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Abstract. The Quadratic Transmuted Generalized Exponential Distribution (QTGED) enhances the general-

ized exponential distribution, making it a significant development for handling complex decision-making con-

texts. Traditional statistical distributions often focus on representing degrees of truth or membership in fuzzy

sets, yet they struggle to capture situations involving incomplete, vague, or contradictory data accurately. This

study introduces the Neutrosophic Quadratic Transmuted Generalized Exponential Distribution (NQTGED),

specifically designed to address indeterminacy and transmuted data. Neutrosophic theory is essential here, as

it overcomes the limitations of classical and fuzzy set theories by effectively managing uncertainty, indetermi-

nacy, and inconsistency in data. By simultaneously representing truth, indeterminacy, and falsity, neutrosophic

sets offer a comprehensive framework for modeling uncertainty. Traditional distributions lack the adaptability

needed for evolving data complexities, often falling short when faced with non-standard data distributions or

outliers. Addressing these challenges requires innovative approaches that incorporate advanced mathematical

models for uncertainty. This is especially valuable in real-world situations, where data is frequently incomplete,

imprecise, or contradictory, and sometimes transmuted. The study derives various mathematical properties of

the model, assesses parameter estimation using maximum likelihood and simulation, and demonstrates practical

applications with cancer remission data. Simulation results reveal that Neutrosophic Average Biases (NABs)

and Neutrosophic Mean Square Errors (NMSEs) decrease as sample sizes increase, indicating strong and ac-

curate parameter estimation. NQTGED provides superior fit and performance, offering significant insights for

applications in reliability engineering and biomedical sciences.

Keywords: Neutrosophic; indeterminacy; transmutation; generalized exponential distribution; maximum like-

lihood estimator; Monte Carlo simulation.
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1. Introduction

Neutrosophic theory emerges as a significant advancement over classical and fuzzy set the-

ories by offering a robust framework to model uncertainty, indeterminacy, and inconsistency

in data. Florentin Smarandache’s [1] introduces Neutrosophic Sets represents a significant

advancement in modeling uncertainty by integrating three core elements: truth, falsity, and

indeterminacy. Classical sets operate on binary logic, representing data as either true or false,

while fuzzy sets extend this by allowing degrees of truth. However, both approaches fall short

in scenarios involving indeterminate or contradictory information.This triadic framework al-

lows Neutrosophic Sets to more effectively address the complexities and subtleties found in

real-world systems compared to classical and fuzzy sets. Neutrosophic sets address this gap by

enabling the simultaneous representation of truth, indeterminacy, and falsity, thus providing

a more nuanced and flexible approach to data analysis. This capability is particularly crucial

in fields such as engineering, medical sciences, and social sciences, where data is frequently

incomplete or imprecise, and decision-making processes require a comprehensive understand-

ing of all aspects of uncertainty. The introduction of neutrosophic theory into these domains

enhances the ability to interpret complex systems accurately, making it an indispensable tool

for modern data analysis and informed decision-making.

In real-world scenarios, ambiguity and uncertainty often hinder the precise assignment of

statistical values, making classical probability inadequate for accurate results [2, 3]. Neutro-

sophic statistics, with its framework for managing ambiguous and inconsistent data, addresses

these challenges effectively. This approach has been advanced through applications of fuzzy

logic and neutrosophy [4–8], with significant contributions from Smarandache’s pioneering

work [9]. On top of this, extensions of fuzzy sets, such as Picture Fuzzy Graphs (PFGs)

and Picture Fuzzy Soft Graphs (PFSGs), enhance the modeling of vagueness by introduc-

ing parameters like cardinality and domination [10]. In software engineering, hybrid models

combining Interval Type-2 Fuzzy Logic Systems with Artificial Neural Networks improve re-

liability predictions [11]. Moreover, recent studies on fuzzy functions reveal that somewhat

fuzzy continuous functions are equivalent to somewhat fuzzy semicontinuous functions, while

being weaker than fuzzy semicontinuous functions [12]. Recent studies in urban sustainabil-

ity emphasize structured frameworks for addressing challenges like water scarcity and waste

management using advanced fuzzy methodologies [13]. Neutrosophic philosophy acknowledges

three key factors: truth membership, indeterminacy membership, and falsity membership,

each representing the degree of truth, ambiguity, or untruth associated with an observation

or hypothesis [6]. This makes them highly useful in fields such as decision-making, artificial

intelligence, and risk assessment. Furthermore, the foundational principles of revolutionary
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topologies highlight how Neutrosophic Sets excel at representing contradictions and ambigui-

ties in diverse scenarios [14].

While the application of neutrosophic probability theory holds practical relevance, it re-

mains an area that has not received significant attention. However, recent years have wit-

nessed an increasing focus on the neutrosophic statistics approach and its diverse applications

across various fields. Neutrosophic probability distributions, such as the Neutrosophic Weibull

distribution proposed by Alhasan and Smarandache [15], have been developed to address in-

determinacy in real-life scenarios, often surpassing classical statistics in problem-solving effec-

tiveness. Additionally, distributions such as Neutrosophic Uniform, Neutrosophic Exponential,

and Neutrosophic Poisson have been numerically solved [7–10], [16]. Furthermore, the neu-

trosophic interpretation of normal and binomial distributions has been extensively explored

through various examples [17]. Aslam and Ahtisham [3] introduced the neutrosophic variant

of the Rayleigh distribution, while Nayana et al. [18] developed a novel neutrosophic model

using the DUS-Weibull transformation. Rao et al. [19] provided insights into the neutrosophic

generalized exponential distribution, elucidating its properties and applications. Recent stud-

ies [20–25] showcase advancements in neutrosophical probability distributions.

