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Abstract. This article uses the fractional residual power series (FRPS) method to solve a linear neutrosophic

fractional integro-differential equation in two dimensions. In what context does the term ”fractional derivative”

appeared, we presented the modified fractional power series method, a new technique that uses fractional

power series expansion to approximate neutrosophic fractional integro-differential equations. A modified new

method has been formulated, which is an improvement on the RPS, named as Modified Fractional Power Series

Method (MFPSM), to solve the same problem under investigation. Novel results associated with the rate of

convergent and error order of the (MFPSM) was examined, and some findings—along with detailed proof—were

documented as theories. Several numerical examples are used to describe and test the validity and applicability

of preset approaches. We investigate a semi-infinite rod using the solution of our model, where heat transfer is

influenced by both the memory of past states and the current temperature distribution. The fractional derivative

of order α is used to represent memory effects in heat transfer processes. To demonstrate the precision and

efficacy of the two approaches, the results are shown in terms of tables and graphs. The modified fractional

power series approach proved to be more effective, efficient, and straightforward for solving the neutrosophic

two-dimensional integro-differential equations than the residual power series method, while also generating less

error and computing time.

Keywords: Fractional residue power series method; numerical solutions; Heat Transfer; Neutrosophic Inte-

gral Equations; Fredholm integro-differential equation in two dimensions.
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1. Introduction

In many fields, including science, engineering, and modeling, integral and integro-differential

equations are used to represent issues. The intricacy of most of these equations makes it diffi-

cult to acquire analytical solutions; consequently, it is crucial to develop numerical methods to

obtain approximate answers. Significant advancements have been made in the last fifty years

in the development of analytical and numerical solutions for various types of integral equations;

both linear and nonlinear examples have been taken into consideration. Few numerical tech-

niques have been used to approximate the solutions of two-dimensional problems, despite the

fact that there are numerous approaches for one-dimensional integral and integro-differential

equations. Given the numerous uses of two-dimensional integral and integro-differential equa-

tions in physics, mechanics, modeling, engineering, and other applied sciences, methods for

handling these equations also need further attention. Neutrosophic integro-differential equa-

tions are used in many different domains, such as engineering and medicine, proving their

adaptability in simulating dynamic systems with inherent uncertainties. As a result, neu-

trosophic calculus enhances the theory of integral differential equations and provides a more

thorough method for handling real-world complexity than interval computations.

Using an approximating subspace, a unique space of spline functions, [34] and [31] examined

the numerical solution of two-dimensional Fredholm integral equations. [36] used artificial

neutral networks for modeling and simulating complex real-world problems in two-dimensional

Volterra-type fractional integro-differential equations. In [3, 17], it is demonstrated that the

non-linear Fredholm integro-differential equation in two dimensions exists and has a unique

solution.

The basic concepts of fractional calculus were first presented by the Marquis de Hopital and

G.W. Leibniz in 1695, as is well known. Since then, a number of other people have defined

fractional operators [29]. Due to their applicability in a variety of scientific fields, such as

physics, chemistry, engineering, and others, fractional-order integro-differential equations have

been the focus of more discussion in the literature. As a result, alternative numerical methods

are being given much more consideration.

Abu Arqub was the first who proposed the residual power series method (RPSM) in

2013 [11]. He also introduced a new method to obtain a numerical solution for linear and

non-linear fuzzy problems. Additionally, this method was used to obtain a series solution to

the non-linear time fractional reaction diffusion equation [43]. Authors in [43] found that the

method is effective and powerful in solving that equation. In [10], Alquran developed a new

study of finding the analytic solution to the time fractional two-component evolutionary system

of order 2 using RPSM. The time-fractional foam drainage equation was also introduced by [9].
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The time fractional Zakharov-Kuznetsov equation was approximated by Alquran in [37] using

RPSM. Also, they provided the RPSM convergence study and demonstrated the method’s

competitiveness, strength, dependability, and ease of use. The RPSM was used in [19] to

obtain an approximation solution and an analytical solution for the fractional Susceptible-

Infected-Recovered (SIR) epidemic model in the form of a convergent power series. The time

fractional Korteweg de Vries was numerically solved by Senol and Ayse [38], and the RPSM

is used to generate a modified version of the solution. The multi-pantograph delay differen-

tial equations system was approximated by the authors of [21] using RPSM. Similarly, using

the RPSM, the authors of [22] discovered an analytic solution to the system of 1-dimensional

Fredholm integral equations. Furthermore, Bayrak and Demir found numerical solutions to

space-time fractional partial differential equations using the RPSM [12].

Numerous physical phenomena, including heat conduction in memory-containing materi-

als and diffusion processes, are modeled by fractional integro-differential equations. In [27],

Nawaz used the variational iteration method and the homotopy perturbation method to ap-

proximate solutions to the nonlinear boundary value problems for 4th-order fractional integro-

differential equations. While, for the linear Volterra integro-fractional differential equation,

Ahmed and Salh in [2] employed the generalized Taylor matrix approach. Also, the homotopy

perturbation method was used by Saeedi and Samimi [35] to approximate non-linear Fred-

holm integro-fractional differential equations. The Chebyshev-Legendre spectral approach for

fractional Fredholm integro-differential equations was later proposed by the authors of [44].

Rashed [32] addressed a particular class of integro-differential equations. Additionally, Hu [20]

proposed the interpolation collocation method to solve the Fredholm linear integro-differential

equations analytically. Heris used the modified Laplace Adomian decomposition approach to

find approximate solutions for integro-differential equations. However, no one has yet used

RPSM to solve fractional integro-differential equations in two dimensions. Evaluating the

function coefficients that show up in the definite integral term is the difficult part. Fractional

integro-differential equation in two-dimensions has numerical solutions obtained in [15] using

the Haar wavelet method.

