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Abstract: An interpretations supplied the study investigators the current research investigation is 

presented coupled with an exploration subsequent to trends to whatever individuals have 

provided. Let’s start through a beginning to defined a new set in a space 𝑛𝐶𝑦𝔽 called an 𝑛𝐶𝑦�̿� ≀-

incorporates the ideas of closed and open sets and examine the map of a function Δ from 𝑛𝐶𝑦𝔽1 to 

𝑛𝐶𝑦𝔽2  has been stated to be 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-OP, 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-CL and decisively 𝑛𝐶𝑦�̿�-𝑂𝑝𝐹𝑛 and 

offer an understanding of the achieved outcomes by introducing the notion of the spaces in a 

𝑛𝐶𝑦𝐹𝑁𝑇𝑆’𝑠  is referred to as 𝑛𝐶𝑦�̿�𝛿0 -space, 𝑛𝐶𝑦�̿�𝛿1 -space and 𝑛𝐶𝑦�̿�𝛿2 -space. In addition to the 

examples, assumptions, and theorems, the distance between two 𝑛-𝐶𝑦𝐹𝑁𝑆, in conjunction with 

their attributes and fundamental operations, was defined. 

Keywords: nCy-pseudo alpha open functions, nCy-pseudo alpha closed functions, nCy-delta 

spaces, nCy- decisively alpha functions, nCy αδ0-space, nCy αδ1-space, n-CyFNS.  

 

1. Introduction 

Topological spaces are a key notion in mathematics, notably in topology, which investigates the 

features of space that remain constant during Continuous distortions such as twisting and bending 

but not ripping either glueing. In layman's words, a topological space is a set that contains a collection 

of subsets known as "open sets" that meet certain qualities, such as proximity and continuity. These 

open sets determine the topology of the space and allow us to define concepts such as convergence, 

continuity, compactness, and connectedness, which are important in many fields of mathematics, 

including analysis, geometry, and algebraic topology. One of the distinguishing characteristics of 

topological spaces is their generality. Topological spaces, as opposed to more rigid geometric 

structures such as Euclidean spaces, may be very flexible and abstract, allowing mathematicians to 

examine a diverse variety of forms and structures, from common lines and planes to more exotic and 

complicated ones. Overall, topological spaces provide a rich framework for exploring the shape and 

structure of mathematical objects, and they act as a link between different branches of mathematics, 

allowing ideas and techniques from one to be applied to another.  

 

FTS build on the notion of classical TS by integrating fuzziness or uncertainty into the definitions 

of open sets and other topological features. This addition is especially beneficial when dealing with 

circumstances where specific limits or distinctions are not clearly specified. In a fuzzy topological 

space, rather of having crisp, well-defined open sets, we have "fuzzy" open sets that assign a level of 

being a member to each point. The level of being a member specifies how much point belongs to the 

set. The higher the degree of membership, the closer the point is to being completely contained within 

the set. The formal definition of a fuzzy topological space entails replacing the traditional concept of 

open sets with fuzzy sets, which are distinguished by membership functions. These membership 
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functions assign a value between 0 and 1 to each point in the space, reflecting its degree of belonging 

to the set. Fuzzy topological spaces are used in a variety of domains, including fuzzy logic, 

approximation reasoning, pattern recognition, and decision making, when ambiguity and 

imprecision exist in the data or issue formulation. They provide an effective framework for dealing 

with ambiguous or partial information, as well as a more flexible and nuanced approach to modelling 

complex systems. 

 

Intuitionistic fuzzy topological spaces are an extension of classical topological spaces that 

account for the inherent ambiguity and vagueness seen in real-world data and decision-making 

processes. This expansion provides intuitionistic fuzzy sets, which provide a more expressive 

approach to manage uncertainty than classical fuzzy sets. Unlike classical FS assign a single level of 

being a member to each element reflecting its degree of membership, a set, IFS include the ideas of 

being a member and none being a member degrees. They also provide a third parameter, the 

hesitation degree, which expresses the level of ambiguity or indecision about an element's 

membership status.  Intuitionistic Fuzzy Topology, like classical topology, relies heavily on the idea 

of open sets. However, in intuitionistic fuzzy topology, open sets are defined as IFS. These sets have 

distinguished being a member, non-membership, hesitation functions, allowing for a more 

sophisticated portrayal of the thought of openness in space. IFTS have applications in a variety of 

disciplines where uncertainty and ambiguity play important roles, including decision making, 

pattern recognition, image processing, and expert systems. By giving a more detailed representation 

of uncertainty, they provide a strong foundation for modelling and analysing complex systems in a 

more realistic and flexible way. 

 

Neutrosophic fuzzy topological spaces combine two important theories in mathematical 

modelling: neutrosophic set theory and fuzzy topology. These spaces handle both uncertainty and 

indeterminacy, making them very adaptable to real-world settings that include ambiguity. 

Neutrosophic theory of sets is a refinement of traditional set theory that includes aspects of 

uncertainty. In a neutrosophic the set, every component has one of the following values: truth, 

indeterminacy, or false being a member. Neutrosophic fuzzy topological spaces are a combination of 

two significant mathematical modelling theories: neutrosophic set theory and fuzzy topology. These 

spaces can manage both uncertainty and indeterminacy, making them well-suited to ambiguous 

actual events situations. Neutrosophic theory of sets is an adaptation on classical theory of sets that 

incorporates uncertainty. In a neutrosophic established every element is assigned one of three 

attributes: truth, indeterminacy, or false membership. 

 

Zadeh [43] created the groundwork for the topic of uncertainty known as fuzzy sets. Topology 

was the primary discipline of mathematics where fuzzy set notions and ideas formed parallels. Chang 

[14] used Zadeh's notion to breathe new life into the concept of fuzzy topological spaces. Since then, 

several concepts from classical topology have been applied to fuzzy topological spaces. In the latter 

part of 1970 and the early part of 1980, numerous authors made significant contributions to this 

emerging discipline. Later, Atanassov [2], [3] created a new set known as the Intuitionistic Fuzzy Set 

(IFS), in which the total of the acceptance and rejection severity grades does not exceed one. Coker 

[15] later got IFTS via IFSs, while Lee [23] established the features of continuous, open, and closed 

maps. 

 

 In 2013, Yager [42] introduced the Pythagorean Fuzzy Set (PyFS) as an extension of IFS that 

assures that the square sum of its individual degrees is less than or equal to one. Olgun et al. and 

Parimala M et al. established the notion of a PNTS [24, 26, 27, 28]. Cuong [16] originated the concept 

of the Picture FS (PFS). He used three indices in PFS: membership degree P (x), neutral being a 

member degree I (x), and non-membership degree N (x), with the requirement that 0 ≤ P (x) + I (x) + 

N (x) ≤ 1. Obviously, PFSs are better suited than IFS and PyFS for dealing with fuzziness and 

ambiguity. Razaq et al. [30] introduced the concept of image FTS. Later, Kahraman and Gündogdu 
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introduced spherical fuzzy sets (SFS) [18, 19]. SFS should meet the requirement that the squared total 

of being a member degree, none being a member degree, and hesitancy degree be equal to or less 

than one. Princy and Mohana [29] proposed spherical FTS.  

 

Smarandache [33, 34] introduced the neutrosophic set, which is a generalisation of the IFS. 

Salama and Alblowi [36] developed the idea of NTS. They defined NTS as a generalisation of IFTS, 

as well as a neutrosophic set, in addition to each element's degree of membership, indeterminacy, 

and nonmembership. Smarandache [37,41] originally established the dependency degree (also 

known as the independence degree) of the fuzzy and neutrosophic components in 2006. P. Basker 

and Broumi Said [4,5,6,7,8,9,10,11,12,13,17,25,32,35,38,39] studied neutrosophic sets in the 

Applications of Sets and Functions by using an open set in Fuzzy Neutrosophic Topological Spaces, 

Neutrosophic Homeomorphisms, (𝛽𝜌𝑛) - 𝑂𝑆  in Pythagorean Neutrosophic Topological Spaces, 

𝑁𝜓𝛼
# 0-spaces and 𝑁𝜓𝛼

# 1-spaces. I(T)α-open and I(T)β–open sets. Neighbourhoods. ℳXαδ〈ℋ〉̃  in ℳ-

structures. Single-valued neutrosophic graphs, Correlation coefficient of interval neutrosophic set, 

Neutrosophic soft matrices.  

 

Arockiarani and Jency [1] proposed the concept of a fuzzy neutrosophic set in which the total of 

all three membership characteristics does not exceed 3. Veereswari presented a FNTS with 

fundamental operations [40]. Sarannya Kumari et al. [30, 31, 20, 21, 22] recently proposed n-

Cylindrical Fuzzy Neutrosophic Sets, with T and F regarded as dependent portions and I as 

independent components.  Except for fuzzy neutrosophic sets, the n-CyFNS is the most extensive 

extension of fuzzy sets. In this situation, the level to which any of the neutral, positive, and negative 

members meet the criteria, 0 ≤ βA (x) < 1 and 0 ≤ αAn(x) + γAn(x) ≤ 1, n > 1, is an integer. They also 

specified the distance between two n-CyFNS, as well as their attributes and fundamental operations. 

In this study, we define topological space in the n-CyFNS environment. This is a novel form of fuzzy 

neutrosophic set, with dependent components T and F and independent components I. We defined 

n-CyFN topological space and n-CyFN open sets. We also started the n-CyFN base, n-CyFN subbase, 

and various related experiments. In this paper the following abbreviation are used OS-Open Set, CS-

Closed Set, nCyFNTS-nCylindrical Fuzzy Neutrosophic Topological Spaces, n-CyFNS-nCylindrical 

Fuzzy Neutrosophic Sets. The following are the preliminary definitions. 