Neutrosophic statistics finds applications across diverse fields, including decision-making,

pattern identification, data mining, and image processing in various industries [26–29]. The

Box and Muller Technique for generating neutrosophic random variables with a normal distri-

bution exemplifies the effective use of neutrosophic methods in operations research by enhanc-

ing decision-making and minimizing risk. This technique integrates goal functions, constraints,

and optimal solutions within a neutrosophic framework, enabling simulations to tackle com-

plex problems that are not easily represented mathematically [30]. The neutrosophic theory

offers numerous applications, including the treatment of static models, integration of renew-

able energy sources such as photovoltaic panels, wind turbines, and addressing challenges

related to COVID-19 and its Omicron mutation. The neutrosophic approach has recently

been applied to tackle the complex challenges posed by the COVID-19 pandemic, utilizing

multi-criteria decision-making (MCDM) methods like the Analytic Hierarchy Process (AHP)

within a neutrosophic framework to manage uncertain data [31]. Recently, neutrosophic meth-

ods have expanded into Industry 5.0, introducing technology-driven inventory models where

demand and cost parameters adapt to technological advancements, thereby supporting pro-

duction optimization in dynamic manufacturing settings [32]. In parallel, plithogenic forest

hypersoft sets (PFHS) have been developed to enhance multi-criteria decision-making, allow-

ing complex attribute handling for applications like manufacturing plant site selection [33].

Moreover, generating gamma-distributed neutrosophic variables broadens the applicability of

neutrosophic simulations, converting random numbers to improve precision in engineering and
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other fields [34]. Neutrosophic methods are employed to evaluate sustainable road transport

systems, focusing on reducing carbon emissions and improving energy efficiency, while using

MCDM models to balance various sustainability criteria. The composition method facilitates

the generation of Poisson-distributed neutrosophic variables, enhancing fidelity in representing

real-world environments [35]. The integration of neutrosophic sets with Decision-Making Trial

and Evaluation Laboratory (DEMATEL) techniques in this research provides a structured ap-

proach to assess and enhance the sustainability of road transport systems [36].In cryptography,

neutrosophic integers contribute to innovative encryption and decryption schemes, showcas-

ing their potential in secure information processing [37]. Furthermore, neutrosophic stratified

sampling applied to climate data yields reliable estimators with lower bias and improved mean

square error (MSE), demonstrating the superior performance of neutrosophic methods over

traditional approaches [38]. In addition, advancements in group decision-making models have

highlighted the limitations of traditional neutrosophic AHP approaches. Recent developments

have introduced enhanced models using neutrosophic trapezoidal numbers to address these

limitations, providing more robust solutions for complex decision-making scenarios [39]. Fur-

thermore, neutrosophic logic aids in supply chain risk management by modeling uncertainties

and ranking risks using a hybrid AHP and Technique for Order of Preference by Similar-

ity to Ideal Solution (TOPSIS) approach, providing valuable insights for risk mitigation [40].

While traditional mathematics prioritizes precision, real-world problems often involve ambigu-

ous data, necessitating the use of mathematical concepts grounded in uncertainty. Despite

its practical utility, neutrosophic probability theory has not received widespread attention, al-

though it has been the subject of some studies. Recent research efforts have focused on various

aspects of neutrosophic statistics, including correlation, regression analysis, test procedures,

and probability distributions [24].

An influential extension of the exponential distribution, known as the Generalized Exponen-

tial Distribution (GED), was introduced by Gupta and Kundu [41]- [42]. Widely acknowledged

in the literature, this two-parameter model has gained popularity for analyzing lifetime data.

Serving as a versatile alternative to traditional distributions like Weibull or Gamma, the gener-

alized exponential distribution finds applications in various fields including reliability analysis,

hydrology, quality control, and medicine [41]- [48].

The groundbreaking research conducted by Shaw and Buckley [49] introduced the quadratic

transmuted family of distributions, opening a new avenue for enhancing existing probability

models to better capture the quadratic patterns inherent in data.

Khan et al. [50] introduced the Transmuted Generalized Exponential Distributions (TGED),

stemming partly from advancements made in the transmuted family of lifetime distributions.

They utilized the Quadratic Rank Transmutation Map (QRTM) technique and designated G(x)
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as the Cumulative Distribution Function (CDF) of the GED, serving as the baseline model.

Additionally, they provided a comprehensive exploration of the mathematical properties asso-

ciated with the three-parameter TGED, with the anticipation of its potential applications in

reliability engineering and the biomedical sciences.

The study of transmuted neutrosophic distributions has garnered significant attention in re-

cent years. Jabarali et al. [51] proposed Generalized p-Transmuted Neutrosophic Distributions

(GTND), which delve into the theory and applications of various distributions, including ex-

ponential, Weibull, and Rayleigh, in both quadratic and cubic transmuted cases. This research

emphasizes the theoretical foundations and practical implications of GTND, contributing to

a deeper understanding of its potential applications across various fields. Additionally, the

reliability and hazard functions of these distributions are analyzed, shedding light on their

performance and reliability. This investigation provides valuable insights for researchers and

practitioners.

The introduction of the Neutrosophic Quadratic Transmuted Generalized Exponential Dis-

tribution (NQTGED) extends the existing Quadratic Transmuted Generalized Exponential

Distribution by incorporating neutrosophic elements, addressing uncertainties, vagueness, and

indeterminacy in the data. This new distribution offers enhanced flexibility and versatility

in modeling complex real-world scenarios, potentially leading to more accurate and robust

statistical analyses. Motivated by the need to handle ambiguity and uncertainty, advance

neutrosophic statistical theory, and provide practical applications for data characterized by

indeterminacy, the researchers have developed this new distribution. The studies referenced

and the reviews of the existing literature have inspired the researchers to embark on the de-

velopment of a neutrosophic quadratic transmuted generalized exponential distribution, along

with an exploration of its associated properties.