Integro-differential equations are a special and intriguing area of mathematics. The theory

of heat conduction is typically the source of problems involving time as an independent vari-

able. For example, its solution yields the temperature at a distance x following a temperature

distribution of t seconds. In practice, integro-differential equations representing dynamical

systems frequently provide ambiguous or insufficient information, particularly when it comes

to heat transfer equations. The initial conditions, boundary conditions, and other compo-

nents of integro-differential equations can all exhibit this uncertainty. Therefore, in order to
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get more accurate results than those based on real conditions, we solve integro-differential

equations based on neutrosophic conditions. In [26], the authors give a scientific summary of

neutrosophists.

An equation with an unknown neutrosophic function appearing under one or more integral

signs is known as a neutrosophic integral equation, which has the following form

u(x, I) = f(x, I) + λ

∫ b

a
K(x, t, I)u(t, I)dt,

where u(x, I) is the unknown neutrosophic function, I is an indeterminate number, while

f(x, I) and K(x, t, I) are known functions, and λ, a, b are constants, for more details see [13,

40–42]. In [39], a suggested neutrosophic Laplace transform technique that makes it possible

to solve integral equations involving non-linear neutrosophic numbers effectively is presented.

A modified iterative approach in a neutrosophic setting has been used in [25] to determine the

numerical solution of the second-kind Fredholm integral equation. Using certain theorems, it

has been shown that the iterative method converges in a neutrosophic environment. For further

studies of these results, these tools can be developed by linking them with other concepts that

can be found in the following works [1, 4–8,23].

In this article, we will examine two novel methods for finding exact or numerical solutions to

the two-dimensional neutrosophic fractional integro-differential equations of the general form:

Dα
t u(x, t, I) = f(x, t, I) + g(x, I)

∫ a

0

∫ b

0
K(t, y, τ, I)u(y, τ, I)dτdy, (1)

where Dα
t u(x, t, I) is the Caputo derivative of u(x, t, I) with respect to t, and 0 < α ≤ 1

denotes the fractional derivative of order α. We solve equation (1) subject to the neutrosophic

initial condition u(x, 0, I) = F (x, I).

Examine a semi-infinite rod in which the memory of previous states and the current temper-

ature distribution both affect heat transfer. Equation (1) provides a two-dimensional fractional

Fredholm integro-differential equation that models this phenomenon. Memory effects in heat

transfer processes are represented by the fractional derivative of order α, the kernel function

characterizing the memory effect is K(t, y, τ, I), and the temperature distribution at position

x and time t is u(x, t, I). Here, the fractional-order rate of temperature change is captured by

Dα
t u(x, t, I), which takes into consideration memory effects that are common in materials with

thermal hysteresis. The cumulative effect of previous temperatures, weighted by the kernel

K, is represented by the expression g(x, I)
∫ a

0

∫ b
0 K(t, y, τ, I)u(y, τ, I), dτ, dy. Applications of

this model can be found in materials with unusual heat conduction characteristics, such as

composite materials, biological tissues, or polymers, where thermal response is dependent on

both the current and previous states (see [24,30]).
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2. Preliminaries and Basic Concepts

2.1. Caputo’s Fractional Derivative

In this work, the fractional derivatives are considered in the sense of Caputo, which is defined

in the following definition.

Definition 2.1 (Caputo derivative). [16] Let α > 0 such that n−1 < α < n for some n ∈ IN.

The Caputo fractional derivative of f(x) is defined by

Dα
xf(x) =

1

Γ(n− α)

∫ x

0
f (n)(t)(x− t)n−α−1dt. (2)

It is not hard to check that Caputo derivative is linear operator. The following formulas are

helpful in order to compute Caputo derivative of common functions (see [14,16,33]).

(1) Dα
t (tp) =


Γ(p+1)

Γ(p−α+1) t
p−α , n− 1 < α < n, p > n− 1, p ∈ IR

0 , n− 1 < α < n, p ≤ n− 1, p ∈ IN0.

(2) The Caputo fractional derivative of the exponential function has the following form:

Dα
t e

λt =
∞∑
k=0

λk+ntk+n−α

Γ(k + 1 + n− α)
.

2.2. Fractional Power series

Definition 2.2. [18] A fractional power series (FBS) about c is a formal sum of the form

∞∑
n=0

an(x− c)nα = a0 + a1(x− c)α + a2(x− c)2α + · · · ,

where α>0 x ≥ c, c is a constant, x is a variable, and a′ns are the coefficients of the series.

As in the case of ordinary power series, the fractional power series has interval of convergence

and radius of convergence, which we state in the following two theorems (see [18]).

Theorem 2.3. We have two cases for the FPS
∑∞

n=0 anx
nα, x ≥ 0:

(1) If the FPS converges when x = b > 0, then it converges whenever 0 ≤ x < b,

(2) If the FPS diverges when x = d > 0, then it diverges whenever x > d.

Theorem 2.4. The PS at c = 0 and −∞ < x < ∞ has radius of convergence R if and only

if the FPS at c = 0 and x ≥ 0 has radius of convergence R
1
α .
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3. Residual Power Series Method (RPSM)

3.1. Methodology of RPSM

In this part, we solve 2-dimensional fractional Fredholm integro-differential equations using

the residual power series approach. How to handle the evaluation of the coefficient functions

that show up in the integral term is our contribution. To the best of our knowledge, we are the

first to solve these kinds of problems using RPSM. Consider the following: Integro-differential

equation of Fredholm

Dα
t u(x, t, I) = f(x, t, I) + g(x, I)

∫ a

0

∫ b

0
K(t, y, τ, I)u(y, τ, I)dτdy, (3)

based on the condition

u(x, 0, I) = C0(x, I) (4)

where 0 < α ≤ 1 and (x, t, I) ∈ [0, a]× [0, b].

