=

 = −
  

  

Definition 11.3. Let Y = {y1,y2,.....,y𝑛} be an initial universe and 𝐸 = {𝑒1,𝑒2,.....,𝑒𝑚} be a set of 

parameters. For an QPNSS ( ,E)  over Y, the scores of the TM, CM, UM, and FM of y𝑖 for each 𝑒𝑗 

be denoted by
( )
( )

e j
T iS y


,
( )
( )

e j
C iS y


,
( )
( )

e j
U iS y


 and 
( )
( )

e j
F iS y


respectively. Then, the total score 

of 𝑥𝑖 for each 𝑒𝑗 is denoted by 
( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

e e e e ej j j j j
T i T i C i U i F iy S y S y S y S y
    

= + + +   

Based on the above definitions, we give the steps of the proposed algorithm as follows: 

 Algorithm: 

 Step 1. For the universal set Y = {y1,y2,.....,y𝑛} and the parameter set 𝐸 = {𝑒1,𝑒2,.....,𝑒𝑚} input the matrix 

representation of an QPNSS ( ,E) in tabular form, according to a decision-maker.  
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Step 2. Reference to the input matrix obtained in step 1 and using the Definitions 11.1 and 11.2, we 

compute 
( )
( )

e j
T iS y


,
( )
( )

e j
C iS y


,
( )
( )

e j
U iS y


 and 
( )
( )

e j
F iS y


 for xi for each ej where 𝑖 = 1 to n; 𝑗 = 1 

to 𝑚. 

Step 3. Taking the results obtained in step 2 and using the Definition 11.3, compute the score 

( )
( )

e j
T ix


 of 𝑥𝑖 for each 𝑒𝑗where 𝑖 = 1 to 𝑛; 𝑗 = 1 to 𝑚. 

Step 4. Compute the overall score 𝑢𝑖 for 𝑥𝑖in such a way that 

 
( )
( )

( )
( )

( )
( )

( )
( )

1 2 3

...
e e e em

i T i C i U i F iv y y y y
   

= + + + +  

Step 5. Find k, for which v𝑘 = max𝑥𝑖∈𝑋{v𝑖}. Then, 𝑥𝑘 ∈ 𝑋 is the optimal choice. 

Step 6. In case of a tie, either we take both as an optimal choice or we reassess all the values with the 

expert’s advice and repeat all the previous steps. 

12. To demonstrate the practical application of the algorithm, we present the following example. 

To implement the proposed algorithm successfully in a real-life context, we consider the following 

problem:  

An agricultural planner wants to select the most suitable crop for cultivation in a specific region. 

However, limited expertise in agronomy complicates the decision-making process due to various 

conflicting factors involved in crop selection. To address this challenge, the planner consults a group 

of experts and decision makers (DMs) who specialize in agricultural sciences. The DMs evaluate five 

alternative crops according to a set of defined parameters. 

Define Parameters 

First, the five critical parameters for evaluating the crop options are identified as follows: 

1. Soil Fertility: Measures the nutrient content and suitability of the soil for crop growth. 

2. Water Requirements: Assesses the water needs of each crop relative to available irrigation 

and rainfall. 

3. Climate Suitability: Evaluates how well the local climate matches the optimal growing 

conditions for each crop. 

4. Pest Resistance: Indicates the crop's resilience against local pests and diseases, impacting 

yield stability. 

5. Economic Viability: Considers market price, demand, and yield potential to determine the 

profitability of each crop. 

Evaluation Procedure 

To select the best crop alternative, the assessment procedure is executed as follows: 

Step 1: Consider a set of five crops represented as C={ c1,c2,c3,c4,c5}, where: 
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c1 = Rice, c2 = Wheat, c3 = Maize, c4 = Millet and c5 = Barley 

And define the set of parameters as P={p1, p2, p3, p4, p5}, where: 

p1= Soil Fertility, p2= Water Requirements, p3 = Climate Suitability, p4 = Pest Resistance 

p5 = Economic Viability 

Based on the evaluations from the DMs, the decision matrix reflecting the five crops and five 

evaluation criteria under the Multi-Criteria Decision-Making framework is presented in Table 2. 

Table 2. Tabular illustration of QPNFM to describe the set of five crops 

Y/E      e1   e2   e3   e4   e5 

y1 <0.8,0.8,0.9,0.6> <0.9,0.5,0.4,0.1> <0.6,0.4,0.5,0.2> <0.9,0.7,0.2,0.3> <0.6,0.2,0.1,0.3> 

y2 <0.8,0.4,0.3,0.2> <0.6,0.1,0.2,0.3> <0.8,0.3,0.7,0.6> <0.4,0.1,0.3,0.2> <0.5,0.4,0.3,0.1> 

y3 <0.9,0.8,0.9,0.6> <0.4,0.8,0.9,0.1> <0.3,0.8,0.1,0.6> <0.5,0.2,0.3,0.6> <0.5,0.8,0.1,0.3> 

y4 <0.7,0.1,0.2,0.3> <0.5,0.7,0.1,0.6> <0.9,0.8,0.2,0.3> <0.4,0.1,0.3,0.5> <0.7,0.3,0.2,0.1> 

y5 <0.6,0.3,0.5,0.1> <0.5,0.4,0.3,0.2> <0.9,0.2,0.3,0.4> <0.8,0.5,0.2,0.6> <0.2,0.4,0.1,0.2> 

Step 2. The score of the truth-membership degrees 
( )
( )

e j
T iS y


for ( ,E) is exposed in Table 3. 