In the realm of statistical distribution theory, the accurate modeling of uncertainty, inde-

terminacy, and inconsistency in data remains a persistent challenge. Traditional statistical

distributions, such as the GED and its extensions like the QTGED, primarily focus on captur-

ing degrees of truth or membership in fuzzy sets. However, they often struggle to effectively

represent scenarios where data is incomplete, vague, or contradictory.

The limitations of existing frameworks become particularly pronounced in fields such as

engineering, medical sciences, and social sciences, where datasets frequently exhibit complex

and nuanced patterns that defy simple categorization into true or false states. For instance,

in biomedical research, the dynamics of disease progression or treatment outcomes may vary

significantly among individuals, leading to data that is inherently uncertain or indeterminate.

Moreover, traditional distributions lack the flexibility to adapt to these diverse and evolving

data complexities. They may fail to provide robust estimations or accurate predictions when
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faced with non-standard data distributions or outliers. This gap underscores the need for novel

approaches that can integrate advanced mathematical frameworks capable of handling the full

spectrum of uncertainty.

The proposed work is motivated by the need to better handle uncertainty, indeterminacy,

and inconsistency in data analysis, areas where traditional statistical distributions and classi-

cal or fuzzy set theories fall short. Real-world data often exhibits complexity, vagueness, and

contradictions that existing models cannot adequately capture. Specifically, the limitations of

the QTGED in addressing indeterminate data highlight the necessity for a more comprehen-

sive approach. This research addresses gaps such as the inadequate handling of indeterminacy

by classical and fuzzy set theories, limited flexibility in existing models to manage imprecise

and inconsistent data, and the need for enhanced robustness in real-world applications. The

objectives of the proposed work include developing the NQTGED to integrate neutrosophic

logic, deriving its mathematical properties, establishing parameter estimation methods using

the maximum likelihood approach, and validating its practical applicability with real-world

data. This includes comparing its performance against existing distributions using goodness-

of-fit tests. The justification for introducing NQTGED lies in its potential to provide more

accurate and reliable models for data analysis, particularly in contexts where data is uncer-

tain or indeterminate. By incorporating neutrosophic logic, the proposed distribution offers

significant advancements over existing models, contributing to more informed and accurate

decision-making processes in various fields.

This paper is structured into seven sections. Section 2 outlines the preliminaries and re-

search framework for the proposed distribution. Subsequent sections delve into properties and

discuss various mathematical characteristics (Section 3). Section 4 presents a simulation study

assessing the flexibility of the estimates. The penultimate section 5 includes a real-life data

analysis, followed by a discussion of the study’s implications in the section 6. Finally, the

paper concludes with a summary in the last section.

2. Preliminaries and Research Framework

This section discusses the preliminaries and research framework of the study.

2.1. Preliminaries

In classical data analysis, information is typically represented by precise values. However,

in neutrosophic statistics, data can manifest in various forms due to the potential for inde-

terminacy across different problem contexts. Neutrosophic statistics extends the principles of

classical statistics. Neutrosophic numbers adhere to a standard format derived from classical
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statistics:

XN = E + I

Here, the data is divided into two components: ’E’ represents the exact or determined data,

while ’I’ signifies the uncertain, imprecise, or indeterminate part. Both ’E’ and ’I’ can take

on any real number value. This format is equivalent to XN ∈ [XL, XU ]. To distinguish the

neutrosophic random variable, it is denoted with the subscript N, as seen in the notation XN .

Definition 1. Generalized Exponential distribution

[39] Let X be a continuous random variable, the Probability Density Function (PDF) of GED

is given as,

g(x) =

α
θ exp

(
−x

θ

) (
1− exp

(
−x

θ

))α−1
;x > 0, α > 0, and θ > 0

0 otherwise
(1)

where, α is the shape parameter and θ is the scale parameter.

The Cumulative Density Function (CDF) of GED is given as,

G(x) =


[
1− exp

(
−x

θ

)]α
;x > 0, α > 0, and θ > 0

0 otherwise
(2)

Definition 2. Quadratic Transmuted Distribution

[47] According to the QRTM approach, the CDF and probability density function (PDF) satisfy

the following relationship:

F (x) = (1 + λ)G(x)− λ[G(x)]2 (3)

and

f(x) = g(x)[1 + λ− 2λG(x)]; x > 0; |λ| ≤ 1 (4)

where, λ is the transmuted parameter.

G(x) and g(x) are the CDF and PDF of the baseline distribution respectively.

Definition 3. Transmuted Generalized Exponential Distribution

[48] If a random variable X follows the TGED with parameters α , θ and λ, then its PDF and

CDF is as follows:

f(x) =

α
θ exp

(
−x

θ

) (
1− exp

(
−x

θ

))α−1 [
1 + λ− 2λ

(
1− exp

(
−x

θ

))α]
;x > 0, α > 0, θ > 0 and |λ| ≤ 1

0 otherwise

(5)

and

F (x) =


[
1− exp

(
−x

θ

)]α [
1 + λ− λ

(
1− exp

(
−x

θ

))α]
;x > 0, α > 0, θ > 0 and |λ| ≤ 1

0 otherwise

(6)
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If α = 1, TGED reduces to Transmuted Exponential Distribution.

2.2. Conceptual Framework

The conceptual framework, where the core concept is the NQTGED. This central arrow

represents the innovative contribution of the paper. Surrounding NQTGED are elements such

as traditional statistical distributions or QTGED, illustrating how NQTGED builds upon and

modifies existing frameworks. Connected to NQTGED is another labeled neutrosophic logic,

indicating how neutrosophic logic is integrated into the distribution. Neutrosophic logic al-

lows NQTGED to handle uncertainty, indeterminacy, and inconsistency in data, capabilities

that traditional distributions may not fully address. Arrows extend from various data sources,

such as real-world data (e.g., cancer patient remission times), pointing towards NQTGED,

demonstrating its application and validation with empirical data. Comparative arrows be-

tween NQTGED and traditional frameworks highlight NQTGED’s advancements: it offers

greater flexibility, improved accuracy in modeling real-world phenomena, and employs ad-

vanced methodological techniques like Bayesian estimation and robust methods. This diagram

visually captures how NQTGED expands upon traditional frameworks through neutrosophic

integration, making it a powerful tool for analyzing complex datasets with enhanced precision

and applicability (Figure 1).