It is assumed by the residual power series approach [28] that the fractional power series form

of the solution of (3) can be expanded

u(x, t) =
∞∑
n=0

Cn(x)
tnα

Γ(nα+ 1)
,

and defines the N th approximation of u(x, t) by

uN (x, t) =

N∑
n=0

Cn(x)
tnα

Γ(nα+ 1)
. (5)

Moreover, the kth residual function for (3) is defined by

Resu,k(x, t) = Dα
t uk(x, t)− f(x, t)− g(x)

∫ a

0

∫ b

0
K(t, y, τ)uN (y, τ)dτdy. (6)

Note that the fact that Caputo derivative of a constant is 0 implies that

D
(k−1)α
t Resu,k(x, t)

∣∣∣
t=0

= 0, for k = 1, 2, ... .

We must compute the function coefficients C1(x), C2(x), ..., CN (x) in order to get an approx-

imate solution of N th, where C0(x) = u(x, 0) is already provided. Therefore, we build the

system.

D
(k−1)α
t Resu,k(x, t)

∣∣∣
t=0

= 0, for k = 1, 2, ...N. (7)
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We simplify (7) by computing

D
(k−1)α
t Resu,k(x, t)

∣∣∣
t=0

= D
(k−1)α
t

(
Dα
t

(
k∑

n=0

Cn(x)
tnα

Γ(nα+ 1)

)
− f(x, t)−

g(x)

∫ a

0

∫ b

0
K(t, y, τ)

(
k∑

n=0

Cn(y)
τnα

Γ(nα+ 1)

)
dτdy

)∣∣∣
t=0

=

k∑
n=0

Cn(x)
Dkα
t [tnα]

Γ(nα+ 1)
−D(k−1)α

t f(x, t)−

g(x)

∫ a

0

∫ b

0
D

(k−1)α
t [K(t, y, τ)]

(
k∑

n=0

Cn(y)
τnα

Γ(nα+ 1)

)
dτdy

∣∣∣
t=0

= Ck(x)−D(k−1)α
t f(x, 0)−

g(x)

∫ a

0

∫ b

0
D

(k−1)α
t K(0, y, τ)

(
k∑

n=0

Cn(y)
τnα

Γ(nα+ 1)

)
dτdy

= Ck(x)−D(k−1)α
t f(x, 0)−

g(x)

k∑
n=0

∫ a

0
Cn(y)

(∫ b

0
D

(k−1)α
t K(0, y, τ)

τnα

Γ(nα+ 1)
dτ

)
dy.

If we set

hk,n(y) =

∫ b

0
D

(k−1)α
t K(0, y, τ)

τnα

Γ(nα+ 1)
dτ, for n = 0, 1, 2, ..., k, (8)

and

ηk,n =

∫ a

0
Cn(y)hk,n(y)dy, for n = 0, 1, 2, ..., k. (9)

Then, for k = 1, 2, 3, ..., N , we have

D
(k−1)α
t Resu,k(x, t)

∣∣∣
t=0

= Ck(x)−D(k−1)α
t f(x, 0)− g(x)

k∑
n=0

ηk,n = 0,

or equivalently,

Ck(x) = D
(k−1)α
t f(x, 0) + g(x)

k∑
n=0

ηk,n = 0, (10)

Our next step is to calculate ηk,n for n = 0, 1, 2, ..., k and k = 1, 2, 3, ..., N . The process is

recursive. In Equation (10), enter k = 1 to obtain

C1(x) = f(x, 0) + g(x)η1,0 + g(x)η1,1. (11)

Observe that

η1,0 =

∫ a

0

∫ b

0
K(0, y, τ)C0(y)dτdy.
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Thus, η1,1 is found in terms of η1,0. Multiplying Equation (11) by h1,1(x) and integrating over

[0, a] will do this.

η1,1 −
∫ a

0
h1,1(x) (f(x, 0) + η1,0g(x)) dx− η1,1

∫ a

0
h1,1(x)g(x)dx = 0.

It follows that

η1,1 =

∫ a
0 h1,1(x) (f(x, 0) + η1,0g(x)) dx

1−
∫ a

0 h1,1(x)g(x)dx
,

and finally,

C1(x) = f(x, 0) + g(x) (η1,0 + η1,1) .

Now, plug k = 2 in Equation 10:

C2(x) = Dα
t f(x, 0) + g(x)η2,0 + g(x)η2,1 + g(x)η2,2 (12)

We find only η2,2 because, once more, η2,0 and η2,1 are known. As in η1,1, we solve for η2,2 by

multiplying Equation (12) by h2,2(x), integrating over [0, a].

η2,2 =

∫ a
0 h2,2(x) (Dα

t f(x, 0) + η2,0g(x) + η2,1g(x)) dx

1−
∫ a

0 h2,2(x)g(x)dx
.

Inductively, we have

Ck(x) = D
(k−1)α
t f(x, 0) + g(x)

k∑
n=0

ηk,n,

where

ηk,n =

∫ a

0

∫ b

0

τnα

Γ(nα+ 1)
D

(k−1)α
t K(0, y, τ)Cn(y)dτdy, for n = 0, 1, 2, ..., k − 1, (13)

and

ηk,k =

∫ a
0 hk,k(x)D

(k−1)α
t f(x, 0)dx+

∫ a
0 g(x)hk,k(x)dx

∑k−1
n=0 ηk,n

1−
∫ a

0 hk,k(x)g(x)dx
. (14)

4. Applications of FPSM to Linear Fractional Problem

Here, we go over two cases to illustrate the process of the suggested approach. Following a

review of the findings, we will offer some suggestions and remarks.