 

Definition 1.1. An n-CyFNS 𝑁 on S is an entity of the type 𝑁 =  {< 𝑖, 𝛼𝑁(𝑖), 𝛽𝑁(𝑖), 𝛾𝑁(𝑖) >  | 𝑖 ∈ 𝑆} 

where 𝛼𝑁(𝑖) ∈ [0, 1], termed the degree of positive membership. of 𝑖 in 𝑁, 𝛽𝑁(𝑖) ∈ [0,1], Known as 

the degree of neutral membership of 𝑖  in 𝑁  and 𝛾𝑁(𝑖)  ∈  [0, 1], termed the degree of negative 

membership. of 𝑖 in 𝑁, which satisfies the condition, (∀ 𝑖 ∈ 𝑆) (0 ≤  𝛽𝑁(𝑖)  ≤ 1 and 0 ≤  𝛼𝑁𝑛(𝑖)  +

 𝛾𝑁𝑛(𝑖)  ≤  1, 𝑛 > 1, is an integer. Here 𝑇 and 𝐹 are dependent neutrosophic components and 𝐼 is 

100% independent.  

For the convenience,  < 𝑖, 𝛼𝑁(𝑖), 𝛽𝑁(𝑖), 𝛾𝑁(𝑖) >  is called as n-Cylindrical Fuzzy Neutrosophic 

Number (n-CyFNN) and is denoted as 𝐴 =< 𝑖, 𝛼𝑁(𝑖), 𝛽𝑁(𝑖), 𝛾𝑁(𝑖) >. 

 

Definition 1.2. Inclusion: ∀ two 𝑁, 𝑂 ∈ 𝐶𝑛(𝑆), 𝑁 ⊆ 𝑂 ⟺ (∀ 𝑖 ∈ 𝑆, 𝛼𝑁(𝑖) ≤ 𝛼𝑂(𝑖) and 𝛽𝑁(𝑖) ≤ 𝛽𝑂(𝑖) 

and 𝛾𝑁(𝑖) ≥ 𝛾𝑂(𝑖)) and 𝑁 = 𝑂 ⟺  (𝑁 ⊆ 𝑂 and 𝑂 ⊆ 𝑁). 

 

Definition 1.3. Union: ∀  two 𝑁, 𝑂 ∈ 𝐶𝑛(𝑆) , the union of two n-CyFNSs 𝑁  and 𝑂  is 𝑁⋃𝑂(𝑖) =

{〈𝑖, 𝑚𝑎𝑥 (𝛼𝑁(𝑖), 𝛼𝑂(𝑖)), 𝑚𝑎𝑥 (𝛽𝑁(𝑖), 𝛽𝑂(𝑖)), 𝑚𝑖𝑛 (𝛾𝑁(𝑖), 𝛾𝑂(𝑖))〉| 𝑖 ∈ 𝑆}. 

 

Definition 1.4. Intersection: ∀ two 𝑁, 𝑂 ∈ 𝐶𝑛(𝑆),, the intersection of two n-CyFNSs 𝑁 and 𝑂 is 𝑁 ∩

𝑂(𝑖) = {〈𝑖, 𝑚𝑖𝑛 (𝛼𝑁(𝑖), 𝛼𝑂(𝑖)), 𝑚𝑖𝑛 (𝛽𝑁(𝑖), 𝛽𝑂(𝑖)), 𝑚𝑎𝑥 (𝛾𝑁(𝑖), 𝛾𝑂(𝑖))〉| 𝑖 ∈ 𝑆}. 

 

Definition 1.5. Complementation: For every 𝑁 ∈ 𝐶𝑛(𝑆), the complement of an n-CyFNS 𝑁 is 𝑁𝐶 =

{< 𝑖, 𝛾𝐴(𝑖), 𝛽𝐴(𝑖), 𝛼𝐴(𝑖) > | 𝑖 ∈  𝑆}  
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2. 𝒏𝑪𝒚~�̿� < 𝒐𝒏-Pseudo functions 

 

Definition 2.1. An 𝑛-Cylindrical subset 𝑌 of a space 𝑛𝐶𝑦𝔽 is called an 𝑛𝐶𝑦�̿� ≀-open set (𝑛𝐶𝑦�̿� ≀ 𝑂𝑆) 

if 𝑌 is a subsets of 𝑛𝐶𝑦𝐼 (𝑛𝐶𝑦𝐶(𝑛𝐶𝑦𝐼(𝑌))) and a 𝑛𝐶𝑦�̿� ≀-closed set if 𝑛𝐶𝑦𝐶 (𝑛𝐶𝑦𝐼(𝑛𝐶𝑦𝐶(𝑌))) is a 

subset of 𝑌.  

 

Example 2.2. Let 𝐶𝑦 = {𝑐1, 𝑐2, 𝑐3} and 𝜌𝐶𝑦 = {1𝐶𝑦𝑁, 0𝐶𝑦𝑁, 𝑌𝑖}, 𝑖 = 1,2,3, … 8, where,   

𝑌𝑖 = {< 𝑛1; ℜ𝑗 >, < 𝑛2; ℌ𝑘 >, < 𝑛2; ℑ𝑙 >}; 𝑗, 𝑘, 𝑙 = 1,2,3, … 8 

𝒀𝒊 𝕽𝒋 𝕳𝒋 𝕴𝒍 

𝑌1 ℜ1 =
49

400
,

58

400
,
175

400
 ℌ1 =

125

400
,

74

400
,

82

400
 ℑ1 =

285

400
,
122

400
,
115

400
 

𝑌2 ℜ2 =
38

400
,

49

400
,

49

400
 ℌ2 =

174

400
,

95

400
,
112

400
 ℑ2 =

177

400
,

98

400
,

79

400
 

𝑌3 ℜ3 =
82

400
,
192

400
,

74

400
 ℌ3 =

325

400
,
118

400
,

98

400
 ℑ3 =

192

400
,

57

400
,

48

400
 

𝑌4 ℜ4 =
58

400
,
125

400
,

82

400
 ℌ4 =

311

400
,
277

400
,

97

400
 ℑ4 =

115

400
,

78

400
,

74

400
 

𝑌5 ℜ5 =
192

400
,
134

400
,
115

400
 ℌ5 =

49

400
,
301

400
,

88

400
 ℑ5 =

49

400
,

48

400
,

58

400
 

𝑌6 ℜ6 =
74

400
,

57

400
,
285

400
 ℌ6 =

54

400
,
157

400
,

99

400
 ℑ6 =

54

400
,

59

400
,

95

400
 

𝑌7 ℜ7 =
82

400
,

95

400
,

74

400
 ℌ7 =

68

400
,
168

400
,
108

400
 ℑ7 =

134

400
,
221

400
,

95

400
 

𝑌8 ℜ8 =
125

400
,
124

400
,

49

400
 ℌ8 =

115

400
,
198

400
,

49

400
 ℑ8 =

82

400
,
117

400
,

74

400
 

Here {< 𝑛1;
58

400
,

125

400
,

82

400
>, < 𝑛2;

311

400
,

277

400
,

97

400
>, < 𝑛2;

115

400
,

78

400
,

74

400
>}  is a subsets of 

𝑛𝐶𝑦𝐼 (𝑛𝐶𝑦𝐶 (𝑛𝐶𝑦𝐼 ({< 𝑛1;
58

400
,

125

400
,

82

400
>, < 𝑛2;

311

400
,

277

400
,

97

400
>, < 𝑛2;

115

400
,

78

400
,

74

400
>}))) . Thus {<

𝑛1;
58

400
,

125

400
,

82

400
>, < 𝑛2;

311

400
,

277

400
,

97

400
>, < 𝑛2;

115

400
,

78

400
,

74

400
>} is a 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆. 

 

Definition 2.3. A map Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2 It has been stated to be 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-OP if every instance 

of 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆  in 𝑛𝐶𝑦𝔽1  is OS in 𝑛𝐶𝑦𝔽2 . It is noticeable the concepts exist 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-OP and 

𝑛𝐶𝑦�̿�- enduring correspond if the bijection function is used. 

 

Example 2.4. Let 𝐶𝑦 = {𝑐1, 𝑐2} and 𝜌𝐶𝑦 = {1𝐶𝑦𝑁, 0𝐶𝑦𝑁, 𝑌𝑖}, 𝑖 = 1,2,3, … 8, where,   

𝑌𝑖 = {< 𝑛1; ℜ𝑗 >, < 𝑛2; ℌ𝑘 >, < 𝑛2; ℑ𝑙 >}; 𝑗, 𝑘, 𝑙 = 1,2,3, … 8 

 

𝒀𝒊 𝕽𝒋 𝕳𝒋 

𝑌1 ℜ1 =
5

8
,
17

40
,
13

40
 ℌ1 =

17

40
,

9

40
,
1

8
 

𝑌2 ℜ2 =
20

40
,
27

40
,
15

40
 ℌ2 =

10

40
,

8

40
,
3

8
 

𝑌3 ℜ3 =
15

40
,
14

40
,
11

40
 ℌ3 =

22

40
,
11

40
,

5

40
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𝑌4 ℜ4 =
13

40
,
17

40
,
13

40
 ℌ4 =

13

40
,

7

40
,
25

40
 

𝑌5 ℜ5 =
25

40
,
17

40
,
13

40
 ℌ5 =

19

40
,

5

40
,

5

40
 

𝑌6 ℜ6 =
22

40
,
17

40
,
13

40
 ℌ6 =

10

40
,
18

40
,
15

40
 

𝑌7 ℜ7 =
11

40
,
17

40
,
13

40
 ℌ7 =

12

40
,
19

40
,

5

40
 

𝑌8 ℜ8 =
21

40
,
17

40
,
13

40
 ℌ8 =

1

40
,
13

40
,

7

40
 

 

Clearly (𝑛𝐶𝑦, 𝑛𝐶𝑦𝔽1) is an 𝑛𝐶𝑦�̿� ≀ open set and (𝑛𝐶𝑦, 𝑛𝐶𝑦𝔽2) is an open set. If Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2 

is defined by Δ(𝑐1) = 𝑛2, Δ(𝑐2) = 𝑛1, then Δ is 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-OP. 