Figure 1. Conceptual Framework of the Proposed Work

The primary contributions of this paper include:

• Development of NQTGED: Introducing a novel distribution that integrates neu-

trosophic logic to handle uncertainty and indeterminacy.

• Mathematical Properties: Deriving key mathematical properties of NQTGED,

such as moments, reliability measures, and order statistics.

Kumarapandiyan, Benitta, Jabarali, Neutrosophic Quadratic Transmuted Generalized
Exponential Distribution

Neutrosophic Sets and Systems, Vol. 80, 2025                                                                                18



• Methodological Advancements: Proposing and validating parameter estimation

methods using advanced techniques like maximum likelihood estimation under neutro-

sophic uncertainty.

• Application in Real-World Scenarios: Demonstrating the practical applicability

of NQTGED through case studies, such as analyzing remission times in cancer patients,

to showcase its superiority over traditional distributions.

2.3. Theoretical Framework

Definition 4. A neutrosophic random variable X follows a NQTGED, characterized by neu-

trosophic shape parameter αN , neutrosophic scale parameter θN , and a neutrosophic trans-

muted parameter λN . The Neutrosophic Probability Density Function (NPDF) of the proposed

distribution is defined as:

fN (x) =



αN

θN
exp

(
− x

θN

)(
1− exp

(
− x

θN

))αN−1

×
[
1 + λN − 2λN

(
1− exp

(
− x

θN

))αN
] if x > 0, αN > 0, θN > 0, and |λN | ≤ 1

0 otherwise

(7)

The Neutrosophic Cumulative Distribution Function (NCDF) of NQTGED is,

FN (x) =



[
1− exp

(
− x

θN

)]αN

×
[
1 + λN − λN

(
1− exp

(
− x

θN

))αN
] if x > 0, αN > 0, θN > 0, and |λN | ≤ 1

0 otherwise

(8)

Also, the neutrosophic baseline distribution is the Neutrosophic Generalized Exponential

Distribution (NGED).

Figure 2 illustrates the probability density curves for the NQTGED, maintaining a constant

transmuted parameter while varying the shape parameter and scale parameter within specified

intervals. In the neutrosophic framework, the curve is depicted as a thick layer rather than

a single curve. The thick layers indicate the range of possible densities, reflecting the uncer-

tainty and variability captured by the neutrosophic parameters. The curves show a noticeable

distortion towards the right side. They reveal an exponential decline, commencing from an

infinite point when αN<1. On the other hand, if αN ≥ 1, the exponential decline persists, but

it initiates from a specific position on the y-axis and also shows a unimodal behavior.

The NCDF curves of the proposed model are presented in Figure 3. In each panel depicted

in Figure 3, the NCDF curve exhibits a non-decreasing pattern, covering the range from 0 to
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(a) (b) (c)

(d) (e) (f)

Figure 2. NPDF Plot of NQTGED

1. The inclusion of neutrosophic parameters ensures that the distribution can model a variety

of real-world scenarios where data uncertainty is significant.

(a) (b) (c)

(d) (e) (f)

Figure 3. NCDF Plot of NQTGED

When analyzing the panels (a), (b) and (c), we observe that lower values of αN lead to a

gradual increase in the NCDF, suggesting a slower accumulation of probability and a more

spread-out distribution. Higher values of αN result in a steeper NCDF, indicating rapid

probability accumulation and a more peaked distribution. The scale parameter θN stretches or

compresses the NCDF horizontally, reflecting wider or tighter clustering of values, respectively.
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In panels (d), (e) and (f), variations in the transmuted parameter λN show that positive values

steepen the NCDF, concentrating probability in a smaller range, while negative values result

in a flatter NCDF, spreading the probability mass more broadly.

Definition 5. Surival and Hazard Function

The Neutrosophic Survival Function (NSF) and Neutrosophic Hazard Function (NHF) of the

NQTGED are respectively formulated as follows:

SN (x) = 1−
[
1− exp

(
− x

θN

)]αN
[
1 + λN − λN

(
1− exp

(
− x

θN

))αN
]

(9)

and

hN (x) =

αN
θN
exp

(
− x

θN

)(
1− exp

(
− x

θN

))αN−1 [
1 + λN − 2λN

(
1− exp

(
− x

θN

))αN
]

1−
[
1− exp

(
− x

θN

)]αN
[
1 + λN − λN

(
1− exp

(
− x

θN

))αN
] (10)

Figure 4 showcases the NSF Plot of NQTGED, illustrating survival functions under different

parameter settings to highlight the distribution’s robustness. The panels (a), (b) and (c), with

negative λN values, shows that increasing αN leads to a steeper decline in survival probabilities,

while increasing θN results in a more gradual decline. Negative λN values generally slow the

decline, extending survival times. The panels (d), (e) and (f), with positive λN values, reveals

similar trends where higher αN steepens the decline, and higher θN makes it more gradual.

Positive λN values tend to quicken the decline, shortening survival times.