Example 4.1. Consider the two-dimensional linear fractional Fredholm integro-differential

equation:

D0.5
t u(x, t) = − 4

675
+

3

4

√
π t x2 +

∫ 1

0

∫ 1

0
(y2 − τ2)u(y, τ) dτ dy, (15)

subject to the initial condition u(x, 0) = 4. The exact solution is given by: u(x, t) = x2 t3/2 +4.

and f(x, t) = − 4
675 + 3

4

√
π t x2 and g(x) = 1 provide the source term in this equation. According

to the technique, we assume that the approximate solution takes the following form:

u(x, t) =

4∑
n=0

Cn(x)
tnα

Γ(nα+ 1)
,
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In this case, we employ α = 0.5 and the first four fractional powers of the fractional power

series expansion. To calculate C0(x), we simply utilize the initial condition, which yields:

C0(x) = u(x, 0) = 4.

While, the coefficient C1(x) is given by:

C1(x) = f(x, 0) + g(x) (η1,0 + η1,1)

= − 4

675
+ η1,0 + η1,1 =

32

5400 + 42525
√
π
− 4

675
.

Therefore, the first residual power series approximate solution is:

u1(x, t) = 4− 56
√
t

75(8 + 63
√
π)
.

Next, in order to compute C2(x), it is to be noted that the coefficient C2(x) is given by:

C2(x) = D
1
2
t f(x, 0) + g(x) (η2,0 + η2,1 + η2,2)

= η2,0 + η2,1 + η2,2 = 0.

As a result, the second approximate residual power series solution is:

u2(x, t) = 4− 56
√
t

75(8 + 63
√
π)
.

Finally, we compute C3(x). The coefficient C3(x) is given by:

C3(x) = D
(2) 1

2
t f(x, 0) + g(x)

3∑
n=0

η3,n =
3
√
πx2

4
.

Consequently, the following is the estimated third residual power series solution:

u3(x, t) = 4− 56
√
t

75(8 + 63
√
π)

+ t
3
2x2.

We provide Table 1, which displays the absolute errors at chosen sites for particular values

of x and t, to demonstrate the accuracy of the approximate solutions. Additionally, Figure

(1) shows the comparison of the approximate and exact results.

Example 4.2. Consider the fractional Fredholm integro-differential equation (1) as

Dα
t u(x, t) = f(x, t) + g(x)

∫ 1

0

∫ 1

0
K(t, y, τ)u(y, τ) dτ dy, (16)

subject to the initial condition:

u(x, 0) = C0(x), (17)

where:

f(x, t) = −(2/3) + et Erf(
√
t), K(t, y, τ) = yτ, g(x) = 1, C0(x) = 1 + x, and α = 0.5.
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t x u(x, t) u3(x, t) |u(x, t)− u3(x, t)|
0.1 4.00032 3.999125 1.19× 10−3

0.2 4.00127 3.99956 1.71× 10−3

0.3 4.00255 4.00168 1.04× 10−3

0.4 4.00506 4.00475 8.70× 10−4

0.1 0.5 4.00791 4.00854 6.31× 10−4

0.6 4.01139 4.01285 1.46× 10−3

0.7 4.01549 4.01767 2.18× 10−3

0.8 4.02020 4.02918 2.91× 10−3

0.9 4.02554 4.02918 3.63× 10−3

0.1 4.10207 4.10254 4.70× 10−4

0.2 4.05578 4.05879 3.01× 10−3

0.3 4.08795 4.08145 6.50× 10−3

0.4 4.25454 4.25987 5.33× 10−3

0.3 0.5 4.38511 4.38125 3.86× 10−3

0.6 4.41325 4.41456 1.31× 10−3

0.7 4.65421 4.65897 4.76× 10−3

0.8 4.81250 4.81453 2.03× 10−3

0.9 4.85652 4.85132 5.20× 10−3

0.1 4.32315 4.32520 2.05× 10−3

0.2 4.15864 4.15352 5.12× 10−3

0.3 4.30195 4.30315 1.20× 10−3

0.4 4.36862 4.36121 7.41× 10−3

0.5 0.5 4.55385 4.55982 5.97× 10−3

0.6 4.81148 4.81671 5.23× 10−3

0.7 4.10541 4.10662 1.21× 10−3

0.8 4.44472 4.44802 3.30× 10−3

0.9 4.82362 4.82555 1.93× 10−3

Table 1. Absolute Error Analysis for the Approximate Solutions at Selected Points

for Example 4.1

The exact solution is u(x, t) = et + x. It is assumed that the RPSM solution can be expressed

as follows in order to determine the problem’s approximate solution:

u(x, t) =

∞∑
n=0

Cn(x)
tnα

Γ(nα+ 1)
, (18)
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where the N -th approximation is:

uN (x, t) =
N∑
n=0

Cn(x)
tnα

Γ(nα+ 1)
. (19)

Our next objective is to determine the coefficients and residual function: The residual function

for that is:

Resu,k(x, t) = Dα
t uk(x, t)− f(x, t)− g(x)

∫ a

0

∫ b

0
K(t, y, τ)uN (y, τ) dτ dy. (20)

Recursively, the coefficients Ck(x) are calculated using:

Ck(x) = D
(k−1)α
t f(x, 0) + g(x)

k∑
n=0

ηk,n, (21)

ηk,n =

∫ a

0
Cn(y)

∫ b

0

τnα

Γ(nα+ 1)
D

(k−1)α
t K(0, y, τ) dτ dy. (22)

For k = 1, we compute:

C1(x) = f(x, 0) + g(x)(η1,0 + η1,1),

where:

η1,0 =

∫ a

0

∫ b

0
K(0, y, τ)C0(y) dτ dy.

We now determine the recursive coefficient computation. When the coefficients are greater

(k ≥ 2):

Ck(x) = D
(k−1)α
t f(x, 0) + g(x)

k∑
n=0

ηk,n, (23)

ηk,k =

∫ a
0 hk,k(x)D

(k−1)α
t f(x, 0)dx+

∫ a
0 g(x)hk,k(x)

∑k−1
n=0 ηk,ndx

1−
∫ a

0 hk,k(x)g(x)dx
. (24)

For this example:

C1(x) = −(1/4)− 1/(−4 + 10
√
π), C2(x) = 1, C3(x) = 0, C4(x) = 1, . . .