 

Theorem 2.5. A map Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2  is 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�) -OP ⟺  ∀  portion 𝐿#  of 𝑛𝐶𝑦𝔽1 , 

Δ(𝑛𝐶𝑦�̿�𝐼𝑛(𝐿#)) ⊂ 𝑛𝐶𝑦𝐼𝑁(Δ(𝐿#)). 

    

Proof: Here Δ be a 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-OP. As of presently, we've 𝑛𝐶𝑦𝐼𝑁(𝐿#) ⊂ 𝐿# and 𝑛𝐶𝑦�̿�𝐼𝑛(𝐿#) is a 

𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 . Thus, we emerge at that Δ(𝑛𝐶𝑦�̿�𝐼𝑛(𝐿#)) ⊂ Δ(𝐿#) . As Δ(𝑛𝐶𝑦�̿�𝐼𝑛(𝐿#))  is OS, 

Δ(𝑛𝐶𝑦�̿�𝐼𝑛(𝐿#)) ⊂ 𝑛𝐶𝑦𝐼𝑁(Δ(𝐿#)). On the other hand, suppose that 𝐿# is a 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 in 𝑛𝐶𝑦𝔽1. Then, 

Δof 𝐿# is equal to Δ  of 𝑛𝐶𝑦�̿�𝐼𝑛  of 𝐿#  ⊂ 𝑛𝐶𝑦𝐼𝑁(Δ(𝐿#))  but 𝑛𝐶𝑦𝐼𝑁  of Δ(𝐿#)  is a subset of Δ(𝐿#) 

Thereby, Δ of 𝐿# is equal to 𝑛𝐶𝑦𝐼𝑁 of Δ(𝐿#) and consequently Δ is 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-OP. 

 

Theorem 2.6. If Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2  is 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)- OP, then 𝑛𝐶𝑦�̿�𝐼𝑛(Δ−1(𝐿#)) ⊂ Δ−1(𝑛𝐶𝑦𝐼𝑁(𝐿#)) 

∀ portion 𝐿# of 𝑛𝐶𝑦𝔽2. 

 

Proof. Here 𝐿# be any unpredictability subset within 𝑛𝐶𝑦𝔽2. Then, 𝑛𝐶𝑦�̿�𝐼𝑛(Δ−1(𝐿#)) is a 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 

in 𝑛𝐶𝑦𝔽1  and Δ  is 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�) -OP, then Δ (𝑛𝐶𝑦�̿�𝐼𝑛(Δ−1(𝐿#))) ⊂ 𝑛𝐶𝑦𝐼𝑁 (Δ(Δ−1(𝐿#))) ⊂

𝑛𝐶𝑦𝐼𝑁(𝐿#). Thereby, 𝑛𝐶𝑦�̿�𝐼𝑛(Δ−1(𝐿#)) ⊂ Δ−1(𝑛𝐶𝑦𝐼𝑁(𝐿#)) .  Remember that a subset 𝐾! is referred to 

as a point 𝑙 of 𝑛𝐶𝑦𝔽1 is 𝑛𝐶𝑦�̿� ≀-neighborhood, ∃ a 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 𝐿∗ the kind that 𝑙 ∈ 𝐿∗ ⊂ 𝐾!. 

 

Theorem 2.7. Concerning a map Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2 , Δ  is 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�) -OP ⟺  ∀  subset 𝐿 1
#  of 

𝑛𝐶𝑦𝔽1 , Δ(𝑛𝐶𝑦�̿�𝐼𝑛) ⊂ 𝑛𝐶𝑦𝐼𝑁 (Δ(𝐿 1
# ))  ⟺  ∀  𝑙 ∈ 𝑛𝐶𝑦𝔽1  and ∀  𝑛𝐶𝑦�̿� ≀ -neighbourhood 𝐿 1

#  of 𝑙  in 

𝑛𝐶𝑦𝔽1, ∃ a neighbourhood Δ(𝐿 1
# ) of Δ(𝑙) in 𝑛𝐶𝑦𝔽2 such that 𝐿  2

# ⊂ Δ(𝐿 1
# ).  

         

Proof: Let 𝑙 ∈ 𝑛𝐶𝑦𝔽1 and 𝐿 1
#  be an arbitrary 𝑛𝐶𝑦�̿� ≀-neighbourhood 𝐿 1

#  of 𝑙 in 𝑛𝐶𝑦𝔽1. Then ∃ a 

𝑛𝐶𝑦�̿� ≀ 𝑂𝑆, 𝐿  2
#  in 𝑛𝐶𝑦𝔽1 such that 𝑙 ∈ 𝐿  2

#  in 𝐿 1
#  , we’ve Δ of 𝐿2

# is a Δ(𝑛𝐶𝑦�̿�𝐼𝑛) ⊂ 𝑛𝐶𝑦𝐼𝑁 (Δ(𝐿  2
# )) 

and hence Δ(𝐿  2
# ) = 𝑛𝐶𝑦𝐼𝑁 (Δ(𝐿  2

# )) . Therefore, it follows that Δ(𝐿  2
# )  is OS in 𝑛𝐶𝑦𝔽2  such that 

Δ(𝑙) ∈ Δ(𝐿  2
# ) ⊂ Δ(𝐿 1

# ).    

 

Let  𝐿 1
#  be an arbitrary 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 in 𝑛𝐶𝑦𝔽1. Then ∀ 𝑚 ∈ Δ(𝐿 1

# ), ∃ a neighbourhood 𝐿  2
#

𝑚
 of 𝑚 in 

𝑛𝐶𝑦𝔽2 such that 𝐿  2
#

𝑚
⊂ Δ(𝐿 1

# ). As 𝐿  2
#

𝑚
 is a neighbourhood of 𝑚, ∃ an OS 𝐿  3

#
𝑚

 in 𝑛𝐶𝑦𝔽2 such 

that 𝑚 ∈ 𝐿  3
#

𝑚
 is in 𝐿  2

#
𝑚

. Thus Δ of 𝐿1
# is a ⋃ of {𝐿  3

#
𝑚

: 𝑚 ∈ Δ of 𝐿1
#} which is an OS in 𝑛𝐶𝑦𝔽2.This 

implies that Δ is 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-OP. 

 

Theorem 2.8.  If Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2 is 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-OP ⟺ ∀ subset 𝐷# of 𝑛𝐶𝑦𝔽2 and ∀ 𝑛𝐶𝑦�̿� ≀

𝐶𝑆, 𝑃(1 of 𝑛𝐶𝑦𝔽1 containing Δ−1(𝐷#), ∃ a 𝐶𝑆 𝑃(2 of 𝑛𝐶𝑦𝔽2 containing 𝐷# | Δ−1(𝑃(2) ⊂ 𝑃(1. 

 



Neutrosophic Sets and Systems, Vol. 79, 2025     410  

 

 

Basker P, Pseudo Functions in N-Cylindrical Fuzzy Neutrosophic Topological Spaces 

Proof: In case Δ  is 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 . Let 𝐷# ⊂ 𝑛𝐶𝑦𝔽2  and 𝑃(1  be a 𝑛𝐶𝑦�̿� ≀ 𝐶𝑆  of 𝑛𝐶𝑦𝔽1  containing 

Δ−1(𝐷#). Now place  𝑃(2 = 𝑛𝐶𝑦𝔽2 − Δ(𝑛𝐶𝑦𝔽1 − 𝑃(1). It is obvious that Δ−1 𝑜𝑓 𝑃(2 𝑖𝑠 𝑖𝑛 𝑃(1 ⟹ 𝐷# is 

in 𝑃(2 . Since Δ  is 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�) -OP, We acquire 𝑃(2  as a CS of  𝑛𝐶𝑦𝔽2 . Furthermore, we’ve 

Δ−1(𝑃(2) ⊂ 𝑃(1. 

 

In contrast, let 𝐿#  be a  𝑛𝐶𝑦�̿� ≀ 𝑂𝑆  of 𝑛𝐶𝑦𝔽1  and place 𝐷# = 𝑛𝐶𝑦𝔽2\Δ(𝐿#). Then 𝑛𝐶𝑦𝔽1\𝐿#  is a 

𝑛𝐶𝑦�̿� ≀ 𝐶𝑆 in set in 𝑛𝐶𝑦𝔽1 containing Δ−1(𝐷#). By supposition, ∃ a CS, 𝑃(1 of 𝑛𝐶𝑦𝔽2 | 𝐷# ⊂ 𝑃(1 

and Δ−1 𝑜𝑓 𝑃(1 ⊂ 𝑛𝐶𝑦𝔽1\𝐿# . Thus, we acquire  Δ(𝐿#) ⊂ 𝑛𝐶𝑦𝔽2\𝑃(1.  Conversely, nevertheless, it 

implies that 𝐷# ⊂ 𝑃(1, 𝑛𝐶𝑦𝔽2\𝑃(1 ⊂ 𝑛𝐶𝑦𝔽2\𝐷# = Δ(𝐿#). Hence, we get Δ(𝐿#) = 𝑛𝐶𝑦𝔽2\𝑃(1 which is 

OS and hence Δ is a 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-OP function. 

 

Theorem 2.9. If Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2  is 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-OP ⟺ Δ−1(𝑛𝐶𝑦𝐶𝐿(𝐷#)) ⊂ 𝑛𝐶𝑦�̿�𝐶𝑙(Δ−1(𝐷#)) ∀ 

subset 𝐷# of 𝑛𝐶𝑦𝔽2. 

 

Proof: Suppose that Δ  is 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�) -OP. For any subset 𝐷#  of 𝑛𝐶𝑦𝔽2 , Δ−1(𝐷#) ⊂

𝑛𝐶𝑦�̿�𝐶𝑙(Δ−1(𝐷#)). Therefore, ∃ a CS 𝑃(1 in 𝑛𝐶𝑦𝔽2 | 𝐷# ⊂ 𝑃(1 and Δ−1 𝑜𝑓 𝑃(1 ⊂ 𝑛𝐶𝑦�̿�𝐶𝑙(Δ−1 𝑜𝑓 𝐷#). 

