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Abstract: This study explores the solution of first-order differential equations (DE) using trapezoidal
neutrosophic numbers (Trap Ny, mper) as initial conditions. It examines various forms of TrapNyymper
based on the dependencies of truth (T), indeterminacy (I), and falsity (F). The application first order
DE is illustrated through heat conduction problems in fluids. The temperature distribution T (x, @),
T,(x, ), T{(x,B), T{'(x,v), To(x,B) and T,'(x,y) are analyzed through tables and graphs. A solution
procedure for the system of first-order ODEs is developed and demonstrated with numerical

examples.

Keywords: difference equation; trapezoidal neutrosophic number, trapezoidal single valued
neutrosophic number

1. Introduction

Fge¢ theory, significantly developed by Zadeh [1], is defined by the membership function pz(x).
Atanassov [2, 3] extended this concept by introducing a non-membership function 9;(x), leading to
IFgee. Liu and Yuan [4] then combined triangular Fge.s with [Fs,. to create triangular /F;,;. Later, Ye
[5] replaced triangular Fpympers With trapezoidal Fympers in both truth and falsity membership
functions, resulting in trapezoidal /F..;. However, traditional fuzzy and intuitionistic fuzzy logic
lack the concept of indeterminacy. Smarandache [6-7] introduced indeterminacy term, enhancing the
framework beyond fuzzy logic. Thus, neutrosophic logic consists of three components: truth value
(TANset)l indeterminacy value (I gNm), and false value(F A~Nset)’ with these membership values defined
within the non-standard interval ] — 0,1 + [. Smarandache [8] introduced the concept of Ny as a
generalization of I F;,;; expanding the framework of fuzzy logic by incorporating indeterminacy. This

structure allows for the representation of uncertainty, imprecision, and inconsistency.

First-order systems of ordinary differential equations have a wide range of applications, including
population dynamics and disease spread, electrical circuits and fluid dynamics, motion and heat
transfer, economic growth and market analysis, pollutant dispersion and ecosystem dynamics, and
drug dosage and physiological processes. There are several approaches to solve first-order ODEs.
Several researchers have utilized neutrosophic logic, including SVNpumperss TTiNpumpers, and
TrapNpympers, to solve DEs and explore their applications. Sumathi and Mohana Priya [9] presented

a novel perspective on neutrosophic DEs, exploring how neutrosophic concepts can be applied to
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solve and interpret DEs. Sumathi and Crispin Sweety [10] proposed a new method for solving DEs
using TrapNpympers, showcasing a specific application of neutrosophic logic in mathematical
modeling. Alamin et al. [11] explored solutions and interpretations of neutrosophic homogeneous
DEs, enhancing the understanding of discrete systems in the context of neutrosophic logic. Mondal
et al. [12] address the solution of a system of differential equations within an intuitionistic fuzzy
environment. Chakraborty et al. [13] have explored various linear and non-linear forms of
TrapNpympers and discuss de-neutrosophication techniques. Shanmugapriya et al. [14] explored the
solution of system of first-order simultaneous DEs within a neutrosophic environment, which allows
handling indeterminacy, truth, and falsity values in the context of uncertainty. Their research
emphasizes applications in time-cost optimization and sequencing problems.

1.1 Research gap

The research gap in this study emphasizes the limited exploration of TrapN,ympers as initial
conditions in solving first-order DEs. It highlights the need for systematic analysis of their
relationships among truth, indeterminacy, and falsity, as well as their application to heat conduction
problems in fluids. Addressing these gaps could improve the use of neutrosophic logic in modeling
uncertainty.
1.2 Objective

The aim of this study is to investigate solutions for first-order DEs using TrapNyy,mpers as initial
conditions. It seeks to explore various forms of TrapNpympers based on the relationships among truth,
indeterminacy, and falsity. Additionally, the study aims to apply these concepts to heat conduction
problems in fluids, analyzing temperature distributions through specific functions and presenting

findings through tables and graphs.

1.3 Nowvelty

The novelty of this present study lies in the use of Trap Ny mpers as initial conditions for solving first-
order differential equations (DEs). This innovative approach explores various forms of TrapNyympers,
capturing the relationships between truth, indeterminacy, and falsity values, which extends
traditional methods of solving DEs by incorporating uncertainty. Additionally, applying these
neutrosophic concepts to heat conduction problems in fluids, particularly in analyzing temperature
distributions, offers a fresh perspective on addressing complex physical systems with uncertain
parameters.