Finally, the approximate solution is:

uapp(x, t) = C0(x) +

N∑
n=1

Cn(x)
tnα

Γ(nα+ 1)
, (25)

where:

uapp(x, t) = 1 + x+
2 (−(1/4)− 1/(−4 + 10

√
π))
√
t√

π
+ t+

t2

2
+
t3

6
.

In order to study the error analysis, we refer to table 2 that present the absolute error for

various values of x and t. This illustration shows how to approximate solutions for fractional

integro-differential equations using the Residual Power Series Method (RPSM).
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t x Approximate Solution Absolute Error

0.0 0.989961 0.104246

0.1 1.089960 0.095596

0.1 0.2 1.189960 0.088272

0.3 1.289960 0.081990

0.4 1.389960 0.076543

0.5 1.489960 0.071774

0.0 1.149960 0.148090

0.1 1.249960 0.137876

0.2 1.349960 0.128980

0.3 0.3 1.449960 0.121162

0.4 1.549960 0.114238

0.5 1.649960 0.108062

0.0 1.388230 0.157998

0.1 1.488230 0.148963

0.2 1.588230 0.140905

0.5 0.3 1.688230 0.133675

0.4 1.788230 0.127150

0.5 1.888230 0.121232

Table 2. Absolute Error Analysis for the Approximate Solutions at Selected Points

for Example 4.2

5. Modified Fractional Power Series Method

In order to address the same problem, the power series solution approach is modified to

fractional order in this section’s work.

5.1. Methodology of Modified Fractional Power Series Method (MFPSM)

In this section we present a new method using fractional series to solve fractional integro-

differential equations of two dimensions. More precisely, we consider the following fractional

integro-differential equation

Dα
t u(x, t) = f(x, t) +

∫ a

0

∫ b

0
K(y, τ)u(y, τ)dydτ, (26)

subject to the initial condition

u(x, 0) = C0(x),

where 0 < α ≤ 1 and (x, t) ∈ [0, a]× [0, b].
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We assume the solution has the fractional series expansion

u(x, t) =
∞∑
n=0

Cn(x)tnα. (27)

Next, we approximate u(x, t) by

u(x, t) ≈ uN (x, t) =
N∑
n=0

Cn(x)tnα.

Where Cn(x) are unknown function coefficients to determined. Using the notation β! =

Γ(β + 1), the fact that

Dα
t (tnα) =

(nα)!

((n− 1)α)!
t(n−1)α,

and substituting uN (x, t) in (26) to get

Dα
t (C0(x) + C1(x)tα + C2(x)t2α + · · ·+ CN (x)tNα) = f(x, t)

+

∫ a

0

∫ b

0
K(y, τ)

(
C0(y) + · · ·+ CN (y)tNα

)
dτdy.

Define

A =

∫ a

0

∫ b

0
K(y, τ)

(
C0(y) + · · ·+ CN (y)tNα

)
dτdy, (28)

then we have

C1(x)α! + C2(x)
2α!

α!
tα + · · ·+ CN (x)

(Nα)!

((N − 1)α)!
t(N−1)α = f(x, t) +A. (29)

Now, evaluate Equation (29) at t = 0 to obtain

C1(x)α! = f(x, 0) +A.

Thus

C1(x) =
f(x, 0) +A

α!
, (30)

where A still unknown constant. Next, by differentiating Equation (29) α-fractional derivative

and evaluating at t = 0, one can have

C2(x)(2α)! = Dα
t f(x, 0),

thus

C2(x) =
Dα
t f(x, 0)

(2α)!
.

Inductively, differentiate Equation (29) n α-fractional derivatives and evaluate at t = 0, to get

Cn(x) =
D

(n−1)α
t f(x, 0)

(nα)!
, n = 2, 3, 4, · · · , N. (31)
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Note that the coefficients Cn(x) are known now, except for n = 1. Now, to evaluate C1(x) we

need to compute the constant A. Go back to

A =
N∑
n=0

∫ a

0

∫ b

0
K(y, τ)Cn(y)τnαdτdy,

and set

Kn =

∫ a

0

∫ b

0
K(y, τ)Cn(y)τnαdτdy.

Then,

K0 =

∫ a

0

∫ b

0
K(y, τ)u(y, 0)dτdy,

K1 =

∫ a

0

∫ b

0
K(y, τ)

f(y, 0) +A

α!
ταdτdy, and

Kn =

∫ a

0

∫ b

0
K(y, τ)

D
(n−1)α
t f(y, 0)τnα

(nα)!
dτdy, forn = 2, 3, 4, ..., N.

Hence,

A =
N∑
n=0

Kn

= (K0 +K2 + · · ·+KN ) +K1

= (K0 +K2 + · · ·+KN ) +

∫ a

0

∫ b

0
K(y, τ)

f(y, 0)

α!
ταdτdy +A

∫ a

0

∫ b

0

K(y, τ)τα

α!
dτdy.

