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Abstract:. In this research, the authors provide a definition among the Neutrosophic norm(NN)(ξ̇, ζ̈,
...
% ) in

terms of the summability property (N̄ , qn). We generalize the idea among Statistical Convergence (SC) in terms

of NN by introducing the notion of (N̄ , qn)-summability with respect to NN(µ, ν, ω). Here, the novel strategy

is referred to by the term neutrosophic weighted statistical convergence. We also investigated its dependence

on the NN(ξ̇, ζ̈,
...
% ) in terms of statistical convergence and (N̄ , qn)-summability.

Keywords: Neutrosophic normed linear space, weighted statistical convergence, statistical convergence, strong

summability.

1. Introduction

Zadeh [1] first developed the concept among a set in 1965. Since then, scholars have extended

the idea among sets to many other areas, including computing [2], quantum mechanics [6], de-

mographics [5], systems of non-linear dynamic [4] as well as chaos controls [3]. Generalized the

sets by introducing the idea of neutrosophic sets by Atanassov [7]. The neutrosophic metric

spaces were first established by Park [8] using the concept of Neutrosophic sets, while NNLS

were first presented by Saadati and Park [9].
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To improve the convergence sequence, Fast [11] described the idea of SC along with Stein-

haus [10]. Many scholars have examined SC within the theory of ergodic theory, number

theory, and Fourier analysis over the years. In addition, research has been conducted on the

theory of summation of SC. Schoenberg [12] established a link between computability theory

in addition SC. Salat, Connor, Fridy, along with Miller ( [13], [14], [15], and [16]) investigated

SC as a summary technique.

Kirisci and Simsek [17] define NNLS and SC, examining statistically Cauchy sequences

and the concept of statistically completeness in this specialized mathematical context. Var-

ious investigations [18] have been carried out, expanding this idea. Sharma et. al., [19,28]

discussed various types of summability in neutrosophic normed space.

Moricz along with Orhan [21] introduced statistical summability (N̄ , qn) as follows:

Let q = (qι)
∞
ι=0 represent a sequence of non-negative numbers in which q0 > 0 as well as

Qn =
∑n

ι=0 qι →∞ as n→∞. Demonstrate that $n = 1
Qn

∑n
ι=0 qιxι, n = 0, 1, 2, ...

û = (ûι) is statistically summable towards L using the weighted mean technique based on the

sequence (qι) or statistically summable (N̄ , qn) in a brief statistical manner if S− lim
n→∞

$n = L.

Thus, we put N̄(S) − lim û = L. N̄(S) denotes the set among all statistically summable

(N̄ , qn) sequences. Conversely, if lim
n→∞

1

Qn

n∑
ι=1

qι|ûι − L| = 0 then the sequence û = (ûι) is

called as strongly (N̄ , qn) - summable to L. Here we write |N̄ , qn| − lim û = L.

Karkaya together with Chishti [22] applied (N̄ , qn)-compatibility to apply the concept about

SC generically and it also known as new approach WSC. Mursaleen together with others [23]

modified the definition of WSC and alos (N̄ , qn) - noted how they relate to the idea of com-

putability. Additionally, it was shown why the definition given below should be applied:

If the limit exists, then δN̄ (K) = lim
n→∞

1

Qn
|KQn | defines the weighted density on K ⊆ N .

A sequence û = (ûι) represent weighted statistically convergent (or SN-convergent) towards P̃

when, for each έ > 0,

δN̄ ({ι ∈ N : qι|ûι − P̃| ≥ έ}) = 0, or similarly lim
n→∞

1

Q
|{ι ≤ Qn : qι|ûι − P̃| ≥ έ}| = 0.