1.4 Applications

Neutrosophic logic significantly enhances modeling in various fields by addressing uncertainties
inherent in complex systems. In population dynamics, it enables more accurate modeling of species
interactions and growth rates. For electrical circuits, this approach facilitates the analysis of circuit
behaviors under uncertain conditions. In fluid dynamics, neutrosophic logic aids in understanding
fluid behaviors across different states of uncertainty. It also plays a crucial role in economic growth
by evaluating models that may involve incomplete or uncertain data. Furthermore, it assists in
pollutant dispersion by predicting the spread of pollutants with varying degrees of certainty. Lastly,

in drug dosage optimization, neutrosophic logic allows for the tailoring of drug delivery methods
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based on uncertain patient responses, ultimately improving decision-making across these diverse

disciplines.

2. Preliminaries

In this section, the fundamental concepts of neutrosophic logic utilized in this article are presented
as follows:

Definition 2.1. N,,,: [1] Let X be a universe set. An Ny, A Ngor ON X is defined as:

Ay, = {00 Tay,,, @1z, (O, F,  (0):x € X},
where
L Tay,, (x): X =710,1[* is called the truth membership (Tjem), representing the degree of
confidence in the membership of x € X in Ay_,
i. 1 ANy (x): X =7]0,1[* is called the indeterminacy membership (;e), representing the
degree of uncertainty in the membership of x € X in Ay_,
. Fgy (x):X =7]0,1[* is called the falsity membership (Fp.n)representing the degree of
skepticism in the membership of x € X in Ay, .

These membership functions satisfy the condition: that ~0 < TANM ) +1 AN (x)+F ANy x) <
3*.

Definition 2.2. SVN,;: [2] An Ng,; ANM on X is said to be SVNy,, (§4Nset) if x is a single-valued
independent variable. The set SAy_, is defined as:

Shny, = {0 Tsa,_ (12, (0), Fay (0)):x € X},

where the functions Tsz,, (), Isay_, (%), Fsay_, (x): X =7]0,1[* represents the Tynem, Imem, and Frem

functions, respectively, for the element x € X in SA Ngorr SUCh that:
- — — — +
0< TSANset(x) + ISANset(x) + FSANset(x) <3

Definition 2.3. (a, 8, y)-cut: [3] The (a, 8, y)-cut Ny, is A N, defined as:

AED = {(Ts, 0,1z, (O, Fz,  (0):x€X,Ts, () 2alz, ()<pFz )<y}
where a, 8,y € [0,1] are fixed values, and they satisfy the condition:
at+B+y<3.

Definition 2.4. N,ymper: [3] A Ngot ANset over the set of real numbers R is said to be N mper if it
satisfies the following properties:

i. Ay, isnormal:if there exist x, € R such that Tin,,, (xp) = 1. (IANset (x) = Fiy,,, (%) = 0).

ii. Ay, isconvex for the Tin,,, (x) function.
(ie) Tin,,, (pux, + (1 — w)xy) = min (TANset (xq), Tin,,, (xz)), for all x;,x, € R&u € [0,1].
iii. Ay, isconcave set for the Angye (x)and F ANgye (x) functions.

(i€) iy, oy + (1= ) = max(Li, G Lay, () and Fy (e + (1= 10,)

max (FANset (xp), Fiy,,, (x2)>, forall x;,x, € R&u € [0,1].

Definition 2.5. TrapNpymper: [3] A TTapNpymper, An,,, is a subset of Nyymper, An,,,in R with the

following T, I, and F functions which is given by the following:
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az_x

X — a1
( 1)uANset fora; <x<a, {( )UANset fora; <x<a,

A —
fora, <x <aj fora, <x<a;

- — AN t - — AN t
TANset(x) (14 _Sex ) IANset(x) (14 _Sex
< )ugN fora; <x <a, ( )u,,N foras; <x<a,
3 set set

a, —as
0 otherwise 1 otherwise

G2 = % <x<
Wi ora; sxsa
ANsetf 1 2

a; —aq
FAN (x) = WiNger fora; sx<a;
set a; —Xx
(a4 — ‘13) Wi, foraz; <x <a,
1 otherwise

where  ~0 < Tz, (x) +1, (¥)+Fz,  (0) <3%x€dy,,

Definition 2.6. (a, 8,¥) - cut of a TrapNymper» A Neer: The (@, B,y)-cut of a TrapNpymper ANM, where:

Ap,,, = ((ay,a;,a3,a,); Ugy o Viy,, w,qNset) is defined as:

(Ansee) gy = [Trsgoe @ Ty, (@ Ly, B Tas B Fitgs, 0 Fi, ),

where
L. Tnem: T/Ileet(a) = [a; + a(a, — al)]uANset'TAstet(a) = [ay —ala, — a3)]uANset.
i. Lnem: IAleet(ﬁ) = [a, — B(a; — a1)]UANset»IAstet(ﬁ) = [a; + B(as — a3)]VANset-
i, Fnomi Py, (1) = [az = y(@ = a)lwa,_ Fay, (1) = [as + y(ay — a)lwg, .