If we solve for A, we find that

A =
K0 +

∑N
n=2Kn +

∫ a
0

∫ b
0 K(y, τ)f(y,0)

α! ταdτdy

1−
∫ a

0

∫ b
0
K(y,τ)τα

α! dτdy
. (32)

Finally, we summaries the algorithm of the modified fractional power series method in the

following steps. Step 1. Assume that the approximate solution of the form

uN (x, t) =

N∑
n=0

Cn(x)tαn.

Step 2. Compute the coefficient functions

Cn(x) =
D

(n−1)α
t f(x, 0)

(nα)!
, n = 2, 3, 4, · · · , N.

Step 3. Compute the constant

A =

∑N
n=0An

1−
∫ a

0

∫ b
0
K(y,τ)τα

α! dτdy
,
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where,

A0 =

∫ a

0

∫ b

0
K(y, τ)u(y, 0)dτdy,

An =

∫ a

0

∫ b

0
K(y, τ)

D
(n−1)α
t f(y, 0)τnα

(nα)!
dτdy, for n = 1, 2, 3, 4, ..., N.

Step 4. Finally, compute

C1(x) =
f(x, 0) +A

α!
.

Therefore,

u(x, t) ≈
N∑
n=0

Cn(x)tαn

is now determined.

6. Convergence and Error Analysis of (MFPSM)

Novel results associated with the convergent of the (MFPSM) are studies in this section.

The analysis show a fast convergence rate and small calculation error.

6.1. Convergence of MFPSM

In this section, we give some details analysis for the convergence of the modified approache.

Theorem 6.1. Let the fractional integro-differential equation be given by

Dα
t u(x, t) = f(x, t) +

∫ a

0

∫ b

0
K(x, t)u(x, t) dt dx,

with initial condition u(x, 0) = C0(x), where 0 < α ≤ 1 and (x, t) ∈ [0, a] × [0, b]. The series

solution

u(x, t) =
∞∑
n=0

Cn(x)tnα

converges to the exact solution, and the truncated approximation

uN (x, t) =
N∑
n=0

Cn(x)tnα

converges uniformly to u(x, t) as N →∞, where the coefficients Cn(x) satisfy:

Cn(x) =
D

(n−1)α
t f(x, 0)

(nα)!
.
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Proof. To demonstrate that the truncated series uN (x, t) converges to the exact solution u(x, t).

EN (x, t) = u(x, t)− uN (x, t) =
∞∑

n=N+1

Cn(x)tnα.

The coefficients Cn(x) are determined as:

Cn(x) =
D

(n−1)α
t f(x, 0)

(nα)!
.

Assuming the fractional derivative D
(n−1)α
t f(x, 0) is bounded for all n, there is a constant Mn

according to which

|Cn(x)| ≤ Mn

(nα)!
.

Therefore, the error term can be bounded by:

|EN (x, t)| ≤
∞∑

n=N+1

Mn|t|nα

(nα)!
.

We use the Weierstrass M-test to demonstrate uniform convergence. Let:

Mn = sup
x∈[0,a]

|D(n−1)α
t f(x, 0)|.

Then:
∞∑

n=N+1

Mn|t|nα

(nα)!

The factorial term (nα)! in the denominator rapidly grows, causing the series to converge.

Thus, the series
∑∞

n=0Cn(x)tnα converges uniformly on any compact subset of [0, a] × [0, b],

implying

lim
N→∞

uN (x, t) = u(x, t).

As a result, the MFPSM has achieved convergence.

6.2. Error Order of MFPSM

This subsection discusses novel results on the rate error order of the MFPSM.

Theorem 6.2. For the approximate solution given by:

uN (x, t) =

N∑
n=0

Cn(x)tnα,

the truncation error is of the order:

|EN (x, t)| = |u(x, t)− uN (x, t)| = O

(
|t|(N+1)α

((N + 1)α)!

)
.
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Proof. Consider the error term:

EN (x, t) =

∞∑
n=N+1

Cn(x)tnα.

Recall that

Cn(x) =
D

(n−1)α
t f(x, 0)

(nα)!
.

Thus, the error can be bounded as:

|EN (x, t)| ≤
∞∑

n=N+1

|D(n−1)α
t f(x, 0)||t|nα

(nα)!
.

Using Stirling’s approximation for the factorial term (nα)! for large n.

(nα)! ≈
√

2πnα
(nα
e

)nα
.

As n increases, the terms Cn(x)tnα decrease rapidly. For large N, the dominant term in the

error sum is given by:

|EN (x, t)| ≈ |D
Nα
t f(x, 0)||t|(N+1)α

((N + 1)α)!
.

Consequently, the error is of the order:

|EN (x, t)| = O

(
|t|(N+1)α

((N + 1)α)!

)
.

The factorial growth in the denominator causes a rapid decrease in error as N increases,

confirming the method’s high-order convergence.

7. Solving Equation (1) by MFPSM

Here we will present some examples to study the effectiveness of the newly developed method

(MFPSM) and its use in approximating solutions to the fractional integro-differential equations

under study.

Example 7.1. Consider the two-dimensional linear fractional Fredholm integro-differential

equation provided by:

D0.5
t u(x, t) =

√
π

2
ex − 2(e− 1)t

3
+

∫ 1

0

∫ 1

0
u(y, τ)t dτ dy. (33)

Subject to the initial condition u(x, 0) = 0. The exact solution is given by u(x, t) =
√
tex.

To solve the given equation, we use the Modified Fractional Power Series Method (MFPSM).