Thus, we put SN̄ − lim û = P̃. Here, we present a new concept among SC it is defined as

WSC within NNLS. Few links between this concept and (N̄ , qn)- summability within NNLS

are shown.
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2. Basic definitions

Definition 2.1. The 7-tuple (=̂, J̇ , G̈,
...
H, ∗̆, �̆, ♦̆) be referred as NNS when =̂ represent a

linear space, ∗̆ denote a continuous $-norm, �̆ as well as ♦̆ indicate continuous $-co-norm,

J̇ , G̈ and
...
H represent fuzzy sets on =̂ × (0,∞) fulfills the below conditions:

For each d, † ∈ =̂ and ∫ , $ > 0;

(a) 0 ≤ J̇ (d, $) ≤ 1; 0 ≤ G̈(d, $) ≤ 1; 0 ≤
...
H(d, $) ≤ 1,

(b) J̇ (d, $) + G̈(d, $) +
...
H(d, $) ≤ 3,

(c) J̇ (d, $) > 0,

(d) J̇ (d, $) = 1 if and only if d = 0,

(e) J̇ (άd, $) = J̇
(
d, $|ά|

)
for each ά 6= 0,

(f) J̇ (d, $)∗̆J̇ (†, ∫) ≤ J̇ (d+ †, $ + ∫),
(g) J̇ (d, $) : (0,∞)→ [0, 1] is continuous,

(h) lim
$→∞

J̇ (d, $) = 1 and lim
$→0
J̇ (d, $) = 0,

(i) G̈(d, $) < 1,

(j) G̈(d, $) = 0 if and only if d = 0,

(k) G̈(άd, $) = G̈
(
d, $|ά|

)
for each ά 6= 0,

(l) G̈(d, $)�̆G̈(†, ∫) ≥ G̈(d+ †, $ + ∫),
(m) G̈(d, $) : (0,∞)→ [0, 1] is continuous,

(n) lim
$→∞

G̈(d, $) = 0 and lim
$→0
G̈(d, $) = 1,

(o)
...
H(d, $) < 1,

(p)
...
H(d, $) = 0 if and only if d = 0,

(q)
...
H(άd, $) =

...
H
(
d, $|ά|

)
for each ά 6= 0,

(r)
...
H(d, $)♦̆G̈(†, ∫) ≥

...
H(d+ †, $ + ∫)

(s)
...
H(d, $) : (0,∞)→ [0, 1] is continuous,

(t) lim
$→∞

...
H(d, $) = 0 and lim

$→0

...
H(d, $) = 1.

Example 2.2. [25] Let (Â, |·|) denote a normed space, in addition let ά∗̆γ́ = άγ as well

as ά�̆γ́ = min{ά + γ, 1} for every ά, γ́ ∈ [0, 1]. For all û ∈ Â and every ϕ̂ > 0, take

ξ̇(û, ϕ̂) := $
$+‖û‖ , ζ̈(û, ϕ̂) := ‖û‖

$+‖û‖ as well as
...
% (û, ϕ̂) := ‖û‖

‖$+û‖ . Then (Â, ξ̇, ζ̈,
...
% , ∗̆, �̆, ♦̆) is an

NNLS.

Definition 2.3. [25] Let (Â, ξ̇, ζ̈,
...
% , ∗̆, �̆, ♦̆) represent an NNLS. A û = (ûι) sequence within

Â is convergent towards P̃ ∈ Â in terms of NN (ξ̇, ζ̈,
...
% ) when, for any έ > 0 as well as ϕ̂ > 0,

that ι0 ∈ N exists which means ξ̇(ûι−P̃, ϕ̂) > 1− έ, ζ̈(ûι−P̃, ϕ̂) < έ as well as
...
% (ûι−P̃, ϕ̂) < έ

for everyone ι ≥ ι0 where ι ∈ N. It’s indicated by (ξ̇, ζ̈,
...
% )− lim û = P̃.
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Theorem 2.4. [23] Let (Â, ξ̇, ζ̈,
...
% , ∗̆, �̆, ♦̆) represent a NNLS. Then, û = (ûι) sequence within

Â which is convergent towards P̃ ∈ Â in terms of NN (ξ̇, ζ̈,
...
% ) if and only if lim

ι→∞
ξ̇(ûι−P̃, ϕ̂) =

1, lim
ι→∞

ζ̈(ûι − P̃, ϕ̂) = 0 as well as lim
ι→∞

...
% (ûι − P̃, ϕ̂) = 0.