here a,B,y € (0,1]and ~0<a+pB+y <3*

Linear Generalized N, mper:
Definition: 2.7. The quantity of the T,I,and F are not dependent then the TrapSVNpymper A Neor =

((ay,ay,a3,a4); (b1, by, b3, by); (c1,¢5,€3,¢4)) Whose Tpem, Imem, and Fe, functions are defined as

follows:
x—a b, —x
l( al foray <x<a, ((bz b)forb1Sx<b2
- U 2 U
o @7 f"”2<"<“3:u,v (x)=l ey TR
—a3 foraz; <x <a, l(b4_b3>forb3<x<b4
otherwise 1 otherwise

Cz_x
forc <x<c,
2

C - C1
P (x) = 0 forc, <x <c3
ANset <x - C3> f < <
orc; <x <c¢y
C4 - C3
1 otherwise

Where -0 = TANset (x) + IANset (x) + FANset (x) < 3+,X € ANset'

Definition: 2.8 The (a, B,y)-cut of a TrapSV N, mper Ay, =

((aq,a;,as,a4); (b1, by, bs, by); (cq, ¢y c3,¢4)) of definition 2.7 is defined as follows:
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(Anee) gy = [Ty @ T, @5 Ly, (B i (B iy, 0 P, )]

where TAleet(a) = [a; + a(a, — a1)]'TAstet(a) = [ay — a(a, — a3)]; [Aleet (@) = [b, —
B = b gy, (@) = [bs + By — b)]i Fay, (@) = e = ¥(c = )], Fay, (@) =

[z +y(cs —c3)],
here @, B8,y € (0,1]and ~0<a+p+y<3*.

Definition: 29. The quantity ofl,andF are dependent then the Ay, =
((ay,ay,a3,a4); (b1, by, b3, by); vgNset,wANset) whose Tmems Imem, and Fpepn, functions are defined as

follows: TrapSV N, ,mper

_ b, —x + vz, (x—by)
((x al)fora1§x<a2 ( b _Szt )forb15x<b2
a; — 2 1
1 ora,<x<a 171 forb, <x<b
TANset (X) - g — X f ’ ’ ’ ANset (X) =) x—>b +A11;’set (b X) 2 3
— U3 A 4
<a4_a3)fora3<xSa4 ( - i’s;t )fOTb3<be4
0 otherwise * 3 .
1 otherwise

b, —x + Wiy . (x —by)
( b, — b, )forb1£x<b2
Fa, (0 = Wi, forb, <x < bs
set x—b, + Win .., (b; —x)
( by — b, )forb3<xsb3
1 otherwise

where "0 <Ts, (0)+1z, ()+Fz (x)<2%xE€ Ay,

Definition: 2.10 The (a, B, y)-cut of a TrapSV Npymber Arye =

((a,a,,as,a,); (by, by, b3, by); Viy,,, WgNset) of definition 2.9 is defined as follows:

(ATNe)a,B,y = [TATNel (), TATNez (a); IATNe1 B), IATNeZ B); FATNe1 ), fATNeZ (V)]: where TAT,\,E1 (@) =[a; +
ba-vz, tbl_ﬁ(bz_bl)
ala; —a,)], Tarnes (@) = [a, —alas — as)]}IATNel B) = - Y - B) =

1—v~
b3—w b4+y(b4_b )
3 ANset 3

7

ANset

b3—vZNset by+B(by—b3) bz—W;Nsetb1—Y(bz—b1)

1-vy ] ; FATNel (]/) = [ ] ’ FATNez (V) = [

here0<aS1,vgNset<ﬁ§1,wANset<yS1and—0<B+yS1+and —-0<a+f+y<2+.

1-wy 1-wy4
ANget ANget

Definition: 2.11 The quantity of the T, I, and F are dependent then the TrapSV N, mper Of Tinems Imem,

and E,,.,, function defined as

( X — a1
| Uty . fora; <x<a,

a; —a
_ 1 fora, <x<a;
TATNe (x) = a, —x ’
uz ora; <x<a
(a4 _ a3) ANSet f 3 — Y4
0 otherwise
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a; —x + uz, t(x —ay)
£ fora, <x<a,
a, —q
_ Udy . fora;, <x<az
IATNe(x) =3 se ’
x—az+uz, (a,—x
set foras; <x<a,
a4 - a3
1 otherwise

a,—x+wz, x—a
: " Wi ) fora; <x<a
a, —a, 1 = 2
Wjx ora, <x<sa
Fp (x) = ANgor f 2 = as
ATNe X —a, +wg, (az—x)
L Nser fora;<x<a
as — a, 3 — 43
1 otherwise

where —0 < Ty, (x) + I, (X) + Fyppy (X)) < 14, x € Apye.