Therefore, we obtain Δ−1(𝑛𝐶𝑦𝐶𝐿(𝐷#)) ⊂ Δ−1(𝑃(1) ⊂ 𝑛𝐶𝑦�̿�𝐶𝑙(Δ−1(𝐷#)). 

 

In contrast, let 𝐷# ⊂ 𝑛𝐶𝑦𝔽2  and Δ  be a 𝑛𝐶𝑦�̿� ≀ 𝐶𝑆  of  𝑛𝐶𝑦𝔽1  containing Δ−1(𝐷#) . Put 𝐿  3
# =

𝑛𝐶𝑦𝐶𝐿𝑌(𝐷#), then we have 𝐷# ⊂ 𝐿  3
#  and 𝐿  3

#  is CS and Δ−1(𝐿  3
# ) ⊂ 𝑛𝐶𝑦�̿�𝐶𝑙(Δ−1(𝐷#)) ⊂ 𝑃(1.Then, Δ 

is 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-OP. 

 

Lemma 2.10. The two maps ΔI: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2  and ΔII: 𝑛𝐶𝑦𝔽2 ⟶ 𝑛𝐶𝑦𝔽3  and ΔII ∘ ΔI: 𝑛𝐶𝑦𝔽1 ⟶

𝑛𝐶𝑦𝔽3 is 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-𝑂𝑃. If ΔII is 𝑛𝐶𝑦-Cont. injective, then ΔI is 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-𝑂𝑃. 

 

Proof: Let 𝐿#  be a 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 in 𝑛𝐶𝑦𝔽1 . Then (ΔII ∘ ΔI)(𝐿#) is 𝑛𝐶𝑦-𝑂𝑆 in 𝑛𝐶𝑦𝔽3  since ΔII ∘ ΔI  is 

𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-OP. Further ΔII is an injective 𝑛𝐶𝑦-Cont. function, ΔI(𝐿#) = ΔI
−1(ΔII ⋄ ΔI)(𝐿#) is open 

in 𝑛𝐶𝑦𝔽2. This demonstrates the fact ΔI is 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-𝑂𝑃. 

 

Definition 2.11. A map Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2 is said to be 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-CL if the image of each 𝑛𝐶𝑦�̿� ≀

𝐶𝑆 in 𝑛𝐶𝑦𝔽1 is closed in 𝑛𝐶𝑦𝔽2. Clearly, every 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-CL map is 𝑛𝐶𝑦-𝐶𝑆 as well as 𝑛𝐶𝑦�̿� ≀

𝐶𝑆. 

 

Example 2.12. Let 𝐶𝑦 = {𝑐1, 𝑐2, 𝑐3} and 𝜌𝐶𝑦 = {1𝐶𝑦𝑁, 0𝐶𝑦𝑁, 𝑌𝑖}, 𝑖 = 1,2,3, … 8, where,   

𝑌𝑖 = {< 𝑛1; ℜ𝑗 >, < 𝑛2; ℌ𝑘 >, < 𝑛2; ℑ𝑙 >}; 𝑗, 𝑘, 𝑙 = 1,2,3, … 8 

 

𝒀𝒊 𝕽𝒋 𝕳𝒋 𝕴𝒍 

𝑌1 ℜ1 =
103

200
,

95

200
,
110

200
 ℌ1 =

44

200
,
155

200
,

82

200
 ℑ1 =

112

200
,

93

200
,

55

200
 

𝑌2 ℜ2 =
112

200
,

87

200
,
111

200
 ℌ2 =

66

200
,
114

200
,
110

200
 ℑ2 =  

101

200
,

98

200
,
110

200
 

𝑌3 ℜ3 =
42

200
,

63

200
,
121

200
 ℌ3 =

97

200
,
101

200
,

87

200
 ℑ3 =

136

200
,
101

200
,
122

200
 

𝑌4 ℜ4 =
13

200
,

93

200
,

39

200
 ℌ4 =

112

200
,

91

200
,

92

200
 ℑ4 =

112

200
,

97

200
,
111

200
 

𝑌5 ℜ5 =
31

200
,

67

200
,

54

200
 ℌ5 =

40

200
,

81

200
,

93

200
 ℑ5 =

121

200
,

79

200
,
121

200
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𝑌6 ℜ6 =
53

200
,

73

200
,

67

200
 ℌ6 =

68

200
,

79

200
,

67

200
 ℑ6 =

18

200
,

88

200
,

65

200
 

𝑌7 ℜ7 =
81

200
,

68

200
,

93

200
 ℌ7 =

69

200
,

78

200
,

79

200
 ℑ7 =

89

200
,

97

200
,

79

200
 

𝑌8 ℜ8 =
47

200
,

55

200
,

73

200
 ℌ8 =

87

200
,

73

200
,

96

200
 ℑ8 =

97

200
,
101

200
,

89

200
 

   

Here (𝑛𝐶𝑦, 𝑛𝐶𝑦𝔽1)  is 𝑛𝐶𝑦�̿� ≀  𝐶𝑆  and (𝑛𝐶𝑦, 𝑛𝐶𝑦𝔽2)  is 𝐶𝑆 . If Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2  is defined by 

Δ(𝑐1) = 𝑛2, Δ(𝑐2) = 𝑛1 and Δ(𝑐3) = 𝑛3 then Δ is 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-CL. 

 

Remark 2.13. Every 𝑛𝐶𝑦-𝐶𝑆 map need not be 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-CL as demonstrated by the subsequent 

example. 

 

Example 2.14. Let 𝐶𝑦 = {𝑐1, 𝑐2, 𝑐3} and 𝜌𝐶𝑦 = {1𝐶𝑦𝑁, 0𝐶𝑦𝑁, 𝑌𝑖}, 𝑖 = 1 𝑡𝑜 6, where,   

𝑌𝑖 = {< 𝑛1; ℜ𝑗 >, < 𝑛2; ℌ𝑘 >, < 𝑛2; ℑ𝑙 >}; 𝑗, 𝑘, 𝑙 = 1 𝑡𝑜 6 

 

𝒀𝒊 𝕽𝒋 𝕳𝒋 𝕴𝒍 

𝑌1 ℜ1 =
247

2000
,

447

2000
,

647

2000
 ℌ1 =

347

2000
,

147

2000
,

447

2000
 ℑ1 =

47

2000
,

147

2000
,

347

2000
 

𝑌2 ℜ2 =
47

2000
,

47

2000
,

147

2000
 ℌ2 =

247

2000
,

147

2000
,

347

2000
 ℑ2 =  

17

2000
,

17

2000
,

57

2000
 

𝑌3 ℜ3 =
57

2000
,

47

2000
,

47

2000
 ℌ3 =

347

2000
,

447

2000
,

147

2000
 ℑ3 =

147

2000
,

147

2000
,

247

2000
 

𝑌4 ℜ4 =
247

2000
,

57

2000
,

47

2000
 ℌ4 =

37

2000
,

147

2000
,

447

2000
 ℑ4 =

247

2000
,

547

2000
,

447

2000
 

𝑌5 ℜ5 =
111

2000
,

212

2000
,

412

2000
 ℌ5 =

212

2000
,

111

2000
,

401

2000
 ℑ5 =

97

2000
,

157

2000
,

347

2000
 

𝑌6 ℜ6 =
177

2000
,

421

2000
,

347

2000
 ℌ6 =

111

2000
,

212

2000
,

247

2000
 ℑ6 =

347

2000
,

347

2000
,

347

2000
 

   

Here Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2  is defined by Δ(𝑐1) = 𝑛2, Δ(𝑐2) = 𝑛1  and Δ(𝑐3) = 𝑛3  then Δ is 𝑛𝐶𝑦-𝐶𝑆 

map need not be 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-CL. 

 

Theorem 2.15. The 𝑛𝐶𝑦𝔽1  and 𝑛𝐶𝑦𝔽2  be 𝑛 - 𝐶𝑦𝐹𝑁𝑇𝑆’𝑠  and the map Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2  is a 

𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�) - 𝐶𝐿  ⟺  Δ(𝑛𝐶𝑦𝔽1)  is 𝑛𝐶𝑦 - 𝐶𝑆  in 𝑛𝐶𝑦𝔽2  and Δ(𝐿#)\Δ(𝑛𝐶𝑦𝔽1\𝐿#)  is 𝑛𝐶𝑦 - 𝑂𝑆  in 

Δ(𝑛𝐶𝑦𝔽1) in situations where 𝐿# is 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 in 𝑛𝐶𝑦𝔽1. 

 

Proof:  In case Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2 is a 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-𝐶𝐿 map. Since 𝑛𝐶𝑦𝔽1 is 𝑛𝐶𝑦�̿� ≀ 𝐶𝑆, Δ(𝑛𝐶𝑦𝔽1) 

is 𝑛𝐶𝑦 -𝐶𝑆  in 𝑛𝐶𝑦𝔽2  and Δ 𝑜𝑓 𝐿#\Δ 𝑜𝑓 𝑛𝐶𝑦𝔽1\𝐿# = Δ 𝑜𝑓 𝐿# ∩ Δ 𝑜𝑓 𝑛𝐶𝑦𝔽1\Δ(𝑛𝐶𝑦𝔽1\𝐿#)  is 𝑛𝐶𝑦 -𝑂𝑆 

in Δ(𝑛𝐶𝑦𝔽1) when 𝐿# is 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 in 𝑛𝐶𝑦𝔽1. 