3. Weighted statistical convergence in NNLS

Weighted Statistical Convergent (WSC) related the new idea NN (ξ̇, ζ̈,
...
% ) we’re going to

developed in the below subsection. Here, in addition examine few connections between this

description and SC as well as (N̄ , qn)- summability within NNLS.

Definition 3.1. Let a sequence q = (qι)
∞
ι=0 among nonnegative numbers where q0 > 0 along

with Qn =
∑n

ι=0 qι →∞ as n→∞ in addition (Â, ξ̇, ζ̈,
...
% , ∗̆, �̆, ♦̆) be an NNLS. A sequence

û = (ûι) in Â is known as weighted statistically convergent towards P̃ ∈ Â with respect to the

NN (ξ̇, ζ̈,
...
% ) (or S

(ξ̇,ζ̈,
...
% )

N̄
- convergent to P̃ ∈ Â) when, for any έ > 0 as well as ϕ̂ > 0,

δN̄




ι ∈ N : ξ̇(qι(ûι − P̃), ϕ̂) ≤ 1− έ or

ζ̈(qι(ûι − P̃), ϕ̂) ≥ έ,
...
% (qι(ûι − P̃), ϕ̂) ≥ έ


 = 0, (1)

or similarly

lim
n→∞

1

Qn

∣∣∣∣∣∣∣


ι ≤ Qn : ξ̇(qι(ûι − P̃), ϕ̂) ≤ 1− έ or

ζ̈(qι(ûι − P̃), ϕ̂) ≥ έ,
...
% (qι(ûι − P̃), ϕ̂) ≥ έ


∣∣∣∣∣∣∣ = 0.

Thus, we put S
(ξ̇,ζ̈,

...
% )

N̄
− lim û = P̃. Weighted statistically convergence can be simplified to

statistically convergence in terms of NN (ξ̇, ζ̈,
...
% ) described by Karakus et al. [17], if we assume

that qι = 1 for all ι ∈ N and thus, we put S(ξ̇,ζ̈,
...
% ) − lim û = P̃.

Using equality (1) and the weighted density’s properties, we may rapidly arrive at the

following lemma.

Lemma 3.2. Let (Â, ξ̇, ζ̈,
...
% , ∗̆, �̆, ♦̆) being a NNLS along with û = (ûι) within Â. After that

for all έ > 0 as well as ϕ̂ > 0, the given statements are identical:

(i) S
(ξ̇,ζ̈,

...
% )

N̄
− lim û = P̃.

(ii) δN̄ ({ι ∈ N : ξ̇(qι(ûι − P̃), ϕ̂) ≤ 1− έ}) = δN̄ ({ι ∈ N : ζ̈(qι(ûι − P̃), ϕ̂) ≥ έ}) = δN̄ ({ι ∈
N :

...
% (qι(ûι − P̃), ϕ̂) ≥ έ}) = 0.

(iii) δN̄ ({ι ∈ N : ξ̇(qι(ûι−P̃), ϕ̂) > 1− έ, ζ̈(qι(ûι−P̃), ϕ̂) < έ and
...
% (qι(ûι−P̃), ϕ̂) < έ}) = 1.

(iv) δN̄ ({ι ∈ N : ξ̇(qι(ûι − P̃), ϕ̂) > 1− έ}) = δN̄ ({ι ∈ N : ζ̈(qι(ûι − P̃), ϕ̂) < έ}) = δN̄ ({ι ∈
N :

...
% (qι(ûι − P̃), ϕ̂) < έ}) = 1.