Definition: 2.12 (a,B,y)-cut of a TrapSVNpymper Arne = <(a1'az’a3’a4);uANse:’VANser’WANse:) of

definition 2.11 is defined as follows:

(ATNe)“uB:Y = [TATNel (@), TATNez (a); IATNel (ﬁ)’ IATNeZ (ﬁ)' FATNel (Y)' fATNeZ (Y)]' where, TATNel (a) = [al +

az —V;Nset%—ﬁ(az—aﬂ

K (ay — al)] Tarnes (o) = [a4 -—= (as — as)] arnes B) = [

us
ANget

W ] ’ IATNez (ﬁ) =

1-v54
ANget A

Nset

az—W;Nset%—Y(az—al)

[as—V;Nseta4+ﬁ(a4—a3) az=wzy a4+}’(0—4—a3)]
)

] ’ FATNez ()/) = [ 1S_et _

<,8S1,w;Nset<y$1and—0<a+ﬁ+y$1+.

] ;FATNel W = [

1-v4 1-w5
ANset ANset

here, 0 < a < Ugy o Vin,,,
3. Solution of Neutrosophic boundary value problem
In this section, we discuss the solution of first-order ODE with a TrapN,mpers and a different form

of linear TrapNy,mpers as initial conditions.

3.1 Solution of First-Order ODE using TrapNmper
Let us consider the first order differential equation Z—z =ky (D

with boundary condition y(x,) =& where a=((a;,a,, as a,);uz, o Vi, Wiy t) is a
se se se

TrapNnumb ers

Case (i) when k is a positive constant (ie)k > 0

The (a, 8,v)-cut of Eq. (1) is

d

e 100 @), y2(x, @) yi Ce, B), y2 (x, B)s yi' (e v), 2 (e v)]

= kly1 (x, @), y2 (x, @); y1(x, B), 2 (x, B); y1' (x,¥), y3 (x, ¥)] 2
with the initial condition
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y(xo;a, B,7) ={la; + a(a, — al)]uANset' la, —ala, — a3)]uANset; la, — B(a, — al)]vANset' las

+ p(as — aa)]UANseti la, —y(a, — al)]WANset' [as

+y(as - a)lwa, ) @®)
Solution: The general solution of Eq.(1) is y, (x, @) = e***e1 4)
Applying boundary condition in Eq.(4) we get
c; =logla; + a(a, — al)]ugNset e fxo (5)
substituting Eq.(5) in Eq.(4), we get
y1(x, @) = [a; + a(a; — al)]ugNsetek(x_XO), y2(x, @) = [ay — a(a, — as)]uANsetek(x_xO)
similarly,
Vi B) = [, = Blay — a)lva,_ e 0,y (x, B) = [a; + Blas — a)]vz,, X~

yi'(y) = la; —y(a; - a1)]WANsetek(x_x°),YE’(X, y) =las +y(a, — a3)]WANsetek(x_x°)-

Case (ii) when k is a negative constant (ie)k < 0, let us take k = —p and p > 0
The (a, ,v)-cut of Eq. (1) is

d
a[yl(xi “)»J’z(x» “)iy{(x:ﬁ):}’é(x:ﬁ)iy{’(x:)’): yél(x:y)]

= —plyi G, @), y2 (x, @); y1 (%, B), y2(x, B); y1' (x, ¥), v (x, ¥)] (6)
with the initial condition
y(xo;a, B,y) = {[a; + ala, — al)]uANsez' las —a(a,s — a3)]uANSet; [a; — B(a; — a1)]VANset» [as

+ B(as — as)]VANSeti la; —y(a; — al)]WANset’ las

+y(as — as)]WANset) @)
then the general solution of the above Egs.(6) and (7) are as follows:
yi(x,a) = [a; + a(a; — al)]uANsete_k(x_x"),yz(x, a) = [a, —ala, — a3)]uANsete_k(x_x0)
yi(x,B) = [a, — B(a, — a1)]UANset3_k(x_x°)'YE(x' B) = laz + pa, — ag)]vgNsete_k("_"O)

yi'(xy) =la, —y(a, - a1)]WANsete_k(x_x°).)’é’(x, y) =las +y(a,— a3)]wANsete_k(x_x0)

3.2 Solutions of First-Order ODE using Linear Generalized N ymper
Category (i): when the quantity of the truth, indeterminacy and falsity are not dependent

The general solution of the DE % = ky, with boundary condition y(xy) =a, where @ =

((ay, ay,a3,a4); (by, by, b3, by); (cq,C3,C3,¢4)) s @ TrapSV Npymper is as follows:
Case(i) whenk >0

Y106, @) = [a; + alaz — a0, y,(x, @) = [ay — a(a, — a)]e =)
Yi(6,B) = [b; = by = b)]eF ™0,y (x, ) = [bs + f(by — by)]e*>~0)

y1 G y) = [ep = y(cz — e)]e 7%, y7/(x,¥) = [e5 + ¥ (cq — c3)]e %)