 

In case  Δ(𝑛𝐶𝑦𝔽1) is 𝑛𝐶𝑦-𝐶𝑆 in 𝑛𝐶𝑦𝔽2 , Δ(𝐿#)\Δ(𝑛𝐶𝑦𝔽1\𝐿#) is 𝑛𝐶𝑦-𝑂𝑆 in Δ(𝑛𝐶𝑦𝔽1) when 𝐿#  is 

𝑛𝐶𝑦�̿� ≀ 𝑂𝑆  in 𝑛𝐶𝑦𝔽1 , and let 𝐸#  be 𝑛𝐶𝑦 - 𝐶𝑆  in 𝑛𝐶𝑦𝔽1 . Then Δ(𝐸#) = Δ(𝑛𝐶𝑦𝔽1)\(Δ(𝑛𝐶𝑦𝔽1\𝐸#)\

Δ(𝐸#)) is 𝑛𝐶𝑦-𝐶𝑆 in Δ(𝑛𝐶𝑦𝔽1) and hence, 𝑛𝐶𝑦-𝐶𝑆 in 𝑛𝐶𝑦𝔽2. 
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Corollary 2.16. The 𝑛𝐶𝑦𝔽1  and 𝑛𝐶𝑦𝔽2  be 𝑛 -𝐶𝑦𝐹𝑁𝑇𝑆’𝑠  and let Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2  be a 𝑛𝐶𝑦�̿� - 

ENDURING 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-𝐶𝐿 surjective map. Then n-CyFNT on 𝑛𝐶𝑦𝔽2 is {Δ(𝐿#)\Δ(𝑛𝐶𝑦𝔽1\𝐿#): 𝐿# 

is 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 in 𝑛𝐶𝑦𝔽1}. 

 

Proof: Let 𝑄..
#  be 𝑛𝐶𝑦-𝑂𝑆  in 𝑛𝐶𝑦𝔽2 . Then Δ−1(𝑄..

# ) is 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆  in 𝑛𝐶𝑦𝔽1 , and Δ(Δ−1(𝑄..
# ))\

Δ(𝑛𝐶𝑦𝔽1\Δ−1(𝑄..
# )) = 𝑄..

# As a result, all 𝑛𝐶𝑦-𝑂𝑆 in 𝑛𝐶𝑦𝔽2 are in the form of Δ(𝐿#)\Δ(𝑛𝐶𝑦𝔽1\𝐿#), 

𝐿# is 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 in 𝑛𝐶𝑦𝔽1. In contrast, all sets of the kind Δ(𝐿#)\Δ(𝑛𝐶𝑦𝔽1\𝐿#), 𝐿# is 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 in 

𝑛𝐶𝑦𝔽1, are 𝑛𝐶𝑦-𝑂𝑆 in 𝑛𝐶𝑦𝔽2. 

 

Definition 2.17. A 𝑛𝐶𝑦𝐹𝑁𝑇𝑆’𝑠 𝑛𝐶𝑦𝔽1 is referred to as 𝑛𝐶𝑦�̿�𝛿0-space If each set of two unique points 

𝑓1 and 𝑓2 of  𝑛𝐶𝑦𝔽1, ∃ a 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 having one point but excluding the other. 

 

Theorem 2.18. A 𝑛𝐶𝑦𝐹𝑁𝑇𝑆’𝑠  𝑛𝐶𝑦𝔽1  is a 𝑛𝐶𝑦�̿�𝛿0 -space ⟺  𝑛𝐶𝑦�̿� -closures of unique points are 

unique. 

 

Proof: Let 𝑓1 and 𝑓2 be unique points of 𝑛𝐶𝑦𝔽1. Since 𝑛𝐶𝑦𝔽1 is 𝑛𝐶𝑦�̿�𝛿0-space, ∃ a 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 𝑀## 

such that 𝑓1 ∈ 𝑀##  and 𝑓2 ∉ 𝑀## . thereby, 𝑛𝐶𝑦𝔽1 − 𝑀##  is a 𝑛𝐶𝑦�̿� ≀ 𝐶𝑆 containing 𝑓2  but not 𝑓1 . 

But 𝑛𝐶𝑦�̿�𝐶𝑙{𝑓2} is the ⋂ of all 𝑛𝐶𝑦�̿� ≀ 𝐶𝑆′𝑠 containing 𝑓2. Thus 𝑓2 ∈ 𝑛𝐶𝑦�̿�𝐶𝑙{𝑓2} But 𝑓1 ∉ 𝑛𝐶𝑦�̿�𝐶𝑙{𝑓2} 

as 𝑓1 ∉ 𝑛𝐶𝑦𝔽1 − 𝑀##. Therefore, 𝑛𝐶𝑦�̿�𝐶𝑙{𝑓1} ≠ 𝑛𝐶𝑦�̿�𝐶𝑙{𝑓2}. 

 

In contrast, let 𝑛𝐶𝑦�̿�𝐶𝑙{𝑓1} ≠ 𝑛𝐶𝑦�̿�𝐶𝑙{𝑓2} for 𝑓1 ≠ 𝑓2 ⟹ ∃ a minimum of a single point 𝑓3 ∈ 𝑛𝐶𝑦𝔽1 

such that 𝑓3 ∈ 𝑛𝐶𝑦�̿�𝐶𝑙{𝑓1} but 𝑓3 ∉ 𝑛𝐶𝑦�̿�𝐶𝑙{𝑓2}. We assert 𝑓1 ∉ 𝑛𝐶𝑦�̿�𝐶𝑙{𝑓2}, because if 𝑓1 ∈ 𝑛𝐶𝑦�̿�𝐶𝑙{𝑓2} 

then {𝑓1} ⊂ 𝑛𝐶𝑦�̿�𝐶𝑙{𝑓2}  ⟹  𝑛𝐶𝑦�̿�𝐶𝑙{𝑓1} ⊂ 𝑛𝐶𝑦�̿�𝐶𝑙{𝑓2} . So 𝑓3 ∈ 𝑛𝐶𝑦�̿�𝐶𝑙{𝑓2} , which contradicts itself. 

Hence 𝑓1 ∉ 𝑛𝐶𝑦�̿�𝐶𝑙{𝑓2} ⟹ 𝑓1 ∈ 𝑛𝐶𝑦𝔽1 − 𝑛𝐶𝑦�̿�𝐶𝑙{𝑓2} which is a 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 having just 𝑓1 and not 𝑓2. 

Hence 𝑛𝐶𝑦𝔽1 is 𝑛𝐶𝑦�̿�𝛿0-space. 

 

Definition 2.19. A map Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2 is referred to as decisively 𝑛𝐶𝑦�̿�-𝑂𝑝𝐹𝑛. if the image of 

every 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 in 𝑛𝐶𝑦𝔽1 is 𝑂𝑆 in 𝑛𝐶𝑦𝔽2 

 

Example 2.20. Let 𝐶𝑦 = {𝑐1, 𝑐2, 𝑐3} and 𝜌𝐶𝑦 = {1𝐶𝑦𝑁, 0𝐶𝑦𝑁, 𝑌𝑖}, 𝑖 = 1,2,3, … 8, where,   

𝑌𝑖 = {< 𝑛1; ℜ𝑗 >, < 𝑛2; ℌ𝑘 >, < 𝑛2; ℑ𝑙 >}; 𝑗, 𝑘, 𝑙 = 1,2,3, … 8 

𝒀𝒊 𝕽𝒋 𝕳𝒋 𝕴𝒍 

𝑌1 ℜ1 =
49

400
,

58

400
,
175

400
 ℌ1 =

125

400
,

74

400
,

82

400
 ℑ1 =

285

400
,
122

400
,
115

400
 

𝑌2 ℜ2 =
38

400
,

49

400
,

49

400
 ℌ2 =

174

400
,

95

400
,
112

400
 ℑ2 =

177

400
,

98

400
,

79

400
 

𝑌3 ℜ3 =
82

400
,
192

400
,

74

400
 ℌ3 =

325

400
,
118

400
,

98

400
 ℑ3 =

192

400
,

57

400
,

48

400
 

𝑌4 ℜ4 =
58

400
,
125

400
,

82

400
 ℌ4 =

311

400
,
277

400
,

97

400
 ℑ4 =

115

400
,

78

400
,

74

400
 

𝑌5 ℜ5 =
192

400
,
134

400
,
115

400
 ℌ5 =

49

400
,
301

400
,

88

400
 ℑ5 =

49

400
,

48

400
,

58

400
 

𝑌6 ℜ6 =
74

400
,

57

400
,
285

400
 ℌ6 =

54

400
,
157

400
,

99

400
 ℑ6 =

54

400
,

59

400
,

95

400
 

𝑌7 ℜ7 =
82

400
,

95

400
,

74

400
 ℌ7 =

68

400
,
168

400
,
108

400
 ℑ7 =

134

400
,
221

400
,

95

400
 



Neutrosophic Sets and Systems, Vol. 79, 2025     413  

 

 

Basker P, Pseudo Functions in N-Cylindrical Fuzzy Neutrosophic Topological Spaces 

𝑌8 ℜ8 =
125

400
,
124

400
,

49

400
 ℌ8 =

115

400
,
198

400
,

49

400
 ℑ8 =

82

400
,
117

400
,

74

400
 

Clearly (𝑛𝐶𝑦, 𝑛𝐶𝑦𝔽1) is an 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 and (𝑛𝐶𝑦 , 𝑛𝐶𝑦𝔽2) is a 𝑂𝑆. If Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2 is defined 

by Δ(𝑐1) = 𝑛1, Δ(𝑐2) = 𝑛2 and Δ(𝑐3) = 𝑛3 then Δ is 𝑛𝐶𝑦�̿�-𝑂𝑝𝐹𝑛.. 

 

Theorem 2.21. In a bijection Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2 is a decisively 𝑛𝐶𝑦�̿�-𝑂𝑝𝐹𝑛. and 𝑛𝐶𝑦𝔽1 is 𝑛𝐶𝑦�̿�𝛿0-

space, then 𝑛𝐶𝑦𝔽2 is also 𝑛𝐶𝑦�̿�𝛿0-space. 