(a) (b) (c)

(d) (e) (f)

Figure 4. NSF Plot of NQTGED

Notably, Figure 5 highlights the distinctive bathtub-shaped and increasing behavior of the

hazard rate in the NQTGED. Panels (a), (b) and (c) illustrates that negative λN values
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show that as αN increases, the initial hazard rate rises sharply, while higher θN results in a

slower increase in the hazard rate over time. Negative λN values generally lower the hazard

rate, delaying its significant rise. In panels (d), (e), and (f), positive λN values, shows that

increasing αN leads to a more pronounced initial increase in the hazard rate, while higher

θN causes a slower rise. Positive λN values quickly elevate the hazard rate, reducing the

time before it peaks. These insights illustrate the substantial effects of αN , θN , and λN on

hazard rate functions, emphasizing the adaptability of the NQTGED distribution in modeling

different hazard scenarios. The bathtub-shaped hazard rate benefits practical applications by

identifying early failures for quick fixes, offering a stable period for routine maintenance, and

predicting end-of-life replacements. This approach improves resource allocation and reliability.

It accommodates uncertainty and indeterminacy, making the model versatile and realistic.

(a) (b) (c)

(d) (e) (f)

Figure 5. NHRF Plot of NQTGED

3. Properties

Theorem 1. If X ∼ NQTGED(x;αN , θN , λN ), then the neutrosophic rth moment of X is:

µ
′
Nr =

∞∑
j=0

(−1)jαN
Γ(r + 1)

(j + 1)r+1
θrN

(
(1 + λN )

(
αN − 1

j

)
− 2λN

(
2αN − 1

j

))

Proof. The rth moment associated with the NQTGED are detailed as follows,

µ
′
Nr =

∫ ∞

0
xr
αN

θN
exp

(
− x

θN

)(
1− exp

(
− x

θN

))αN−1 [
1 + λN − 2λN

(
1− exp

(
− x

θN

))αN
]
dx

(11)
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Employing the binomial expansion equation (11) simplifies to

µ
′
Nr = (1 + λN )

∑
j=0

∞αN

θN
(−1)j

(
αN − 1

j

)
exp− xj

θN

∫ ∞

0
xrexp− xj

θN
dx

−2λN
∑
j=0

∞αN

θN
(−1)j

(
2αN − 1

j

)
exp− xj

θN

∫ ∞

0
xrexp− xj

θN
dx

−2λN
∑
j=0

∞αN

θN
(−1)j

(
2αN − 1

j

)
exp− xj

θN

∫ ∞

0
xrexp− xj

θN
dx

Ultimately, we acquire

µ
′
Nr =

∞∑
j=0

(−1)jαN
Γ(r + 1)

(j + 1)r+1
θrN

(
(1 + λN )

(
αN − 1

j

)
− 2λN

(
2αN − 1

j

))
(12)

Theorem 2. If X ∼ NQTGED(x;αN , θN , λN ), then the neutrosophic Moment Generating

Function of X is:

MNX(t) =

∞∑
r=0

∞∑
j=0

(−1)j
tr

r!
αNθ

r
N

Γ(r + 1)

(j + 1)r+1

(
(1 + λN )

(
αN − 1

j

)
− 2λN

(
2αN − 1

j

))
Proof.

MNX(t) = E
[
etx
]

=

∫ ∞

0
etxfN (x)dx

=

∫ ∞

0

( ∞∑
r=0

tr

r!
xr

)
fN (x)dx

=
∞∑
r=0

tr

r!
µ

′
Nr

Using the equation (13), it yields,

MNX(t) =
∞∑
r=0

∞∑
j=0

(−1)j
tr

r!
αNθ

r
N

Γ(r + 1)

(j + 1)r+1

(
(1 + λN )

(
αN − 1

j

)
− 2λN

(
2αN − 1

j

))
(13)

Theorem 3. The neutrosophic MGF of NQTGED can be expressed in terms of gamma func-

tion as:

(1 + λN )αN
Γ(1− tθN )ΓαN

Γ(αN − tθN + 1)
− 2λNαN

Γ(1− tθN )Γ2αN

Γ(2αN − tθN + 1)
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Proof.

MNX(t) = E
[
etx
]

=

∫ ∞

0
etxfN (x)dx

=

∫ ∞

0
etx

αN

θN
exp

(
− x

θN

)(
1− exp

(
− x

θN

))αN−1

[
1 + λN − 2λN

(
1− exp

(
− x

θN

))αN
]
dx

(14)

Setting y = exp
(
− x

θN

)
, x = −θN lny and dx = −θN

y dy. Making substitution in equation (14),

MNX(t) = αN (1 + λN )

∫ 1

0
y−tθ−N [1− y]αN−1dy − 2αNλN

∫ 1

0
y−tθ−N [1− y]2αN−1dy

= αN (1 + λN )
ΓαNΓ(1− tθN )

Γ(αN − tθN + 1)
− 2λNαN

Γ2αNΓ(1− tθN )

Γ(2αN − tθN + 1)

(15)

Upon taking the derivative of ln(MNX(t)) and assessing it at t = 0, we derive the mean

and variance of X as

EN (x) = αNθN (1 + λN ) [ψ(αN + 1)− ψ(1)]− 2αNθNλN [ψ(2αN + 1)− ψ(1)] (16)

and

VN (x) = αNθ
2
N (1 + λN )

[
ψ

′
(1)− ψ

′
(αN + 1)

]
− 2αNθ

2
NλN

[
ψ

′
(1)− ψ

′
(2αN + 1)

]
(17)

The qth quantile xq of the NQTGED can be determined from equation (8) as follows;

xq = −θN ln

1− [(λN + 1)−
√

(λN + 1)2 − 4λNq

2λN

] 1
αN

 (18)

Specifically, the median of the distribution is;

x0.5 = −θN ln

1− [(λN + 1)−
√

(λN + 1)2 − 8λN
2λN

] 1
αN


3.1. Random Number Generation and Estimation of Parameters of NQTGED

By employing the inversion method, random numbers can be generated from the NQTGED

according to the equation as

[
1− exp

(
− x

θN

)]αN
[
1 + λN − λN

(
1− exp

(
− x

θN

))αN
]
= u (19)
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where, u ∼ U(0, 1). By solving equation (19) for x becomes,

x = −θN ln

1− [(λN + 1)−
√
(λN + 1)2 − 4λNu

2λN

] 1
αN

 (20)

Equation (20) can be utilized to generate random numbers provided the parameters αN , θN

and λN are known.