Case(ii) whenk < 0

yi(x @) = [a, + ala, — a)]e 070, y,(x,a) = [ay — a(a, — as)]e
Y1(x,B) = [by = B(by = b)]e =%, y(x, B) = [bs + B(by — by)]e” ¥
W Y) = e = (e = ele ™ 70, yy (e y) = o+ y(cs — e5)le w0

—k(x—xg)
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Category (ii): when the quantity of indeterminacy and falsity are dependent
The general solution of the DE % = ky, (k > 0) with boundary condition y(x,) = @, where @ =

((a,a;,as,a,); (by, by, bs, by); Vin,,e WgNset) is a TrapSV N,ymper iS as follows:
Case(i) whenk >0

Y1(x: a) =[a; +a(a, — a1)]ek(x_x°)J’2(x: a) =[a, —a(a, — a3)]ek(x—xo)

G [bz - vgN;etbl - B(b; — bl)] k), 31 (x, ) = [b3 - vgsttb4 + B(by — bg)] T
- vANset - UANset
b, —wz. b, —y(b,—b bs; —wsz., by +y(b,—b
v (x,y) = [ 2 ANser "1 v (b 1)] ek(x—xo)’yé’(x‘y) - [ 3 ANser * v (b 3)] ek(x—xo)
1- Wiy, 1- Wiy,
Case(ii) whenk <0
y1(x, @) = [a; + ala, — a;)]e ¥&=%0) y, (x, @) = [a, — a(a, — az)]e &)
b, —vz., by —pB(b,—b bs —vz, by +L(by—Db
Vi B) = [ 2 = Viy,, b1 B (b, 1)]e_k("‘x°),yé(x,,8) _ [ 3~ Viy P4 B(by 3)] o kCe—x0)
1 - vANset 1 - vstet

by “WaNg,, by—y(bz—b1) ba—WgNset by+y(by—b3)

] e 0,y (x,y) = [ ] T

Category (iii): when the quantity of the truth, indeterminacy and falsity are dependent
The general solution of the DE % = ky, (k > 0) with boundary condition y(x,) = @ where @ =

((aq,a,, a3, a,); Uzy o Vi, WgNm) is a TrapSV Npymper is as follows:

Case(i) whenk >0

[ a
nxa) =|a +—I(a, - al)] k=20 y) (x,@) = |ay — —— (a4 — az) [ "0
- ANser ANger
[a, — Uz a, —pla, —a az — Vi a, +pa,—a
i B) = 2 = Viy,, % B(a; 1)] K 1 (3 ) = [ 3~ Viy,,, %4 Blas — as) SkC-x0)
) 1 _ UA"'N ) ) 1 _ UA
- set Nset
[a; —way a; —v(az —ay) as —wz, as+y(as —as)
YY) = Tt ]&wmﬂvw=[ Tk Fm%)
WANset WANset

Case(ii) whenk < 0

) " .
yi(x @) = |a; + u (a; — a1)] e KOX0) y, (x,a) = [a4 ey (a, — a3)] e ~k(x=x0)

ANset ANset
[a, — VU a, — a, —a az; — Vj a, + a, —a
i ) = [~ P 1qrmﬂwﬁ@m:[3 e
) 1 _ VAN ) ) 1 _ UA'
- set Nset
[a, —wa,  a —y(a; —ay) as —wg, a,+y(a,—as)
yi(x,y) = Nlm_ o ]e‘k("_x"),yé’(x, y) = [ "’1S€f_ — p—k(x=x0)
- ANget ANger

4. Application of the First-Order DE to the Heat Convection in Fluid

4.1 Newtons Law of Cooling
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Newtons Law of Cooling states that the rate of cooling of an object is proportional to the temperature
difference between the object and its surroundings, provided that this difference is not too large.

If we let T(t) be the temperature of the object at time t, T; be the bulk environmental temperature,

h
a =—:;

T and A; the constant surface area then we can formulate Newton's law of Cooling as

differential equation:

TO = —aA[T(t) - T3] C)

with initial condition T(t)|,=, = T(0) = Ty,.

4.2 Example: Solution of Heat Convection in Fluid
The initial temperature of an object is 80°C we place it in a refrigerator and maintained it in 5°C. If
a = 0.002m?s and 4; = 0.2m?. What will be the temperature after 8 minutes?

Crisp solution:

We have the initial condition T(0) = 80°C, the temperature of the surrounding Ty = 30°C, «

0.002m?s and Ag = 0.2m?2. Using this condition in Eq. (8) then the analytical solutions become T (t)
54 75e70:0004 At ¢ = 8, we get T(8) = 79.7604.
Solution:
The standard heat convection equation and the corresponding boundary conditions are:
dT(t)
Tt
with initial condition T'(t)|;~, = T(0) = T,.