 

Proof: Let 𝑔1 and 𝑔2 be two separate points of  𝑛𝐶𝑦𝔽2. Since Δ is bijective ∃ distinct points 𝑓1 

and 𝑓2  of 𝑛𝐶𝑦𝔽1  | Δ(𝑓1) = 𝑔1  and Δ(𝑓2) = 𝑔2 . Since 𝑛𝐶𝑦𝔽1  is 𝑛𝐶𝑦�̿�𝛿0-space ∃ a 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆, 𝐺  | 

𝑥1 ∈ 𝐺  and 𝑥2 ∉  𝐺 . Therefore 𝑔1 = Δ 𝑜𝑓 𝑓1 ∈ Δ 𝑜𝑓 𝐺  and 𝑔2 = Δ 𝑜𝑓 𝑓2 ∉ Δ 𝑜𝑓 𝐺 . Since Δ  being 

decisively 𝑛𝐶𝑦�̿�-𝑂𝑝𝐹𝑛., Δ(𝐺) is 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 in 𝑛𝐶𝑦𝔽2. Thus, ∃ a 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 Δ(𝐺) in 𝑛𝐶𝑦𝔽2 | 𝑔1 ∈

Δ(𝐺) and 𝑔2 ∉ Δ(𝐺). Therefore 𝑛𝐶𝑦𝔽2 is 𝑛𝐶𝑦�̿�𝛿0-space. 

 

Definition 2.22. An 𝑛𝐶𝑦𝐹𝑁𝑇𝑆’𝑠  𝑛𝐶𝑦𝔽1  is referred to as 𝑛𝐶𝑦�̿�𝛿1-space In the event that any two 

distinct points 𝑓 and 𝑔, ∃ a 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 𝐺# and 𝐻# | 𝑓 𝑖𝑠 𝐺#, 𝑔 𝑖𝑠 𝑛𝑜𝑡 𝐺# and 𝑓 𝑖𝑠 𝑛𝑜𝑡 𝐻#, 𝑔 𝑖𝑠 𝐻#. 

 

Theorem 2.23. An 𝑛𝐶𝑦𝐹𝑁𝑇𝑆’𝑠 𝑛𝐶𝑦𝔽1 is 𝑛𝐶𝑦�̿�𝛿1-space ⟺ singletons are 𝑛𝐶𝑦�̿� ≀ 𝐶𝑆. 

 

Proof: Let 𝑛𝐶𝑦𝔽1 be a 𝑛𝐶𝑦�̿�𝛿1-space and 𝑓 ∈ 𝑛𝐶𝑦𝔽1. Let 𝑔 ∈ 𝑛𝐶𝑦𝔽1 − {𝑓}. Then for 𝑓 ≠ 𝑔, ∃ 𝑛𝐶𝑦�̿� ≀

𝑂𝑆 𝐿#
𝑔 that 𝑔 ∈ 𝐿#

𝑔 and 𝑓 𝑖𝑠 𝑛𝑜𝑡 𝐿#
𝑔. Furthermore, 𝑔 𝑖𝑠 𝐿#

𝑔 ⊂ 𝑛𝐶𝑦𝔽1 − {𝑓}. That is 𝑛𝐶𝑦𝔽1 − {𝑓} =∪

{𝐿#
𝑔: 𝑔 ∈ 𝑛𝐶𝑦𝔽1 − {𝑓}}, which is 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆. Hence {𝑓} is 𝑛𝐶𝑦�̿� ≀ 𝐶𝑆. 

 

In contrast, suppose {𝑓} is 𝑛𝐶𝑦�̿� ≀ 𝐶𝑆 ∀ 𝑓 ∈ 𝑛𝐶𝑦𝔽1. Let 𝑓 and 𝑔 ∈ 𝑛𝐶𝑦𝔽1 with 𝑓 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑔. 

Now 𝑓 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑔 ⇒ 𝑔 ∈ 𝑛𝐶𝑦𝔽1 − {𝑓}. Thereby 𝑛𝐶𝑦𝔽1 − {𝑓} is 𝑛𝐶𝑦�̿� ≀ 𝐶𝑆 containing 𝑔 but 

not 𝑓. Similarly, 𝑛𝐶𝑦𝔽1 − {𝑔} is 𝑛𝐶𝑦�̿� ≀ 𝐶𝑆 containing 𝑓 but not 𝑔. Thus 𝑛𝐶𝑦𝔽1 is 𝑛𝐶𝑦�̿�𝛿1-space. 

 

Theorem 2.24. The object being 𝑛𝐶𝑦�̿�𝛿1-space remains intact under bijection and decisively 𝑛𝐶𝑦�̿�-

𝑂𝑝𝐹𝑛.         
 

Proof:  Let Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2  possess bijection and decisively 𝑛𝐶𝑦�̿� - 𝑂𝑝𝐹𝑛.  Let 𝑛𝐶𝑦𝔽1  be a 

𝑛𝐶𝑦�̿�𝛿1-space and 𝑙1, 𝑙2 be any 2-unique points of 𝑛𝐶𝑦𝔽2. Since Δ is bijective ∃ unique points  𝑘1 

𝑘2 of 𝑛𝐶𝑦𝔽1 | 𝑙1 = Δ(𝑘1) and 𝑙2 = Δ(𝑘2). Now 𝑛𝐶𝑦𝔽1 being a 𝑛𝐶𝑦�̿�𝛿1-space, ∃ 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 𝑃𝑡1 and 

𝑃𝑡2  | 𝑘1 ∈ 𝑃𝑡1  , 𝑘2 ∉  𝑃𝑡1  and 𝑘1 ∉ 𝑃𝑡2,  𝑘2 ∈ 𝑃𝑡2 . Thereby  𝑙1 = Δ(𝑘1) ∈ Δ(𝑃𝑡1)  but 𝑙2 = Δ(𝑘2) ∉

Δ(𝑃𝑡1)  and 𝑙2 = Δ(𝑘2) ∈ Δ(𝑃𝑡2)  and 𝑙1 = Δ(𝑘1) ∉ Δ(𝑃𝑡2) . Here Δ  possess decisively 𝑛𝐶𝑦�̿� -𝑂𝑝𝐹𝑛. , 

Δ(𝑃𝑡1) and Δ(𝑃𝑡2) are 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 of 𝑛𝐶𝑦𝔽2  | 𝑙1 ∈ Δ(𝑃𝑡1) but 𝑙2 ∉ Δ(𝑃𝑡1) and 𝑙2 ∈ Δ(𝑃𝑡2) and 𝑙1 ∉

Δ(𝑃𝑡2). Thus 𝑛𝐶𝑦𝔽2 is  𝑛𝐶𝑦�̿�𝛿1-space. 

 

Theorem 2.25. Let Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2  be bijective and decisively 𝑛𝐶𝑦�̿� -𝑂𝑝𝐹𝑛.  In case 𝑛𝐶𝑦𝔽1  is 

𝑛𝐶𝑦�̿�𝛿1-space ⟹ 𝑛𝐶𝑦𝔽2 is 𝑛𝐶𝑦�̿�𝛿1-space. 

 

Proof: Let 𝑔1, 𝑔2 be any 2-unique points of 𝑛𝐶𝑦𝔽2. Since Δ is bijective ∃ unique points 𝑓1, 𝑓2 of 

𝑛𝐶𝑦𝔽1  | 𝑔1 = Δ(𝑓1) and 𝑔2 = Δ(𝑓2). Now 𝑛𝐶𝑦𝔽1  being a 𝑛𝐶𝑦�̿�𝛿1-space, ∃ 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆  𝐶#  and 𝐷# 

that 𝑓1 𝑖𝑛 𝐶# , 𝑓2 𝑛𝑜𝑡 𝑖𝑛 𝐶# and 𝑓1 𝑛𝑜𝑡 𝑖𝑛 𝐷#, 𝑓2 𝑖𝑛 𝐷#. Thereby 𝑔1 = Δ(𝑓1) ∈ Δ of 𝐶#but 𝑔2 = Δ of 𝑓2 ∉

Δ 𝑜𝑓 𝐶# and 𝑦2 = Δ of (𝑓2) ∈ Δ of (𝐷#) and 𝑔1 = Δ of (𝑓1) 𝑛𝑜𝑡 𝑖𝑛 Δ(𝐷#). Now 𝑛𝐶𝑦𝔽1 is 𝑛𝐶𝑦�̿�𝛿1-space 

⟹ 𝐶# and 𝐷# are 𝑂𝑆 in 𝑛𝐶𝑦𝔽1 and Δ is decisively 𝑛𝐶𝑦�̿�-𝑂𝑝𝐹𝑛., Δ(𝐶#) and Δ(𝐷#) are 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 

of 𝑛𝐶𝑦𝔽2 . Thus ∃ 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 | 𝑔1 ∈ Δ(𝐶#) but 𝑔2 ∉ Δ(𝐶#) and 𝑔2 ∈ Δ(𝐷#) and 𝑔1 ∉ Δ(𝐷#). Thus 

𝑛𝐶𝑦𝔽2 is 𝑛𝐶𝑦�̿�𝛿1-space. 