3.2. Order Statistics

Consider a set of n independent and identically distributed (i.i.d) random vari-

ables denoted as XN1, XN2, ..., XNn, each associated with their respective order statistics

XN(1), XN(2), ..., XN(n), derived from NQTGED with density function fN (x) and distribu-

tion function FN (x). Consequently, the jth order statistics for the PDF and the CDF are

expressed as:

fxj (x) =
n!

(j − 1)!(n− j)!
fN (x)(FN (x))j−1(1− FN (x))n−j ∀ j = 1, 2, ..., n

The PDF of largest order statistic of NQTGED is given by,

fx(n)
(x) = n

(
αN

θN
exp

(
− x

θN

)(
1− exp

(
− x

θN

))αN−1 [
1 + λN − 2λN

(
1− exp

(
− x

θN

))αN
])

([
1− exp

(
− x

θN

)]αN
[
1 + λN − λN

(
1− exp

(
− x

θN

))αN
])n−1

The PDF of the smallest order statistic of NQTGED is given by,

fx(1)
(x) = n

(
αN

θN
exp

(
− x

θN

)(
1− exp

(
− x

θN

))αN−1 [
1 + λN − 2λN

(
1− exp

(
− x

θN

))αN
])

(
1−

[
1− exp

(
− x

θN

)]αN
[
1 + λN − λN

(
1− exp

(
− x

θN

))αN
])n−1

3.3. Maximum Likelihood Estimates of NQTGED

The maximum likelihood estimates (MLEs) of the parameters inherent in the neutrosophic

quadratic transmuted exponential distribution function are as follows: Let XN1, XN2,...,XNn

be a random sample from NQTGED. Then, the log-likelihood function is provided as:

logL = nlogαN − nlogθN −
n∑

i=1

xi
θN

+ (αN − 1)

n∑
i=1

log

(
1− exp

(
− xi
θN

))

+

n∑
i=1

log

(
1 + λN − 2λN

(
1− exp

(
− xi
θN

))α

N

)
(21)
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The MLEs of αN , θN and λN are indicated as α̂N , θ̂N and λ̂N respectively, and are derived

by optimizing equation (21). And these are the solutions of the following equations:

∂LogL

∂αN
=

n

αN
+

n∑
i=1

log

(
1− exp

(
− xi
θN

))
+

n∑
i=1

−2λN

(
1− exp

(
− xi

θN

))αN

log
(
1− exp

(
− xi

θN

))
1 + λN − 2λN

(
1− exp

(
− xi

θN

))αN

(22)

∂LogL

∂θN
=

−n
θN

+
n∑

i=1

xi
θ2N

+(αN−1)
n∑

i=1

xiexp
(

xi
θN

)
1− exp

(
xi
θN

)− n∑
i=1

2λNαN

(
1− exp

(
− xi

θN

))αN−1
xiexp

(
− xi

θN

)
1 + λN − 2λN

(
1− exp

(
− xi

θN

))αN

(23)

and

∂LogL

∂λN
=

n∑
i=1

1− 2
(
1− exp

(
− xi

θN

))αN

1 + λN − 2λN

(
1− exp

(
− xi

θN

))αN
(24)

Due to the complexity in computing the nonlinear equations, solving equations (22), (23)

and (24) can be accomplished using the inversion method through statistical software R. This

results in obtaining the maximum likelihood estimates of αN , θN and λN , starting from a

selected initial value.

4. Computational Study of NQTGED

In this section, to assess the performance of the proposed NGE distribution model, a sim-

ulation study is conducted. A Monte Carlo simulation is performed using R software across

various sample sizes: specifically, n = 20, 50, 100, and 150, along with different neutrosophic

parameter settings: (1) with α ∈ [0.5, 0.75], θ ∈ [1.5, 1.5], and λ ∈ [-0.5, -0.5], (2) with α ∈
[0.5, 0.75], θ ∈ [1.5, 1.5], and λ ∈ [0.5, 0.5], and (3) with α ∈ [1.5, 1.5], θ ∈ [0.5, 0.75], and

λ ∈ [-0.5, -0.5]. The simulation is repeated 1000 times. The estimated parameters of the

NQTGED and their performance are evaluated in terms of Neutrosophic Average Estimates

(NAEs), Neutrosophic Average Biases (NABs), and Neutrosophic Mean Square Errors (NM-

SEs) through simulation analysis. The simulation results for NAEs, NABs, and NMSEs are

presented in Tables 1-3.

Table 1. αN=[0.5,0.75],θN=[1.5,1.5] and λN=[-0.5,-0.5]

NAE NAB NMSE

n α̂N θ̂N λ̂N α̂N θ̂N λ̂N α̂N θ̂N λ̂N

20 [0.5967,0.7898] 1.5964 -0.4484 [0.0967,0.0398] 0.0964 0.0516 [0.0619,0.1027] 0.2992 0.2181

50 [0.5496,0.7734] 1.5785 -0.4669 [0.0496,0.0233] 0.0785 0.0331 [0.0365,0.0495] 0.1202 0.1873

100 [0.5198,0.7610] 1.5661 -0.5073 [0.0198,0.0110] 0.0662 -0.0073 [0.0212,0.0358] 0.0647 0.1565

150 [0.5064,0.7572] 1.5618 -0.5065 [0.0064,0.0072] 0.0618 -0.0065 [0.0169,0.0323] 0.0571 0.1364
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Table 2. αN=[0.5,0.75],θN=[1.5,1.5] and λN=[0.5,0.5]