After applying neutrosophic parameters the above equation is reformulated to the neutrosophic

= —ad;[T(t) — Ti]

differential equation.

d
(le) E [Tl (t' Of), T2 (t, Of); Tl’ (t' ﬁ)! T2’ (t' ﬁ)' T]_” (t, )/)' TZH(tJ V)]

= —aA[[Ty(t, @), T (t, a); TL(t, B), T, (&, B); T1' (6, ¥), T3 (6, 1)] — T
with the initial condition
T(to; @, B,v) = (las + ala; — al)]uANset' las —ala, — a3)]uANset; la; — Bla; — a1)]VANSet. las

+ p(as — a3)]vANset; l[a; —y(a, — al)]WANSet’ las +y(as — a3)]WANset)

(i) Using TrapN ,ymper

If the initial temperature is a TrapNyymper @ = ((3,4,5,6); 0.7, 0.6, 0.4) then the solution of the above
example is:

[TOlapy = [Ti(t, @), To(t, a); Ti (¢, B), To (¢, B); Ti' (&), T2 (£, ¥)]

where

Ty(t, a) = [3 + a]0.7[5 + 75e 7000, T, (¢t, ) = [6 — @]0.7[5 + 75e~0-0004¢]

Ti(t, B) = [4 — B10.6[5 + 75600 ]; T5(t, ) = [5 + B]0.6[5 + 75e~>°0%]

T{'(t,y) = [4 —y]0A[5 + 7570, T’ (t,y) = [5 + y]0.4[5 + 75e~%000%]

here, 0<a<1,0<pB<1,0<y<land—-0<a+p+y <3+

Said Broumi, M. Shanmugapriya, R. Sundareswaran, Applications to Heat Convection with Uncertain Initial Conditions



Neutrosophic Sets and Systems, Vol. 79, 2025 428

(ii) Using Linear Generalized N, ymper

Category (i):

If the initial temperature is a TrapSVNuymper @ = ((1,2,3,4); (5,6,7,8); (9,10,11,12)) then the solution
of the above example is:

[T(Olapy = [Ti(t, @), To(t, ) Ty (t, B), T3 (¢, B) T (&, 1), T3 (£, 1)]

where

T,(t, @) = [1 + a][5 + 75e700004]; T, (t,a) = [4 — a][5 + 75e~0-0004t]

Ti(t,B) = [5 — BI[5 + 75e 700004, Ty (¢t, B) = [7 + B][5 + 75e~0-0004t]

T, (t,y) = [10 — y][5 + 75e~00004; T,/ (¢t,y) = [11 + y][5 + 75e~0.0004¢]

here, 0<a<1,0<pf<10<y<land-0<a+f+y<3+.

Category (ii):

If the initial temperature is a TrapSVNpymper @ = ((1,2,3,4); (5,6,7,8); 0.1,0.2) then the solution of the
above example is:

[T(O]apy = [Tt @), To(t, a); T{ (6, B), T3 (¢, B); T1' (6, ¥), T3 (£, )]

where
Ty (6, @) = [1 + a][5 + 75700004, T, (¢, @) = [4 — ][5 + 75 ~0-0004¢]
35— 62+
T{(t,B) = [ 'B] [5 + 757000047 /(¢ B) = [ B [5 + 75e-0-0004¢]
0.9 0.9
54+y

5 _
T/ (t,y) = [0—8]/] [5 + 757000047, T/ (¢, ) = [ ] [5 + 75-0-0004]

0.8
here, 0<a <l <f<lw<y<land—-0<f+y<l1l+4and - 0<a+pf+y<2+.

Category (iii):

If the initial temperature is a TrapSVNpymper @ = ((1,2,3,4); 0.1,0.2,0.3) then the solution of the above
example is:

[T(O]apy = [Tt ), To(t, a); T{ (8, B), T3 (¢, B); T1' (6, ¥), T3 (£, Y)]

where

— i —0.0004t7. — — i —0.0004t
T(ta) =1+ 0.1] [5 + 75e I Ty(ta) = [4 0.1] [5 + 75e ]

1.8 - 2.2 +

T/(t,B) = [ 0B B] [5 + 757000047 /(¢ B) = [ 8 B [5 + 75¢00004¢]
1.7 - 1.8 +

Ti'(ty) = [ 07 )/] [5 + 757000041, T (¢,y) = [ o y] [5 + 75¢~0:0004t]

here, 0<a<uy, vy <f<lwy<y<land—-0<a+pB+y<1+.

The solution of the temperature distribution of T(t) = 5 + 75e~%99%* for various t and 0 < a, B,y <
1 TrapNyymper and linear generalized Npymper with different categories are depicted in Tables 1-4.
These tables summarize the behavior of truth, indeterminacy, and falsity under various (a, §,v) - cut
values at t = 8. It is observed that the results of T (t) satisfies the condition of strong solution.