Definition 3.3. Let (Â, ξ̇, ζ̈,
...
% , ∗̆, �̆, ♦̆) being a NNLS. A sequence û = (ûι) within Â is

referred to as (N̄ , qn) - summable towards P̃ ∈ Â in terms of NN (ξ̇, ζ̈,
...
% ) (or (N̄ , qn)(ξ̇,ζ̈,

...
% )-
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summable towards P̃ ∈ Â) when, for all έ > 0 as well as ϕ̂ > 0, that n0 ∈ N exists which

means

1

Qn

n∑
ι=1

ξ̇(qι(ûι − P̃), ϕ̂) > 1− έ,

1

Qn

n∑
ι=1

ζ̈(qι(ûι − P̃), ϕ̂) < έand

1

Qn

n∑
ι=1

...
% (qι(ûι − P̃), ϕ̂) < έ.

for any an ≥ n0. Therefore, we have, (N̄ , qn)(ξ̇,ζ̈,
...
% ) − lim û = P̃. For any ι ∈ N, if we assume

that qι = 1, then (N̄ , qn)- summability in terms of the NN (ξ̇, ζ̈,
...
% ) is simplified towards (C, 1)-

summability in terms of NN (ξ̇, ζ̈,
...
% ) and thus we put (C, 1)(ξ̇,ζ̈,

...
% ) − lim û = P̃.

The first theorem establishes the link between SC and WSC in NNLS.

Theorem 3.4. Let (Â, ξ̇, ζ̈,
...
% , ∗̆, �̆) being a NNLS and in addition û = (ûι) represent a

sequence in Â. The following conditions are true:

(i) If qι ≥ 1 for each ι ∈ N, lim
n→∞

sup
Qn

n
< ∞ along with S

(ξ̇,ζ̈,
...
% )

N̄
− lim û = P̃, then

S(ξ̇, ζ̈,
...
% )− lim û = P̃.

(ii) If qι ≤ 1 for all ι ∈ N, lim
n→∞

inf
Qn

n
> 0 and in addition S(ξ̇,ζ̈,

...
% )− lim û = P̃, after that

S
(ξ̇,ζ̈,

...
% )

N̄
− lim û = P̃.

Proof. (i) Assume that qι ≥ 1 for each ι ∈ N, lim
n→∞

sup
P̃n

n
<∞. Given, that positive constant

K exists which means 1 ≤ P̃n
n ≤ K. Furthermore, ξ̇(qι(ûι − P̃), ϕ̂) ≤ ξ̇(ûι − P̃, ϕ̂),

ζ̈(qι(ûι − P̃), ϕ̂) ≥ ζ̈(ûι − P̃, ϕ̂) and
...
% (qι(ûι − P̃), ϕ̂) ≥

...
% (ûι − P̃, ϕ̂) given that qι ≥ 1 for

each ι ∈ N along with ξ̇(û, ϕ̂) indicate increasing function of ϕ̂ ∈ R+, ζ̈(û, ϕ̂),
...
% (û, ϕ̂) represent

decreasing function of ϕ̂ ∈ R+ based on the Definition (2.1) provided in [?]. After that, we

obtain for each έ > 0 as well as ϕ̂ > 0

1

n

∣∣∣∣∣
{

ι ≤ n : ξ̇(ûι − P̃, ϕ̂) ≤ 1− έ or

ζ̈(ûι − P̃, ϕ̂) ≥ έ,
...
% (ûι − P̃, ϕ̂) ≥ έ

}∣∣∣∣∣ ≤ 1

n

∣∣∣∣∣∣∣


ι ≤ n : ξ̇(qι(ûι − P̃), ϕ̂) ≤ 1− έ or

ζ̈(qι(ûι − P̃), ϕ̂) ≥ έ,
...
% (qι(ûι − P̃), ϕ̂) ≥ έ


∣∣∣∣∣∣∣

≤ K

Qn

∣∣∣∣∣∣∣


ι ≤ Qn : ξ̇(qι(ûι − P̃), ϕ̂) ≤ 1− έ or

ζ̈(qι(ûι − P̃), ϕ̂) ≥ έ,
...
% (qι(ûι − P̃), ϕ̂) ≥ έ


∣∣∣∣∣∣∣ .

