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Abstract: The theory of quadripartitioned single valued neutro-
sophic sets was proposed very recently as an extension to the ex-
isting theory of single valued neutrosophic sets. In this paper the
notion of possibility fuzzy soft sets has been generalized into a new
concept viz. interval-valued possibility quadripartitioned single val-

ued neutrosophic soft sets. Some basic set-theoretic operations have
been defined on them. Some distance, similarity, entropy and inclu-
sion measures for possibility quadripartitioned single valued neutro-
sophic sets have been proposed. An application in a decision making
problem has been shown.
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1 Introduction

The theory of soft sets (introduced by D. Molodstov, in 1999)
([101,[15]) provided a unique approach of dealing with uncer-
tainty with the implementation of an adequate parameterization
technique. In a very basic sense, given a crisp universe, a soft
set is a parameterized representation or parameter-wise classifi-
cation of the subsets of that universe of discourse with respect to
a given set of parameters. It was further shown that fuzzy sets
could be represented as a particular class of soft sets when the set
of parameters was considered to be [0, 1]. Since soft sets could
be implemented without the rigorous process of defining a suit-
able membership function, the theory of soft sets, which seemed
much easier to deal with, underwent rapid developments in fields
pertaining to analysis as well as applications (as can be seen from
the works of [11,[6],[71,[12],[14],[16],[17] etc.)

On the otherhand, hybridized structures, often designed and
obtained as a result of combining two or more existing struc-
tures, have most of the inherent properties of the combined struc-
tures and thus provide for a stronger tool in handling applica-
tion oriented problems. Likewise, the potential of the theory of
soft sets was enhanced to a greater extent with the introduction
of hybridized structures like those of the fuzzy soft sets [8], in-
tuitionistic fuzzy soft sets [9], generalized fuzzy soft sets [13],
neutrosophic soft sets [11], possibility fuzzy soft sets [2], possi-
bility intuitionistic fuzzy soft sets [3] etc. to name a few.

While in case of generalized fuzzy soft sets, corresponding to
each parameter a degree of possibility is assigned to the corre-
sponding fuzzy subset of the universe; possibility fuzzy sets, a
further modification of the generalized fuzzy soft sets, character-
ize each element of the universe with a possible degree of be-
longingness along with a degree of membership. Based on Bel-
nap’s four-valued logic [4] and Smarandache’s n-valued refined

neutrosophic set [18], the theory of quadripartitioned single val-
ued neutrosophic sets [S] was proposed as a generalization of
the existing theory of single valued neutrosophic sets [19]. In
this paper the concept of interval valued possibility quadriparti-
tioned single valued neutrosophic soft sets (IPQSVNSS, in short)
has been proposed. In the existing literature studies pertaining to
a possibility degree has been dealt with so far. Interval valued
possibility assigns a closed sub-interval of [0, 1] as the degree of
chance or possibility instead of a number in [0, 1] and thus it is
a generalization of the existing concept of a possibility degree.
The proposed structure can be viewed as a generalization of the
existing theories of possibility fuzzy soft sets and possibility in-
tuitionistic fuzzy soft sets.

The organization of the rest of the paper is as follows: a cou-
ple of preliminary results have been stated in Section 2, some
basic set-theoretic operations on IPQSVNSS have been defined
in Section 3, some uncertainty based measures viz. entropy, in-
clusion measure, distance measure and similarity measure, have
been defined in Section 4 and their properties, applications and
inter-relations have been studied. Section 5 concludes the paper.

2 Preliminaries

In this section some preliminary results have been outlined which
would be useful for the smooth reading of the work that follows.

2.1 An outline on soft sets and possibility intu-
itionistic fuzzy soft sets

Definition 1 [15]. Let X be an initial universe and E be a set of
parameters. Let P(X) denotes the power set of X and A C E.
A pair (F, A) is called a soft set iff F' is a mapping of A into
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P(X).
The following results are due to [3].

Definition 2 [3]. Let U = {x1,x2,...,x,} be the univer-
sal sets of elements and let £ = {ey, ey, ..., €,, } be the universal
set of parameters. The pair (U, E) will be called a soft universe.
Let F : E — (I x 1)V x IV where (I x I)" is the collection of
all intuitionistic fuzzy subsets of U and IY is the collection of
all fuzzy subsets of U. Let p be a mapping such that p : £ — IV

and let F, : E — (I xI)” x IV be a function defined as
follows:

F(e) =  (FE@.p(e)). where Fle)r) =
(tte (x) , Ve () VaeU.