First, we assume an approximate solution, where α = 0.5, to be in the following form:

uN (x, t) =

N∑
n=0

Cn(x)tn/2, (34)

Amer Darweesh, Kamel Al-Khaled, Marwan Alquran, Adel Almalki, Sohad Al-Omari,
Analytical Solutions of Heat Transfer Model in Two-Dimensional Case of Neutrosophic
Fredholm Integro-Differential Equations

Neutrosophic Sets and Systems, Vol. 79, 2025                                                                              549



Next, we compute the coefficient functions Cn(x) given by:

Cn(x) =
D

(n−1)α
t f(x, 0)

(nα)!
, n = 2, 3, 4, . . . , N. (35)

Given that D0.5
t u(x, t) =

√
π

2 e
x − 2(e−1)t

3 , we first focus on the constant A using the integral

terms. The constant A is given by:

A =

∑N
n=0An

1−
∫ a

0

∫ b
0
K(y,τ)τα

α! dτ dy
, (36)

where:

A0 =

∫ a

0

∫ b

0
K(y, τ)u(y, 0) dτ dy,

An =

∫ a

0

∫ b

0
K(y, τ)

D
(n−1)α
t f(y, 0)τnα

(nα)!
dτ dy, for n = 1, 2, 3, . . . , N.

In the above integral equation, the kernel function is K(y, τ) = τ . Since u(y, 0) = 0, we have:

A0 =

∫ 1

0

∫ 1

0
τ · u(y, 0) dτ dy = 0. (37)

For n ≥ 1:

An =

∫ 1

0

∫ 1

0
τ · D

(n−1)α
t f(y, 0) · τnα

(nα)!
dτ dy. (38)

Since α = 0.5, we have nα = 0.5n. Thus:

An =

∫ 1

0

∫ 1

0

τ1+0.5n

(n/2)!
·D(n−1)α

t f(y, 0) dτ dy. (39)

Given that the source term f(x, t) =
√
π

2 e
x − 2(e−1)t

3 yields zero higher-order derivatives at

t = 0 for n ≥ 2, we have:

D
(n−1)α
t f(y, 0) = 0 for n ≥ 2 =⇒ An = 0 for n ≥ 2. (40)

To compute A1, we have

A1 =

∫ 1

0

∫ 1

0

τ ·D0
t f(y, 0) · τ0.5

(0.5)!
dτ dy =

∫ 1

0

∫ 1

0

τ1.5 ·
√
π

2 e
y

Γ(1.5)
dτ dy. (41)

Using Γ(1.5) =
√
π

2 , we arrive at:

A1 =

∫ 1

0

∫ 1

0
ey · τ1.5 dτ dy. (42)

Computing simple integrals, we obtain

A1 =

∫ 1

0
ey · 2

5
dy =

2

5
[ey]10 =

2

5
(e− 1). (43)

That leads to the values of

A =
2
5(e− 1)

1− 2
5

=
2
5(e− 1)

3
5

=
2

3
(e− 1). (44)

Amer Darweesh, Kamel Al-Khaled, Marwan Alquran, Adel Almalki, Sohad Al-Omari,
Analytical Solutions of Heat Transfer Model in Two-Dimensional Case of Neutrosophic
Fredholm Integro-Differential Equations

Neutrosophic Sets and Systems, Vol. 79, 2025                                                                              550



and,

C1(x) =
f(x, 0) +A

α!
=

√
π

2 e
x + 2

3(e− 1)
√
π

2

= ex. (45)

For Higher-Order Terms Cn(x), when n ≥ 2 we have

Cn(x) =
D

(n−1)α
t f(x, 0)

(nα)!
= 0 (since higher derivatives vanish). (46)

Finally, the approximate solution, which matches the exact solution, and confirming the ac-

curacy of the MFPSM is provided by

uN (x, t) =
1∑

n=0

Cn(x)tn/2 = C0(x) + C1(x)t0.5 = 0 + ex · t0.5 =
√
tex. (47)

Example 7.2. Consider the fractional Fredholm integro-differential equation:

Dα
t u(x, t) = f(x, t) + g(x)

∫ 1

0

∫ 1

0
K(t, y, τ)u(y, τ) dτ dy, (48)

subject to the initial condition:

u(x, 0) = C0(x), (49)

where,

f(x, t) = −(2/3) + et Erf(
√
t), K(t, y, τ) = yτ, g(x) = 1, C0(x) = 1 + x, and α = 0.5.

The exact solution is:

u(x, t) = et + x.

Define auxiliary function f1(x, t) by

f1(x, t) =
1

Γ(1− α)

∫ t

0

∂u(x, τ)

∂τ

1

(t− τ)α
dτ −

∫ 1

0

∫ 1

0
K(x, t)u(x, t) dx dt. (50)

Simplified, this becomes:

f(x, t) = −2

3
+ et Erf(

√
t).

The coefficients Cn(x) are calculated as:

Cn(x) =
∂(n−1)αf(x, t)

Γ(nα+ 1)

∣∣∣∣
t=0

. (51)

This generates the values

C2 = 1, C3 = 0, C4 =
1

2
, C5 = 0, C6 =

1

6
, C7 = 0, C8 =

1

24
, . . .

While, the constant A is computed as:

A =

∑M
n=2Kn +K0 +

∫ 1
0

∫ 1
0 K(x, t) f1(x,0)

Γ(α+1) t
α dt dx

1−
∫ 1

0

∫ 1
0 K(x, t) 1

Γ(α+1) t
α dt dx

. (52)
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Here:

Kn =

∫ 1

0

∫ 1

0
K(x, t)Cn(x)tnα dt dx,

K0 =

∫ 1

0

∫ 1

0
K(x, t)C0(x) dt dx.

Upon passing simple calculations, we arrive at the value A ≈ 0.666667. The approximate

solution is given by:

uapp(x, t) = C0(x) + C1(x)tα +
M∑
n=2

Cn(x)tnα. (53)

Substituting the coefficients, the solution becomes:

uapp(x, t) = 1 + x− 1.52113× 10−9
√
t+ t+ 0.5t2 + 0.166667t3 + . . .