Given that S
(ξ̇,ζ̈,

...
% )

N̄
− lim û = P̃, as a result S(ξ̇,ζ̈,

...
% ) − lim û = P̃.

(ii) Assume that qι ≤ 1 for each ι ∈ N together with lim
n→∞

inf
Qn

n
> 0. Hence, that δ > 0 exists

where δ ≤ Qn
n ≤ 1. Furthermore,
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ξ̇(qι(ûι − P̃), ϕ̂) ≥ ξ̇(ûι − P̃, ϕ̂), ζ̈(qι(ûι − P̃), ϕ̂) ≤ ζ̈(ûι − P̃, ϕ̂) and
...
% (qι(ûι − P̃), ϕ̂) ≤

...
% (ûι − P̃, ϕ̂)

because qι ≤ 1 for any ι ∈ N along with ξ̇(û, ϕ̂) is an increasing function among ϕ̂ ∈
R+, ζ̈(û, ϕ̂),

...
% (û, ϕ̂) indicate decreasing function among ϕ̂ ∈ R+. Consequently, we have

1

n

∣∣∣∣∣∣∣


ι ≤ n : ξ̇(ûι − P̃, ϕ̂) ≤ 1− έ or

ζ̈(ûι − P̃, ϕ̂) ≥ έ,
...
% (ûι − P̃, ϕ̂) ≥ έ


∣∣∣∣∣∣∣ ≥

1

n

∣∣∣∣∣
{

ι ≤ Qn : ξ̇(qι(ûι − P̃), ϕ̂) ≤ 1− έ or

ζ̈(qι(ûι − P̃), ϕ̂) ≥ έ,
...
% (qι(ûι − P̃), ϕ̂) ≥ έ

}∣∣∣∣∣
≥ δ

Qn

∣∣∣∣∣∣∣


ι ≤ Qn : ξ̇(qι(ûι − P̃), ϕ̂) ≤ 1− έ or

ζ̈(qk(ûι − P̃), ϕ̂) ≥ έ,
...
% (qι(ûι − P̃), ϕ̂) ≥ έ


∣∣∣∣∣∣∣ .

The concept implies that S
(ξ̇,ζ̈,

...
% )

N̄
− lim û = P̃.

The below conditions demonstrate that the converse among theorem (3.4) (ii) denote not

typically true.

Example 3.5. The symbol (R, | · |) represents the space of real number with the ordinary

norm along with for each ά, β́ ∈ [0, 1], let ά∗̆β́ = άβ́ as well as ά�̆β́ = min{ά + β́, 1}. All

x ∈ R in addition any of the ϕ̂ > 0, take that ξ̇(û, ϕ̂) := ϕ̂
ϕ̂+|û| , ζ̈(û, ϕ̂) := |û|

ϕ̂+|û| along with
...
% (û, ϕ̂) := |û|

|ϕ̂+û| .

Since, (R, ξ̇, ζ̈,
...
% , ∗̆, �̆, ♦̆) represent an NNLS. Let describe the sequences P̃ι =

3ι−1 for any ι ∈ N alongwith û = (ûι) which means m ∈ N as well as ûι = 1, first
[√

3
m−1

]
integers in(Qm−1,Qm],

0, otherwise.
We have, for every 0 < έ < 1 as well as ϕ̂ > 0,

notify

KQn(έ) :=


ι ≤ Qn : ξ̇0(qιûι, ϕ̂) ≤ 1− έ,

ζ̈0(qιûι, ϕ̂) ≥ έ, and
...
% 0(qιûι, ϕ̂) ≥ έ

 .