Y/E      e1   e2   e3   e4   e5 

y1 0.2 1.6 -0.5 1.5 0.5 

y2 0.2 0.1 0.5 -1 0 

y3 0.7 -0.9 -2 -0.5 0 

y4 -0.3 -0.4 1 -1 1 

y5 -0.8 -0.4 1 1 -1.5 

The score of the contradiction-membership degrees 
( )
( )

e j
C iS y


 for ( ,E) is exposed in Table 4. 

Table 4. Tabular illustration of the score of contradiction-membership degree 

Y/E      e1   e2   e3   e4   e5 

y1 1.6 0 -0.5 1.9 -1.1 

y2 -0.4 -2 -1 -1.1 -0.1 

y3 1.6 1.5 1.5 -0.6 1.9 

y4 -1.9 1 1.5 -1.1 -0.6 

y5 -0.9 -0.5 -1.5 0.9 -0.1 
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The score of the unknown-membership degrees 
( )
( )

e j
U iS y


for ( ,E) is exposed in Table 5. 

Table 5. Tabular illustration of the score of unknown-membership degree 

Y/E      e1   e2   e3   e4   e5 

y1 1.7 0.1 0.7 -0.3 -0.3 

y2 -1.3 -0.9 1.7 0.2 0.7 

y3 1.7 2.6 -1.3 0.2 -0.3 

y4 -1.8 -1.4 -0.8 0.2 0.2 

y5 -0.3 -0.4 -0.3 -0.3 -0.3 

The score of the false-membership degrees 
( )
( )

e j
F iS y


 for ( ,E) is exposed in Table 6. 

Table 6. Tabular illustration of the score of false-membership degree 

Y/E      e1   e2   e3   e4   e5 

y1 1.2 -0.8 -1.1 -0.8 0.5 

y2 -0.8 0.2 0.9 -1.3 -0.5 

y3 1.2 -0.8 0.9 0.7 0.5 

y4 -0.3 1.7 -0.6 0.2 -0.5 

y5 -1.3 -0.3 -0.1 0.7 0 

Step 3. By using Table 3 to Table 6, the score  (𝑒𝑗) (𝑥𝑖) for ( ,E) is exhibited in Table 7. 

Table 7. Tabular illustration of the score  (𝑒𝑗) (𝑥𝑖). 

Y/E      e1   e2   e3   e4   e5 

y1 4.7 0.9 -0.5 2.3 -0.4 

y2 -2.3 -2.6 2.1 -3.2 0.1 

y3 5.2 3.4 -0.9 -0.2 2.1 

y4 -4.3 0.9 1.1 -1.7 0.1 

y5 -3.3 -1.6 -0.9 2.3 -1.9 

Step 4. Now, we calculate the overall score given as:  

v1 = 7, v2 = -5.9, v3 = 9.6, v 4 = -3.9, v5 = -5.4. 

Step 5. Thus, v𝑘 = maxy𝑖∈Y { v1, v2, v3, v4, v5} = v3. Therefore, v3 is the optimal choice object for the 

decision maker.  

 

13. Conclusion and Future Work 

In this study, we investigated determinant theory for Quadri-Partitioned Neutrosophic 

Fuzzy Matrices (QPNFMs), establishing foundational properties and proofs for key determinant 

relationships, such as det(Padj(P)) = det(P) = det(adj(P)P). Additionally, we proposed an efficient 

method to calculate determinants for large QPNFMs, addressing computational challenges posed by 

matrices with higher dimensions. The introduction of a structured algorithm for decision-making 

problems further enhances the applicability of QPNFMs in complex decision scenarios. Our 
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illustrative example demonstrates the practical relevance of our approach, verifying the effectiveness 

and robustness of our methodology in real-world applications. 

Future research could expand on this work by exploring determinant properties in other 

classes of neutrosophic fuzzy matrices, including different partitioning schemes beyond quadri-

partitioned structures. Investigating QPNFMs under various types of operations, such as matrix 

inversions and generalized matrix functions, could also deepen understanding of their theoretical 

and practical utility. Additionally, developing more sophisticated algorithms for multi-criteria 

decision-making using QPNFMs could broaden the scope of applications across different domains, 

such as engineering, economics, and artificial intelligence. Finally, computational optimizations 

leveraging parallel processing could make determinant calculation methods for QPNFMs more 

efficient, especially for high-dimensional matrices, further enhancing their viability in large-scale 

applications. 
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