NAE NAB NMSE

n α̂N θ̂N λ̂N α̂N θ̂N λ̂N α̂N θ̂N λ̂N

20 [0.5299,0.7951] 1.5881 0.5299 [0.0299,0.0451] 0.0881 0.0299 [0.0223,0.0675] 0.4570 0.2067

50 [0.5112,0.7565] 1.5754 0.5175 [0.0112,0.0065] 0.0754 0.0175 [0.0081,0.0194] 0.1801 0.1971

100 [0.5097,0.7534] 1.5177 0.5155 [0.0097,0.0034] 0.0177 0.0155 [0.0029,0.0067] 0.1610 0.1613

150 [0.5001,0.7529] 1.5047 0.5095 [0.001,0.0029] 0.0047 0.0095 [0.0026,0.0056] 0.1299 0.1327

Table 3. αN=[1.5,1.5],θN=[0.5,0.75] and λN=[-0.5,-0.5]

NAE NAB NMSE

n α̂N θ̂N λ̂N α̂N θ̂N λ̂N α̂N θ̂N λ̂N

20 1.5227 [0.5218,0.7725] -0.5280 0.0227 [0.0218,0.0225] -0.0280 0.4255 [0.0236,0.0426] 0.2147

50 1.5163 [0.5213,0.7694] -0.5191 0.0163 [0.0213,0.0194] -0.0191 0.1554 [0.0106,0.0181] 0.1917

100 1.5112 [0.5181,0.7688] -0.5090 0.0112 [0.0181,0.0188] -0.0090 1.0923 [0.0065,0.0101] 0.1702

150 1.5022 [0.5147,0.7674] -0.5079 0.0022 [0.0470,0.0174] -0.0058 0.1036 [0.0042,0.0063] 0.1435

5. Application

In this section, to assess the interest in the NQTGED, a practical application utilized a

real-world dataset comprising remission times of 128 cancer patients, measured in months,

in Table 4. These remission times, sourced from subsets of bladder cancer studies referenced

in [52], serve descriptive purposes. In a neutrosophic context, [19, 22] utilized the remission

periods dataset to formulate the neutrosophic generalized exponential distribution. Further-

more, [51] conducted a comparison between the Neutrosophic Rayleigh Distribution and the

Quadratic Transmuted Neutrosophic Rayleigh Distribution (QTNRD), adding depth to the

study of neutrosophic statistical models. According to their research, the remission periods of

cancer patients exhibit a good fit with the NGED model. The dataset’s historical application

in developing neutrosophic statistical models positions it as an excellent benchmark for show-

casing the efficacy of the NQTGED. The analysis focused on evaluating how well the NQTGED

represents the remission times by employing a range of goodness-of-fit measures, including the

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Hannan-Quinn

Criterion (HQC), and the Kolmogorov-Smirnov (KS) test, which are furnished for comparison

across QTNRD, Neutrosophic Exponential Distribution (NED) and NGED, as presented in

Table 5. This thorough evaluation underscores the potential of the NQTGED for modeling

complex datasets within the realm of medical statistics and beyond.
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Table 4. Remission periods of 128 cancer patients

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.2 2.23 3.52 4.98 6.97

9.02 13.29 0.4 2.26 3.57 5.06 7.09 9.22 13.8 25.74 0.5 2.46 3.64

5.09 [7.26, 8.2] 9.47 14.24 25.82 0.51 2.54 3.7 5.17 7.28 9.74 14.76 [5.3, 7.1]

0.81 2.62 3.82 5.32 7.32 10.06 [12, 14.77] 32.15 2.64 3.88 5.32 7.39 10.34

14.83 34.26 0.9 2.69 4.18 5.34 7.59 10.66 15.96 36.66 1.05 2.69 4.23

5.41 7.62 10.75 16.62 43.01 1.19 2.75 4.26 5.41 7.63 [15, 17.2] 46.12 1.26

2.83 4.33 5.49 7.66 11.25 17.14 [75.02, 81] 1.35 2.87 5.62 7.87 11.64 17.36

1.4 3.02 4.34 5.71 7.93 11.79 18.1 1.46 4.4 5.85 8.26 11.98 19.13

1.76 3.25 4.5 6.25 8.37 12.02 [1.5, 3.2] 3.31 4.51 6.54 [7.5, 8.2] 12.03

20.28 2.02 3.36 6.76 12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69

The indeterminant/ imprecise values are represented as bold values.

Table 5. Estimation of Parameters and model adequacy measures of

remission periods of cancer patients

QTNRD NED NGED NQTGED

Parameter θ̂N=[11.0574,11.3365] θ̂N=[0.1096,0.1081] θ̂N=[7.9506,8.0568] θ̂N=[10.9445,11.2182]

λ̂N=[0.7949,0.8052] α̂N=[1.2390,1.2397] α̂N=[1.3256,1.3236]

λ̂N=[0.7006,0.7169]

Log Liklihood [-463.1498,-466.6273] [-410.9358,-412.6880] [-409.4565,-411.2037] [-407.2067,-408.8213]

AIC [930.2996,937.2546] [825.8715,829.3760] [822.9129,826.4074] [820.4134,823.6425]

BIC [936.0037,942.9587] [841.2796,844.7842] [838.3210,841.8155] [828.9695,832.1987]

HQC [932.6172,939.5722] [825.0304,828.5348] [825.2306,828.7250] [823.8898,827.1190]

KS-Value [0.2805,0.2807] [0.0815,0.0869] [0.0752,0.0759] [0.0551,0.055114]

P-value [3x10−9,3x10−9] [0.3631,0.2886] [0.4642, 0.3736] [0.8323,0.8317]

6. Result Comparison

The computational study yielded significant insights into the performance of the NQTGED.