Given that

KQn(έ) =

{
ι ≤ Qn :

ϕ̂

ϕ̂+ 3ι−1|ûι|
≤ 1− έyada 3ι−1|ûι|

ϕ̂+ 3ι−1|ûι|
≥ έ
}

=

{
ι ≤ Qn : |ûι| ≥

έϕ̂

3ι−1(1− έ)

}
= {ι ≤ Qn : ûι = 1} ,
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we get

1

Qn
|KQn(έ)| = 2

3n − 1

∣∣∣∣{ι ≤ 3n − 1

2
: ûι = 1

}∣∣∣∣
=

2

3n − 1

(
1 +

[√
3
]

+
[√

3
2
]

+ · · ·+
[√

3
n−1
])

≤ 2

3n − 1

(
1 + (1.8) + (1.8)2 + · · ·+ (1.8)n−1

)
≤ 5

2

(
1.8

3

)n (1− ( 1
1.8

)n)(
1−

(
1
3

)n) ,
it attains lim

n→∞

1

Qn
|KQn(έ)| = 0.

A positive integer m like that Qm−1 < n ≤ Qm exist given a large enough number n. After

that, for every 0 < έ < 1 along with ϕ̂ > 0, let

Kn(έ) :=
{
ι ≤ n : ξ̇0(ûι, ϕ̂) ≤ 1− έζ̈0(ûι, ϕ̂) ≥ έ,

...
% 0(ûι, ϕ̂) ≥ έ

}
Given that

Kn(έ) =

{
ι ≤ n :

ϕ̂

ϕ̂+ |ûι|
≤ 1− έyada |ûι|

ϕ̂+ |ûι|
≥ έ
}

=

{
ι ≤ n : |ûι| ≥

έϕ̂

(1− έ)

}
= {ι ≤ n : ûι = 1} ,

we obtain

1

|Kn(έ)|
=

1

n
|{ι ≤ n : ûι = 1}|

>
1

n

{
1 + (1.2) + (1.2)2 + · · ·+ (1.2)m−1

}
>

1

n
(1.2)m − 1

n

>
1

n
(1.2)

n
log 2 − 1

n
since m >

n

log 2
,

in which (ûn) is WSC to 0 with respect towards the NN (ξ̇, ζ̈,
...
% ); however, SC not with

respect towards the NN.

In the following theorems, we prove the link between WSC and (N̄ , qn) - summability within

NNLS.

Theorem 3.6. Let (Â, ξ̇, ζ̈,
...
% , ∗̆, �̆, ♦̆) be an NNLS and in addition Qn

n ≥ 1 for each n ∈ N.
If û = (ûι) within Â is (N̄ , qn)(ξ̇,ζ̈,

...
% )- summable towards P̃ ∈ Â, after that û = (ûι) is S

(ξ̇,ζ̈,
...
% )

N̄

- convergent to P̃ ∈ Â.

Proof. Assume that û = (ûι) is (N̄ , qn)(ξ̇,ζ̈,
...
% ) - summable to P̃ ∈ Â. For all έ > 0 as well as

ϕ̂ > 0, consider
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KQn(έ) =


ι ≤ Qn : ξ̇(qι(ûι − P̃), ϕ̂) ≤ 1− έ or

ζ̈(qι(ûι − P̃), ϕ̂) ≥ έ,
...
% (qι(ûι − P̃), ϕ̂) ≥ έ

 and

KcQn(έ) =


ι ≤ Qn : ξ̇(qι(ûι − P̃), ϕ̂) > 1− έ and

ζ̈(qι(ûι − P̃), ϕ̂) < έ,
...
% (qι(ûι − P̃), ϕ̂) < έ


After that,

1

Qn

n∑
ι=1

ξ̇(qι(ûι − P̃), ϕ̂) =
1

Qn

∑
ι=1,

ι∈KQn (έ)

ξ̇(qι(ûι − P̃), ϕ̂) +
1

Qn

n∑
ι=1,

ι∈KcQn (έ)

ξ̇(qι(ûι − P̃), ϕ̂)

≥ 1

Qn

n∑
ι=1,

ι∈KcQn (έ)

ξ̇(qι(ûι − P̃), ϕ̂) >
1

Qn

∣∣KcQn(έ)
∣∣ (1− έ). (2)