 

Example 2.26. Let 𝐶𝑦 = {𝑐1, 𝑐2, 𝑐3} and 𝜌𝐶𝑦 = {1𝐶𝑦𝑁, 0𝐶𝑦𝑁, 𝑌𝑖}, 𝑖 = 1,2,3, … 8, where,   
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𝑌𝑖 = {< 𝑛1; ℜ𝑗 >, < 𝑛2; ℌ𝑘 >}; 𝑗, 𝑘 = 1,2,3, … 8 

𝒀𝒊 𝕽𝒋 𝕳𝒋 

𝑌1 ℜ1 =
15

40
,
11

40
,

9

40
 ℌ1 =

15

40
,
17

40
,
13

40
 

𝑌2 ℜ2 =
22

40
,
27

40
,

5

40
 ℌ2 =

11

40
,
17

40
,
13

40
 

𝑌3 ℜ3 =
27

40
,
17

40
,
21

40
 ℌ3 =

23

40
,
13

40
,
15

40
 

𝑌4 ℜ4 =
18

40
,
13

40
,
13

40
 ℌ4 =

7

40
,
17

40
,
21

40
 

𝑌5 ℜ5 =
19

40
,
16

40
,
23

40
 ℌ5 =

15

40
,
15

40
,
17

40
 

𝑌6 ℜ6 =
15

40
,
11

40
,
13

40
 ℌ6 =

11

40
,
17

40
,
17

40
 

𝑌7 ℜ7 =
9

40
,
12

40
,

8

40
 ℌ7 =

13

40
,
13

40
,
18

40
 

𝑌8 ℜ8 =
11

40
,
13

40
,
11

40
 ℌ8 =

18

40
,
11

40
,
15

40
 

 

Clearly (𝑛𝐶𝑦, 𝑛𝐶𝑦𝔽1)  is an 𝑛𝐶𝑦�̿�𝛿1 -space and (𝑛𝐶𝑦, 𝑛𝐶𝑦𝔽2)  is an 𝑛𝐶𝑦�̿�𝛿1 -space. If Δ: 𝑛𝐶𝑦𝔽1 ⟶

𝑛𝐶𝑦𝔽2 is defined by Δ(𝑐1) = 𝑛2, Δ(𝑐2) = 𝑛1 and Δ(𝑐3) = 𝑛3, then Δ is decisively 𝑛𝐶𝑦�̿�-𝑂𝑝𝐹𝑛. 

 

Theorem 2.27. If Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2  is 𝑛𝐶𝑦�̿� - ENDURING injection and 𝑛𝐶𝑦𝔽2  is 𝑛𝐶𝑦𝛿−1  then 

𝑛𝐶𝑦𝔽1 is 𝑛𝐶𝑦�̿�𝛿1-space. 

        

Proof: Let Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2 be 𝑛𝐶𝑦�̿�-ENDURING injection and 𝑛𝐶𝑦𝔽2 is 𝑛𝐶𝑦𝛿−1. The 2-unique 

points 𝑛1,  𝑛2   of 𝑛𝐶𝑦𝔽1∃ unique points 𝑜1,  𝑜2  of 𝑛𝐶𝑦𝔽2  | 𝑜1 = Δ(𝑛1) and 𝑜2 = Δ of (𝑛2). Since 

𝑛𝐶𝑦𝔽2  is 𝑛𝐶𝑦𝛿−1-space, ∃ OS 𝐿#(1  and 𝐿#(2  in 𝑛𝐶𝑦𝔽2  | 𝑜1 ∈ 𝐿#(1 , 𝑜2 ∉ 𝐿#(1  and 𝑜1 ∉ 𝐿#(2 , 𝑜2 ∈

𝐿#(2. i.e., 𝑛1 ∈ Δ−1of (𝐿#(1), 𝑛1 ∉ Δ−1 𝑜𝑓 (𝐿#(2) and 𝑛2 ∈ Δ−1 𝑜𝑓 (𝐿#(2), 𝑛2 ∉ Δ−1 𝑜𝑓 (𝐿#(1). Since Δ is 

𝑛𝐶𝑦�̿�-ENDURING Δ−1 𝑜𝑓(𝐿#(1), Δ−1𝑜𝑓(𝐿#(2) are 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 in 𝑛𝐶𝑦𝔽1 . Thus, the 2-unique points 

𝑛1 , 𝑛2  of 𝑛𝐶𝑦𝔽1  ∃ 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆, Δ−1𝑜𝑓(𝐿#(1) and Δ−1𝑜𝑓(𝐿#(2) | 𝑛1 ∈ Δ−1𝑜𝑓(𝐿#(1), 𝑛1 ∉ Δ−1𝑜𝑓(𝐿#(2) 

and 𝑛2 ∈ Δ−1𝑜𝑓(𝐿#(2), 𝑛2 ∉ Δ−1(𝐿#(1). Thereby 𝑛𝐶𝑦𝔽1 is 𝑛𝐶𝑦�̿�𝛿1-space. 

 

Theorem 2.28. If Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2 is 𝑛𝐶𝑦�̿�-𝐼𝑅 injective function and 𝑛𝐶𝑦𝔽2 is 𝑛𝐶𝑦�̿�𝛿1-space then 

𝑛𝐶𝑦𝔽1 is 𝑛𝐶𝑦�̿�𝛿1-space. 

       

Proof: Let 𝑛1, 𝑛2 be pair of unique points in 𝑛𝐶𝑦𝔽1. Since Δ is injective, ∃ unique points 𝑜1, 𝑜2 of 

𝑛𝐶𝑦𝔽2  | 𝑜1 = Δ(𝑛1) and 𝑜2 = Δ(𝑛2). Since 𝑛𝐶𝑦𝔽2  is 𝑛𝐶𝑦�̿�𝛿1-space, ∃ 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 , 𝑄𝑠#1  and 𝑄𝑠#2 

in 𝑛𝐶𝑦𝔽2  | 𝑜1 ∈ 𝑄𝑠#1 , 𝑜2 ∉ 𝑄𝑠#1  and 𝑜1 ∉ 𝑄𝑠#2 , 𝑜2 ∈ 𝑄𝑠#2 . i.e., 𝑛1 ∈ Δ−1(𝑄𝑠#1) , 𝑛1 ∉ Δ−1(𝑄𝑠#2) 

and 𝑛2 ∈ Δ−1(𝑄𝑠#2), 𝑛2 ∉ Δ−1(𝑄𝑠#1). Since Δ is 𝑛𝐶𝑦�̿�-𝐼𝑅, Δ−1(𝑄𝑠#1), Δ−1(𝑄𝑠#2) are 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 in 

𝑛𝐶𝑦𝔽1. Thus, the 2-unique points 𝑛1, 𝑛2 of 𝑛𝐶𝑦𝔽1 ∃ 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆, Δ−1(𝑄𝑠#1) and Δ−1(𝑄𝑠#2) | 𝑛1 ∈

Δ−1(𝑄𝑠#1), 𝑛1 ∉ Δ−1(𝑄𝑠#2) and 𝑛2 ∈ Δ−1(𝑄𝑠#2), 𝑛2 ∉ Δ−1(𝑄𝑠#1). Thereby 𝑛𝐶𝑦𝔽1 is 𝑛𝐶𝑦�̿�𝛿1-space.  

 

Definition 2.29. An 𝑛𝐶𝑦𝑃𝑁𝑇𝑆 is referred to as 𝑛𝐶𝑦�̿�𝛿2-space if for any pair of unique points 𝑐1 & 

𝑐2, ∃ disjoint 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 𝑁𝑙1 & 𝑁𝑙2 | 𝑐1 ∈ 𝑁𝑙1 & 𝑐2 ∈ 𝑁𝑙2. 
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Theorem 2.30.  If Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2  is 𝑛𝐶𝑦�̿�-ENDURING injection and 𝑛𝐶𝑦𝔽2  is 𝑛𝐶𝑦𝛿−2  then 

𝑛𝐶𝑦𝔽1 is 𝑛𝐶𝑦�̿�𝛿2-space. 

      

Proof: Let Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2 be 𝑛𝐶𝑦�̿�-ENDURING injection and 𝑛𝐶𝑦𝔽2 is 𝑛𝐶𝑦𝛿−2. The 2- unique 

points 𝑒1, 𝑒2 of 𝑛𝐶𝑦𝔽1 ∃ unique points 𝑓1, 𝑓2 of 𝑛𝐶𝑦𝔽2 | 𝑓1 = Δ(𝑒1) and 𝑓2 = Δ(𝑒2). Since 𝑛𝐶𝑦𝔽2 

is 𝑛𝐶𝑦𝛿−2 -space, ∃  distinct 𝑛𝐶𝑦𝑂𝑆  𝐷𝑒#1  and 𝐷𝑒#2  in 𝑛𝐶𝑦𝔽2  | 𝑓1 ∈ 𝐷𝑒#1 , Δ2 ∈ 𝐷𝑒#2 . i.e., 𝑒1, ∈

Δ−1 𝑜𝑓(𝐷𝑒#1) and 𝑒2 ∈ Δ−1 𝑜𝑓(𝐷𝑒#2). Since Δ is 𝑛𝐶𝑦�̿�-ENDURING Δ−1 𝑜𝑓(𝐷𝑒#1), Δ−1 𝑜𝑓(𝐷𝑒#2) are 

𝑛𝐶𝑦�̿�  ≀ 𝑂𝑆 in 𝑛𝐶𝑦𝔽1 . Further Δ is injective, Δ−1 𝑜𝑓(𝐷𝑒#1) ∩ Δ−1 𝑜𝑓(𝐷𝑒#2) = Δ−1 𝑜𝑓(𝐷𝑒#1 ∩ 𝐷𝑒#2) =

Δ−1 𝑜𝑓(𝜙) = 𝜙. Thus, for 2-unique points 𝑒1, 𝑒2 of 𝑛𝐶𝑦𝔽1 ∃ disjoint 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆, Δ−1 𝑜𝑓(𝐷𝑒#1) and 

Δ−1 𝑜𝑓(𝐷𝑒#2)  such that 𝑒1 ∈ Δ−1 𝑜𝑓(𝐷𝑒#1)  and 𝑒2 ∈ Δ−1 𝑜𝑓(𝐷𝑒#2) . Therefore 𝑛𝐶𝑦𝔽1  is 𝑛𝐶𝑦�̿�𝛿2 -

space. 

 

Theorem 2.31. If Δ: 𝑛𝐶𝑦𝔽1 ⟶ 𝑛𝐶𝑦𝔽2 is 𝑛𝐶𝑦�̿�-𝐼𝑅 injective function and 𝑛𝐶𝑦𝔽2 is and 𝑛𝐶𝑦�̿�𝛿2-space 

then 𝑛𝐶𝑦𝔽1 is 𝑛𝐶𝑦�̿�𝛿2-space. 