As anticipated, the results demonstrated a clear relationship between sample size and estima-

tion accuracy. Specifically, from Table 1-3, as the sample size increased from n=20 to n=150,

the NABs and NMSEs consistently decreased across all parameter settings. This trend in-

dicates that the NQTGED’s parameter estimates become more reliable with larger samples,

showcasing its robustness in handling varying neutrosophic parameters. The results demon-

strate that the NQTGED can effectively provide accurate estimates, making it a valuable tool

for statistical analysis where uncertainty is inherent.

The goodness-of-fit tests, as shown in Table 5, revealed that the NQTGED fitted the remission

times data well, surpassing the fits of alternative distributions. From Table 5, the NQTGED

exhibited the lowest AIC, BIC and HQC values, indicating a more parsimonious model while
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still accurately capturing the underlying patterns in the data. Likewise, KS test statistic

further corroborated the superior fit of the NQTGED.

An algorithm for constructing the NQTGED as well as the flow chart of this study continues

as follows:

Step 1: Define GED as the baseline distribution as given in Definition 1.

Step 2: Apply the Quadratic Transmutation to transform GED into TGED, following Defini-

tion 3.

Step 3: Introduce neutrosophic parameters to incorporate indeterminacy, forming the

NQTGED, as specified in Definition 4.

Step 4: Plot the NPDF, NCDF, NSF and NHRF of NQTGED.

Step 5: Derive key mathematical properties for NQTGED.

Step 6: Run Monte Carlo simulations across different sample sizes and neutrosophic parameter

settings to test model reliability.

Step 7: Evaluate model fit using real data and compare criteria like AIC, BIC, HQC, and the

KS test with other models.

Step 8: Summarize the results to highlight NTGED’s effectiveness in fitting data ith indeter-

minacy.

7. Discussion and Implication of the Study

In the realm of statistical distribution theory, effectively modeling uncertainty, indetermi-

nacy, and inconsistency in data remains a formidable challenge. Traditional statistical distri-

butions, such as the GED and its extensions like the QTGED, primarily focus on capturing

degrees of truth or membership in fuzzy sets. However, these frameworks often struggle to

accurately represent scenarios where data is incomplete, vague, or contradictory.

The limitations of existing methodologies become particularly evident in fields such as en-

gineering, medical sciences, and social sciences, where datasets frequently exhibit complex

and nuanced patterns that defy simple categorization into true or false states. For instance, in

biomedical research, understanding disease progression or treatment outcomes requires models

that can adeptly handle uncertainties inherent in clinical data.

Moreover, traditional distributions lack the flexibility to adapt to diverse and evolving data

complexities. They may falter in providing robust estimations or accurate predictions when

faced with non-standard data distributions or outliers. Addressing these challenges neces-

sitates innovative approaches capable of integrating advanced mathematical frameworks to

comprehensively model uncertainty.

To bridge these gaps, this paper introduces the NQTGED. This distribution extends the

QTGED by incorporating neutrosophic logic, which allows for the simultaneous representation
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of truth, indeterminacy, and falsity. Neutrosophic logic provides a more nuanced and flexible

approach compared to traditional methods, as it can quantitatively capture uncertainties that

classical and fuzzy set theories struggle to accommodate.

Firstly, the introduction of the NQTGED represents a significant advancement in probability

modeling, particularly in handling situations characterized by ambiguity and indeterminacy.

By incorporating neutrosophic principles into the quadratic transmuted generalized exponen-

tial distribution, the NQTGED offers a more flexible framework for modeling real-world data

that may exhibit uncertain or imprecise characteristics.

The simulation studies conducted to assess the performance of the NQTGED model under

different sample sizes and neutrosophic parameter settings provide valuable insights into its

robustness and accuracy. The findings indicate that the neutrosophic maximum likelihood

estimation (MLE) for the NQTGED yields accurate parameter estimation, particularly with

larger sample sizes in the uncertainty scenario. This suggests the potential practical applica-

bility of the NQTGED model in various fields, including reliability engineering and biomedical

sciences during uncertain transmuted cases.

Moreover, the practical application of the NQTGED model to a real-world dataset of cancer

patient remission times highlights its relevance and effectiveness in capturing complex data

patterns. The Log-likelihood and the goodness-of-fit tests, including the AIC, BIC, HQC and

Kolmogorov–Smirnov (KS) test, suggest that the NQTGED emerges as a plausible fit for the

remission times, outperforming other potential distributions such as the QTNRD, NED and

NGED.

Overall, the study’s findings underscore the importance and potential impact of neutro-

sophic probability modeling in addressing the challenges posed by uncertain and imprecise

data. The development and exploration of the NQTGED model offer researchers and prac-

titioners a powerful tool for analyzing and interpreting complex datasets, with implications

for various fields ranging from reliability engineering to biomedical sciences. Further research

and applications of neutrosophic probability theory are warranted to continue advancing our

understanding and utilization of probabilistic models in the face of ambiguity and uncertainty.

8. Conclusion

In conclusion, the NQTGED introduced in this study offers a flexible and robust frame-

work for modeling uncertain and imprecise data. Through thorough exploration and practical

application, the NQTGED has shown promising results in accurately capturing complex data

patterns. Its development signifies a significant advancement in probabilistic modeling, with

implications for various fields including reliability engineering and biomedical sciences. Fur-

ther research and application of the NQTGED model are warranted to continue advancing
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our understanding and utilization of neutrosophic probability theory in real-world scenarios.

Future plans include deepening theoretical foundations by exploring additional mathematical

properties and extending methodological advancements beyond maximum likelihood estima-

tion to include Bayesian approaches and handling censored data. The application scope will

expand beyond cancer patient remission times to encompass diverse fields like finance and

environmental sciences, validating NQTGED’s robustness across different domains.
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