Resulting from inequity (2), we get lim
n→∞

1

Qn

∣∣KcQn(έ)
∣∣ = 1. Similarly, for every έ > 0 as well

as ϕ̂ > 0,

1

Qn

n∑
ι=1

ζ̈(qι(ûι − P̃), ϕ̂) =
1

Qn

∑
ι=1,

ι∈KQn (έ)

ζ̈(qι(ûι − P̃), ϕ̂) +
1

Qn

n∑
ι=1,

ι∈KcQn (έ)

ζ̈(qι(ûι − P̃), ϕ̂)

≤ 1

Qn

n∑
ι=1,

ι∈KcQn (έ)

ζ̈(qι(ûι − P̃), ϕ̂) <
1

Qn

∣∣KcQn(έ)
∣∣ έ. (3)

By inequality (3), we have lim
n→∞

1

Qn
|KQn(έ)| = 0. Hence proved.

Theorem (3.4) is not often true, as demonstrated by the case that follows.

Example 3.7. Let (R, ξ̇, ζ̈,
...
% , ∗̆, �̆, ♦̆) be as shown in Example (3.5). Take that qι = 1

ι+1 for

each ι ∈ N and create a sequence û = (ûι) which is defined by

ûι =

{
ι, if ι = m2(m ∈ N),

0, otherwise.

Then, for every 0 < έ < 1 along with each ϕ̂ > 0, consider

KQn(έ) =


ι ≤ Qn : ξ̇(qιûι, ϕ̂) ≤ 1− έ or

ζ̈(qιûι, ϕ̂) ≥ έ,
...
% (qιûι, ϕ̂) ≥ έ

 .

Given that

KQn(έ) =

{
ι ≤ Qn : ϕ̂

ϕ̂+|ûι| ≤ 1− έ or
|ûι|
ι+1

ϕ̂+
|ûι|
ι+1

≥ έ
}

=
{
ι ≤ Qn : |ûι| ≥ (ι+1)έϕ̂

(1−έ)

}
⊆ {ι ≤ Qn : ûι = ι}, we get 1

Qn
|KQn(έ)| ≤

√
1+ 1

2
+···+ 1

n

1+ 1
2

+···+ 1
n
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it yields that S
(ξ̇,ζ̈,

...
% )

N̄
− lim û = 0.

Therefore,

1

Qn

n∑
ι=1

ξ̇(qιûι, ϕ̂)

=
1

Qm2 + s

m2+s∑
ι=1

ξ̇(qιûι, ϕ̂)

=
1

1 + 1
2 + · · ·+ 1

m2+s


ϕ̂
ϕ̂+1 1 + 1︸ ︷︷ ︸

2

+ 4ϕ̂
4ϕ̂+4 + 1 + 1 + 1 + 1︸ ︷︷ ︸

4

+ 9ϕ̂
9ϕ̂+9 + · · ·+ 1 + 1 + 1 + 1︸ ︷︷ ︸

2(m−1)

+ m2ϕ̂
m2ϕ̂+m2 + 1 + 1 + 1 + 1︸ ︷︷ ︸

2m


=

1

1 + 1
2 + · · ·+ 1

m2+s

(
mt

t+ 1
+m2 +m

)
and

1

Qn

n∑
ι=1

ζ̈(qιûι, ϕ̂) =
1

Qm2+s

m2+s∑
ι=1

ζ̈(qιûι, ϕ̂)

=
1

1 + 1
2 + · · ·+ 1

m2+s

(
ϕ̂

ϕ̂+ 1
+

4ϕ̂

4ϕ̂+ 4
+

9ϕ̂

9ϕ̂+ 9
+ · · ·+ m2ϕ̂

m2ϕ̂+m2

)
=

1

1 + 1
2 + · · ·+ 1

m2+s

mϕ̂

ϕ̂+ 1

about m, s ∈ N. Therefore, û = (ûι) is not (N̄ , qn) - summable towards 0 in terms of NN

(ξ̇, ζ̈,
...
% ), because to the statement that

1

Qn

n∑
ι=1

ξ̇(qιûι, ϕ̂)→∞, 1

Qn

n∑
ι=1

ζ̈(qιûι, ϕ̂)→∞ and
1

Qn

n∑
ι=1

...
% (qιûι, ϕ̂)→∞

as n→∞.