Table 1. Trap Ny mper solution for the different values of o, f and y att = 8
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a nta) | Tp(ta) B n@p) | T(tB) Y 'ty | T'(ty)
0.1 173.0800 | 329.4103 0.1 186.6392 | 244.0667 0.1 124.4261 | 162.7111
0.2 178.6632 | 323.8271 0.2 181.8536 | 248.8523 0.2 121.2357 | 165.9015
0.3 184.2464 | 318.2439 0.3 177.0680 | 253.6380 0.3 118.0453 | 169.0920
0.4 189.8297 | 312.6607 0.4 172.2824 | 258.4236 0.4 114.8549 | 172.2824
0.5 195.4129 | 307.0774 0.5 167.4968 | 263.2092 0.5 111.6645 | 175.4728
0.6 200.9961 | 301.4942 0.6 162.7111 | 267.9948 0.6 108.4741 | 178.6632
0.7 206.5793 | 295.9110 0.7 157.9255 | 272.7805 0.7 105.2837 | 181.8536
0.8 212.1626 | 290.3277 0.8 153.1399 | 277.5661 0.8 102.0932 | 185.0440
0.9 217.7458 | 284.7445 0.9 148.3543 | 282.3517 0.9 98.9028 | 188.2345

1 223.3290 | 279.1613 1 143.5686 | 287.1373 1 95.7124 | 191.4249

Table 2. TrapSV Nyymper solution for the different values of a, f and y at t = 8 when the quantity of

the truth, indeterminacy and falsity are not dependent

a nta) | Tt a) B n@p) | T(tB) Y 'ty | T'(ty)
0.1 87.7364 | 311.0654 0.1 470.5862 | 566.2987 0.1 789.6277 | 885.3402
0.2 95.7124 | 303.0894 0.2 462.6102 | 574.2747 0.2 781.6517 | 893.3162
0.3 103.6884 | 295.1134 0.3 454.6341 | 582.2508 0.3 773.6757 | 901.2923
0.4 111.6645 | 287.1373 0.4 446.6581 | 590.2268 0.4 765.6996 | 909.2683
0.5 119.6405 | 279.1613 0.5 438.6821 | 598.2028 0.5 757.7236 | 917.2444
0.6 127.6166 | 271.1853 0.6 430.7060 | 606.1789 0.6 749.7476 | 925.2204
0.7 135.5926 | 263.2092 0.7 422.7300 | 614.1549 0.7 741.7715 | 933.1964
0.8 143.5686 | 255.2332 0.8 414.7539 | 622.1309 0.8 733.7955 | 941.1725
0.9 151.5447 | 247.2571 0.9 406.7779 | 630.1070 0.9 725.8194 | 949.1485

1 159.5207 | 239.2811 1 398.8019 | 638.0830 1 717.8434 | 957.1246

Table 3. TrapSVNypymper solution for the different values of a, f and y at t = 8 when the quantity of

indeterminacy and falsity are dependent

a Ty (t a) T, (t, @) B Ti(tB) Tt B) Y 'y | T'(Gy)
0.10 87.7364 311.0654 | 0.20 | 469.7000 | 567.1849 | 0.300 | 468.5922 568.292
0.15 91.7244 307.0774 | 0.25 | 465.2689 | 571.6160 | 0.325 | 466.0997 570.7852
0.20 95.7124 303.0894 | 0.30 | 460.8377 | 576.0472 | 0.350 | 463.6072 573.2777
0.25 99.7004 299.1014 | 0.35 | 456.4066 | 580.4783 | 0.375 | 461.1147 | 575.7702
0.30 | 103.6884 | 295.1134 | 0.40 | 451.9755 | 584.9094 | 0.400 | 458.6222 578.2627
0.35 | 107.6765 | 291.1254 | 0.45 | 447.5443 | 589.3406 | 0.425 | 456.1296 580.7552
0.40 | 111.6645 | 287.1373 | 0.50 | 443.1132 | 593.7717 | 0.450 | 453.6371 583.2478
0.45 | 115.6525 | 283.1493 | 0.55 | 438.6821 598.2028 | 0.475 | 451.1446 585.7403
0.50 | 119.6405 | 279.1613 | 0.60 | 434.2509 | 602.6340 | 0.500 | 448.6521 588.2328
0.55 | 123.6285 | 275.1733 | 0.65 | 429.8198 | 607.0651 | 0.525 | 446.1596 590.7253