In regrads to the error analysis, Table (3) present the absolute error for various values of x and

t. The efficiency of the Modified Fractional Power Series Method (MFPSM) in approximating

solutions to fractional integro-differential equations is illustrated by this example.

t x Absolute Error

0.0 8.5223× 10−8

0.1 8.5223× 10−8

0.1 0.2 8.5223× 10−8

0.3 8.5223× 10−8

0.4 8.5223× 10−8

0.5 8.5223× 10−8

0.0 2.1308× 10−5

0.1 2.1308× 10−5

0.2 2.1308× 10−5

0.3 0.3 2.1308× 10−5

0.4 2.1308× 10−5

0.5 2.1308× 10−5

0.0 2.8377× 10−4

0.1 2.8377× 10−4

0.2 2.8377× 10−4

0.5 0.3 2.8377× 10−4

0.4 2.8377× 10−4

0.5 2.8377× 10−4

Table 3. Absolute Error for the Approximate Solutions at Selected Points for Example 7.2
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(a) Exact solution. (b) The third RPS approximation.

Figure 1. The behavior of the third RPS approximation together with exact

solution for Example 4.1.

Figure 2. Approximate solution for different values of x in Example 7.2.

Figure 3. Approximate solution for different values of α in Example 7.2.
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Figure 4. The approximate solution in Example 7.2 .

Figure 5. Values for both exact (Black) and approximate (Green) solutions

in Example 7.2.
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Figure 6. The error between the exact and approximate solution, where the

blue color indicates a small error in example 7.2.

A quick look at Figure 2, when the value of α = 0.5 (where the solution is exact) is present

and we plot the approximate solution for several different values of the variable x, we found

that the approximate solution matched the exact solution. In contrast, looking at Figure 3,

where we draw the approximate solution for several different α, we notice from the figure that

the closer the value of α to 0.5, the more the approximate solution is identical to the exact

solution, and vice versa, that the further the value of α is from 0.5, the farther the approximate

solution is from the exact solution. Figure 4 represents a contour graph of the approximate

solution when α = 0.5 with values of u(x, t) labeled along the contour lines. In Figure 5 we plot

both the exact solution (black) and the approximate one (green) together with the values of

u(x, t) labeled along the contour lines, showing that the approximate solution agrees with the

exact. Figure 6 show the absolute error for the obtained approximate solution when α = 0.5,

and both x, t are between 0 and 1, we observe that the dark blue color indicates the area where

the solution is more accurate.

For comparison purposes between RPSM and MFPSM, we introduce the following example.

Example 7.3. The same fractional Fredholm integro-differential equation (1) is solved using

the Modified Residual Power Series Method (MRPSM) and the Residual Power Series Method

(RPSM), with
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f(x, t) = −(2/3) + et Erf(
√
t), K(t, y, τ) = yτ, g(x) = 1, u(x, 0) = 1 + x, α = 0.5.

The exact solution is:

u(x, t) = et + x.

In the table 4, we provide an overview of the absolute errors for the Residual Power Series

Method (RPSM) and the Modified Residual Power Series Method (MRPSM) over a range of

x and t values.

t x Error (MRPSM) Error (RPSM)

0.0 8.5223× 10−8 0.104246

0.1 8.5223× 10−8 0.095596

0.1 0.2 8.5223× 10−8 0.088272

0.3 8.5223× 10−8 0.081990

0.4 8.5223× 10−8 0.076543

0.5 8.5223× 10−8 0.071774

0.0 2.1308× 10−5 0.148090

0.1 2.1308× 10−5 0.137876

0.2 2.1308× 10−5 0.128980

0.3 0.3 2.1308× 10−5 0.121162

0.4 2.1308× 10−5 0.114238

0.5 2.1308× 10−4 0.108062

0.0 2.8377× 10−4 0.157998

0.1 2.8377× 10−4 0.148963

0.2 2.8377× 10−4 0.140905

0.5 0.3 2.8377× 10−4 0.133675

0.4 2.8377× 10−4 0.127150

0.5 2.8377× 10−4 0.121232

Table 4. Absolute Error Analysis using both MRPSM and RPSM for for Example 7.3

The following are our accuracy findings: For all x and t values, the MRPSM provides sig-

nificantly less absolute errors than RPSM. Additionally, the errors using MRPSM are orders

of magnitude reduced, particularly at smaller values of t. In terms of error consistency, we

find that MRPSM errors are consistent across different x values at the same t, indicating the

robustness of the solution approach. However, RPSM exhibits more errors and is more volatile.

In terms of appropriateness, MRPSM performs better in situations requiring a high level of

precision, such as scientific computations or problems where accuracy is essential. Nonetheless,
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the RPSM provides a less complex and computationally intensive method, which is advanta-

geous for exploratory studies or circumstances in which approximations suffice. Lastly, we find

that MRPSM requires more computing work to handle higher-order modifications, but that

the precision of MRPSM outweighs the expense in high-stakes scenarios. However, RPSM is

useful for fast estimations since it strikes a mix between convenience and reasonable accuracy.

Conclusion

In this paper, we applied the residual power series method to the two dimensional neutro-

sophic fractional integro differential equations with smooth kernel. All the previous works did

not involve the Fredholm type using the residual power series method, the problem is to find

the coefficients C1, C2, . . . , Cn. We introduced a technique to find these coefficients. We found

analytic solution and numerical solution for some of two-dimensional fractional- Fredholm in-

tegro differential equations to show the accuracy of this method. To obtain higher accuracy, we

suggested a new residual power series method and we applied this method to some examples.

The examples show that this modified Residual power series method is efficient and accurate

more than the ordinary Residual power series method. Most the time we obtain an exact

solution.
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