Theorem 3.8. Let (Â, ξ̇, ζ̈,
...
% , ∗̆, �̆, ♦̆) being a NNLS, û = (ûι) in Â and Qn

n ≥ 1 for all n ∈ N.
When S

(ξ̇,ζ̈,
...
% )

N̄
− lim û = P̃, ξ̇(qι(ûι − P̃), ϕ̂) ≥ 1 −M, ζ̈(qι(ûι − P̃), ϕ̂) ≤ M and in addition

...
% (qι(ûι − P̃), ϕ̂) ≤M regards to M ∈ (0, 1) and ι ∈ N, after that (N̄ , qn)(ξ̇,ζ̈,

...
% ) − lim û = P̃.

Proof. Assume that S
(ξ̇,ζ̈,

...
% )

N̄
− lim û = P̃. After that, for each έ > 0 as well as ϕ̂ > 0,

1

Qn

n∑
ι=1

ξ̇(qι(ι−P̃), ϕ̂) =
1

Qn

n∑
ι=1

ι∈KQn (έ)

ξ̇(qι(ûι − P̃), ϕ̂) +
1

Qn

n∑
ι=1

ι∈KcQn (έ)

ξ̇(qι(ûι − P̃), ϕ̂)

= S1(n) + S2(n)

in which

S1(n) =
1

Qn

n∑
ι=1

ι∈KQn (έ)

ξ̇(qι(ûι − P̃), ϕ̂) (4)

P. Jenifer, M. Jeyaraman, and M. Mursaleen, Weighted Statistical Convergence in Neutrosophic Normed Linear Spaces

Neutrosophic Sets and Systems, Vol. 79, 2025                                                                               706



as well as

S2(n) =
1

Qn

n∑
ι=1

ι∈KcQn (έ)

ξ̇(qι(ûι − P̃), ϕ̂) (5)

When ι ∈ KQn(έ), after that

S1(n) =
1

Qn

n∑
ι=1

ι∈KQn (έ)

ξ̇(qι(ûι − P̃), ϕ̂) ≥ |KQn(έ)|
Qn

(1−M). (6)

Given that S
(ξ̇,ζ̈,

...
% )

N̄
− lim û = P̃,

lim
n→∞

S1(n) ≥ 0. (7)

If ι ∈ KcQn(έ), then we obtain

S2(n) =
1

Qn

n∑
ι=1

ι∈KcQn (έ)

ξ̇(qι(ûι − P̃), ϕ̂) >

∣∣KcQn(έ)
∣∣

Qn
(1− έ) (8)

which gives that

lim
n→∞

S2(n) > (1− έ). (9)

Using equality (4)-(5) and inequalities (6)-(9), we obtain

lim
n→∞

1

Qn

n∑
ι=1

ξ̇(qι(ûι − P̃), ϕ̂) = 1. (10)

Similarly, we obtain

lim
n→∞

1

Qn

n∑
ι=1

ζ̈(qι(ûι − P̃), ϕ̂) = 0. (11)

As a result from equality (10) and (11), we get

(N̄ , qn)(ξ̇,ζ̈,
...
% ) − lim û = P̃. (12)

4. Conclusion

We present a new method among summability within NNLS in this paper, represented

by the notation (N̄ , qn) -summability, as well as apply that summability to develope a new

kind of SC in NNLS, denoted by the notation WSC. The connections among these ideas are

also explored. The derived findings were greater in scope compared to the associated findings

for normed linear spaces because any crispness norm may generate a NN. While this paper’s

findings do overlap with those of previous studies on the subject, the arguments presented

here were proven using an alternative methodology for the largest part. The authors of this

research want to allow space for follow-up studies.
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