Table 4. TrapSV Nyymper solution for the different values of a, f and y at t = 8 when the quantity of

the truth, indeterminacy and falsity are dependent

a T (t, a) T,(t, @) B TitpB) | Tp(tB) Y Ty (t,y) T, (6, y)
001 | 87.7364 | 311.0654 | 0250 | 154.5357 | 244.2661 | 0.325 | 156.6721 | 242.1297
0.02 | 957124 | 303.0894 | 0275 | 152.0432 | 246.7586 | 0.350 | 153.8235 | 244.9783
0.03 | 103.6884 | 295.1134 | 0.300 | 149.5507 | 249.2511 | 0.375 | 150.9750 | 247.8269
0.04 | 111.6645 | 287.1373 | 0.325 | 147.0582 | 251.7437 | 0.400 | 1481264 | 250.6754
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0.05 | 119.6405 | 279.1613 | 0.350 | 144.5656 | 254.2362 | 0.425 | 145.2778 253.5240
0.06 | 127.6166 | 271.1853 | 0.375 | 142.0731 256.7287 | 0.450 | 142.4292 256.3726
0.07 | 135.5926 | 263.2092 | 0.400 | 139.5806 | 259.2212 | 0.475 | 139.5806 259.2212
0.08 | 143.5686 | 255.2332 | 0.425 | 137.0881 261.7137 | 0.500 | 136.7320 262.0698
0.09 | 151.5447 | 2472571 | 0.450 | 134.5956 | 264.2062 | 0.525 | 133.8835 264.9184
0.1 159.5207 | 239.2811 | 0.475 | 132.1031 266.6987 | 0.550 | 131.0349 267.7670

5. Results and Discussion

5.1 Analysis of 3D contour plots

The temperature distribution of T(t,a) = [3+ a]0.7[5 + 757200, T,(¢t,a) = [6 — «]0.7[5 +
75e700004] for 0 < @ <1 and 100 <t < 1000, which is shown if Fig. 1 and 2. The temperature
distribution of T, (¢, @) = [1 + a][5 + 75 %9004 T, (¢, a) = [4 — a][5 + 7572999 for 0 < @ < 1 and
100 < t <1000, which is shown if Fig. 3 and 4. The temperature distribution of T;(t,a) =
[1+ a][5 + 75e700004) T, (¢, a) = [4 — a][5 + 75¢720004] for 0 <a < 0.55 and 100 <t < 1000,

which is shown if Fig. 5 and 6. The temperature distribution of T;(t,a) = [1+0a—1] [5+

75e700004), T, (t, @) = [4 — 2] [5 + 752 ]for 0 < @ < 0.1 and 100 < ¢ < 1000, which is shown

if Fig. 7 and 8. It is noted that, the upsurging values of a,fB,y increase
Ty (t, @) and decrease T, (t, a) where as T (t, £) and Ty’ (¢, ) are diminishing functions and T, (¢, ) and
T,'(t,y) are elevation functions. Therefore, the mentioned heat convection problem satisfies the

conditions of the strong solutions of a neutrosophic difference equation [12] (ie) T;(t,a) <

Tt @), Ti(6B) S TY(E BT (61) S T (6 ) and = [Ty(6,@)] > 0, = [T,(6,)] < 0; = [T{(t. )] <

0,% [T;(t, B)] > 0; ;—y [T(t,v)] < 0,;—y [T,'(t,y)] > 0. Hence the obtained solution is a strong

solution.
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Fig. 3. Impactof tin T; (¢, a)
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5.2 Analysis of TrapN pymper and TrapSVN ,ymper plots

Figure 9 demonstrates that, as @ — cut values increase, the lower bound of truth membership, T; (t, a)
rises, while the upper bound, T,(t, @) decreases. This trend shows a diminishing uncertainty as the
values approach the exact solution. Similarly, Figure 10 shows that for indeterminacy membership,
both the lower bound T (t,8) and T,(t, ) upper bound decrease with increasing f — cut values,
confirming that indeterminacy is minimized as the f —cut values approach. In figures
11 (a), (b) and (c), when the dependency of falsity on y — cut is introduced, the lower bound
T{'(t,y) shows a decreasing trend, while the upper bound T,'(t,y) rises. This reveals that falsity
becomes more important at higher y — cut values. Finally, figures 12 (a), (b) and (c) presents the
truth, indeterminacy, and falsity are considered dependent. The data suggests that as a — cuts values
increase and f — cut and higher y — cut values decrease, the lower bound of truth membership rises,
and indeterminacy and falsity gradually diminish. This points to a convergence toward the exact

solution when the dependencies are balanced.
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6. Conclusion

In recent years, mathematical modeling that incorporates uncertainty or vagueness has found
significant applications across various industries and engineering fields. In this research paper, we
analyze the solution of first-order DE in neutrosophic environment. The («a, §,y) — cut neutrosophic
set and the strong and weak solutions of neutrosophic DE concepts are also applied for the DE with
a TrapNpymper and a linear generalized TrapN,mperas initial conditions. Furthermore, the
application of this first-order DE to the heat convection problem in fluid dynamics provides a more

comprehensive interpretation of differential equations in uncertain conditions.
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