      

Proof: Let 𝑒1, 𝑒2 be pair of unique points in 𝑛𝐶𝑦𝔽1. Since Δ is injective ∃ distinct points 𝑓1, 𝑓2 of 

𝑛𝐶𝑦𝔽2  | 𝑓1 = Δ(𝑒1) and 𝑓2 = Δ(𝑒2). Since 𝑛𝐶𝑦𝔽2  is 𝑛𝐶𝑦�̿�𝛿2-space ∃ 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆, 𝐷𝑒#1 and 𝐷𝑒#2 in 

𝑛𝐶𝑦𝔽2  |  𝑓1 ∈ 𝐷𝑒#1 , 𝑓2 ∈ 𝐷𝑒#2 . i.e., 𝑒1, ∈ Δ−1𝑜𝑓(𝐷𝑒#1)  and 𝑒2 ∈ Δ−1𝑜𝑓(𝐷𝑒#2) . Since Δ  is 𝑛𝐶𝑦�̿� -𝐼𝑅 

injective Δ−1𝑜𝑓(𝐷𝑒#1), Δ−1𝑜𝑓(𝐷𝑒#2) are 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 in 𝑛𝐶𝑦𝔽1.Thus, for 2-unique points  𝑒1, 𝑒2 of 

𝑛𝐶𝑦𝔽1   ∃  𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 , Δ−1𝑜𝑓(𝐷𝑒#1)  and Δ−1𝑜𝑓(𝐷𝑒#2)  |  𝑒1 ∈ Δ−1𝑜𝑓(𝐷𝑒#1)  and 𝑒2 ∈ Δ−1𝑜𝑓(𝐷𝑒#2) . 

Thereby 𝑛𝐶𝑦𝔽1 is 𝑛𝐶𝑦�̿�𝛿2-space. 

 

Example 2.32. Let 𝐶𝑦 = {𝑐1, 𝑐2, 𝑐3} and 𝜌𝐶𝑦 = {1𝐶𝑦𝑁, 0𝐶𝑦𝑁, 𝑌𝑖}, 𝑖 = 1,2,3, … 8, where,   

𝑌𝑖 = {< 𝑛1; ℜ𝑗 >, < 𝑛2; ℌ𝑘 >, < 𝑛2; ℑ𝑙 >}; 𝑗, 𝑘, 𝑙 = 1,2,3, … 8 

 

𝒀𝒊 𝕽𝒋 𝕳𝒋 𝕴𝒍 

𝑌1 ℜ1 =
117

2000
,

223

2000
,

417

2000
 ℌ1 =

417

2000
,

113

2000
,

112

2000
 ℑ1 =

223

2000
,

89

2000
,

418

2000
 

𝑌2 ℜ2 =
407

2000
,

421

2000
,

417

2000
 ℌ2 =

147

2000
,

101

2000
,

101

2000
 ℑ2 =  

223

2000
,

117

2000
,

155

2000
 

𝑌3 ℜ3 =
152

2000
,

147

2000
,

153

2000
 ℌ3 =

147

2000
,

112

2000
,

152

2000
 ℑ3 =

112

2000
,

223

2000
,

155

2000
 

𝑌4 ℜ4 =
223

2000
,

217

2000
,

89

2000
 ℌ4 =

89

2000
,

89

2000
,

417

2000
 ℑ4 =

117

2000
,

101

2000
,

203

2000
 

𝑌5 ℜ5 =
101

2000
,

217

2000
,

153

2000
 ℌ5 =

101

2000
,

117

2000
,

417

2000
 ℑ5 =

147

2000
,

117

2000
,

112

2000
 

𝑌6 ℜ6 =
112

2000
,

223

2000
,

418

2000
 ℌ6 =

147

2000
,

417

2000
,

113

2000
 ℑ6 =

112

2000
,

223

2000
,

417

2000
 

𝑌7 ℜ7 =
101

2000
,

203

2000
,

153

2000
 ℌ7 =

117

2000
,

417

2000
,

203

2000
 ℑ7 =

117

2000
,

223

2000
,

101

2000
 

𝑌8 ℜ8 =
407

2000
,

203

2000
,

155

2000
 ℌ8 =

421

2000
,

112

2000
,

407

2000
 ℑ8 =

417

2000
,

112

2000
,

203

2000
 

Clearly (𝑛𝐶𝑦, 𝑛𝐶𝑦𝔽1) is an  𝑛𝐶𝑦�̿�𝛿2-space and (𝑛𝐶𝑦, 𝑛𝐶𝑦𝔽2) is an 𝑛𝐶𝑦�̿�𝛿2-space. Here Δ: 𝑛𝐶𝑦𝔽1 ⟶

𝑛𝐶𝑦𝔽2 is defined by Δ(𝑐1) = 𝑛1, Δ(𝑐2) = 𝑛2 and Δ(𝑐3) = 𝑛3 then Δ is 𝑛𝐶𝑦�̿�-𝐼𝑅 injective function. 
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Theorem 2.33. An 𝑛𝐶𝑦𝑃𝑁𝑇𝑆, 𝑛𝐶𝑦𝔽1  is 𝑛𝐶𝑦�̿�𝛿2-space ⟺ For each 𝑒 ≠ 𝑓 , ∃ a 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 , 𝐷𝑒#1  | 

𝑒 ∈ 𝐷𝑒#1  and 𝑓 ∉ 𝑛𝐶𝑦�̿�𝐶𝑙(𝐷𝑒#1)  ⟺ For each 𝑒 ∈ 𝑛𝐶𝑦𝔽1 , {𝑒} =∩ {𝑛𝐶𝑦�̿�𝐶𝑙(𝐷𝑒#1): 𝐷𝑒#1  is a 𝑛𝐶𝑦�̿� ≀

𝑂𝑆 in 𝑛𝐶𝑦𝔽1 and 𝑒 ∈ 𝐷𝑒#1}. 

      

Proof: Let 𝑒 ∈ 𝑛𝐶𝑦𝔽1  and 𝑒 ≠ 𝑓 , ∃  disjoint 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 , 𝐷𝑒#1  &  𝐷𝑒#2  |  𝑒 ∈ 𝐷𝑒#1  & 𝑓 ∈ 𝐷𝑒#2 . 

Clearly, 𝑛𝐶𝑦𝔽1 − 𝐷𝑒#2  is 𝑛𝐶𝑦�̿� ≀ 𝐶𝑆 . Since 𝐷𝑒#1 ∩ 𝐷𝑒#2 = 𝜙 , 𝐷𝑒#1 ⊂ 𝑛𝐶𝑦𝔽1 − 𝐷𝑒#2 . Thereby 

𝑛𝐶𝑦�̿�𝐶𝑙(𝐷𝑒#1) ⊂ 𝑛𝐶𝑦�̿�𝐶𝑙(𝑛𝐶𝑦𝔽1 − 𝐷𝑒#2) = 𝑛𝐶𝑦𝔽1 − 𝐷𝑒#2. Now ∉ 𝑛𝐶𝑦𝔽1 − 𝐷𝑒#2 ⇒ 𝑓 ∉ 𝑛𝐶𝑦�̿�𝐶𝑙(𝐷𝑒#1).  

 

For each 𝑒 ≠ 𝑓, ∃ a 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆, 𝐷𝑒#1 | 𝑒 ∈ 𝐷𝑒#1  & 𝑓 ∉ 𝑛𝐶𝑦�̿�𝐶𝑙(𝐷𝑒#1). So 𝑓 ∉∩ {𝑛𝐶𝑦�̿�𝐶𝑙(𝐷𝑒#1): 𝐷𝑒#1 

is a 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆 in 𝑛𝐶𝑦𝔽1 and 𝑒 ∈ 𝐷𝑒#1} = {𝑒}. 

  

Let 𝑒, 𝑓 ∈ 𝑛𝐶𝑦𝔽1  and 𝑒 ≠ 𝑓 . By supposition ∃ a 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆,  𝐷𝑒#1  | 𝑒 ∈ 𝐷𝑒#1  and 𝑛𝐶𝑦�̿�𝐶𝑙(𝐷𝑒#1). 

This ⇒ ∃ a  𝑛𝐶𝑦�̿� ≀ 𝐶𝑆, 𝐷#2 | 𝑓 ∉ 𝐷𝑒#2. Thereby 𝑓 ∈ 𝑛𝐶𝑦𝔽1 − 𝐷𝑒#2 & 𝑛𝐶𝑦𝔽1 − 𝐷𝑒#2 is 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆. 

Thus, ∃ 2-disjoint 𝑛𝐶𝑦�̿� ≀ 𝑂𝑆, 𝐷𝑒#1 and 𝑛𝐶𝑦𝔽1 − 𝐷𝑒#2 | 𝑒 ∈ 𝐷𝑒#1 and 𝑓 ∈ 𝑛𝐶𝑦𝔽1 − 𝐷𝑒#2. Thereby 

𝑛𝐶𝑦𝔽1 is 𝑛𝐶𝑦�̿�𝛿2-space. 

 

 

Conclusion: The analysis's interpretations of the present investigation are presented, together with 

an evaluation of the latest developments to which they have influenced. Start from the beginning to 

defined a new set in a space 𝑛𝐶𝑦𝔽  called an 𝑛𝐶𝑦�̿� ≀ - integrated The ideas of CS and OS and 

considered the map of a function Δ  from 𝑛𝐶𝑦𝔽1  to 𝑛𝐶𝑦𝔽2  demonstrates been declared to be 

𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-OP, 𝑛𝐶𝑦~𝑃𝑠𝑒(�̿�)-CL and decisively 𝑛𝐶𝑦�̿�-𝑂𝑝𝐹𝑛 and offered a comprehension of the 

accomplished achievements by presented the concept of spaces in 𝑛𝐶𝑦𝐹𝑁𝑇𝑆’𝑠 is considered to as 

𝑛𝐶𝑦�̿�𝛿0 -space, 𝑛𝐶𝑦�̿�𝛿1 -space and 𝑛𝐶𝑦�̿�𝛿2 -space. Furthermore to the examples, assumptions, and 

theorems, the space separating two 𝑛-𝐶𝑦𝐹𝑁𝑆, furthermore, their unique features and core functions 

were outlined. 
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