Then F}, is called a possibility intuitionistic fuzzy soft set (PIFSS
in short) over the soft universe (U, E). For each parameter e;,

F),(e;) can be represented as:

Fylen) = { (i plen) @0) oo (75 plen) (wa)) |
Definition 3 [3]. Let F}, and G, be two PIFSS over (U, E). Then
the following operations were defined over PIFSS as follows:
Containment: F), is said to be a possibility intuitionistic fuzzy
soft subset (PIFS subset) of G, and one writes I, C G if

(7) p(e) is a fuzzy subset of g(e), for all ecE,

(#4) F'(e) is an intuitionistic fuzzy subset of G(e), for all ecE.
Equality: F), and G, are said to be equal and one writes F), = G,
if F}, is a PIFS subset of G, and G|, is a PIFS subset of F),
Union: F,0G, = H,, H, : E — (Ix1)” x IV is de-
fined by H,(e) = (H (e)(z),r(e)(z)), VeeE such that
H(e) = Uatan (F(e),G(e) and r(e) = s(p(e).q(e)).
where U 4+, 1S Atanassov union and s is a triangular conorm.
Intersection: FyN\G, = Hy, H, : E — (Ix1)" x IV is
defined by H,(e) = (H (e)(z),r(e)(x)), YeeE such that
H(e) = Naan (F(e),G () and r(e) = t(p(e).q(e)).
where M 444y, 1S Atanassov intersection and ¢ is a triangular norm.

Definition 4 [3]. A PIFSS is said to be a possibility abso-
lute intuitionistic fuzzy soft set, denoted by Ay, if 47 : £ —
(I x )Y x IV is such that Ay (¢) = (F(e)(z),P (e)(z)),
VeeE where F' (e) = (1,0) and P (e) = 1, VeeE.

Definition 5 [3]. A PIFSS is said to be a possibility null intuition-
istic fuzzy soft set, denoted by ¢, if ¢p : E — (I x I )U x 1Y
is such that ¢9 = (F(e)(x),p(e)(z)), VecE where
F(e)=(0,1)and p(e) =0, VeeE.

2.2 An outline on quadripartitioned single valued
neutrosophic sets

Definition 6 [5]. Let X be a non-empty set. A quadripartitioned
neutrosophic set (QSVNS) A, over X characterizes each element
z in X by a truth-membership function 7’4, a contradiction-
membership function C'4, an ignorance-membership function
U, and a falsity membership function F4 such that for each
;L‘GX, TA,CA,UA,FAE[O, 1]

When X is discrete, A is represented as,
A =370 (Talxi), Ca(wi), Ua(ai), Fa(xi)) /o, vieX.
However, when the universe of discourse is continuous, A is
represented as,

(‘T)a Fa

A= (Ta(z),Ca(z),Ua

Definition 7 [5]. A QSVNS is said to be an absolute QSVNS,
denoted by A, iff its membership values are respectively defined
asTa(x) =1,Cu(x) =1,Us(x) = 0and Fu(z) = 0,VreX.

(@) [, weX

Definition 8 [5]. A QSVNS is said to be a null QSVNS,
denoted by O, iff its membership values are respectively defined
asTo(x) =0,Co(z) =0,Ug(x) =1and Fo(zx) = 1,VreX

Definition 9 [5]. Let A and B be two QSVNS over X.

Then the following operations can be defined:

Containment: A C B iff Ta(z) < Tp(z), Ca(x) < Cyl(x),
Ua(z) > Up(z) and Fa(z) > Fa(x), VreX.

Complement: A® =37 (Fa(z;),Ua(x;),Ca(w;), Ta(xi)) Jzimi€ X

i.e. TAc (Iz) = FA(xi), CAc (.CEL) = UA(I‘Z) N UAC( ) OA(ZM)
and Fye(x;) = Ta(z;), z;e X

Union: A U B = 2t <
(Ta(xi) VTp(xi)), (Calxs) V Cp(xi)), (Ua(zi) ANUp(2:i)),
(FA(x) N FB(Z‘)) > /$i7$i eX

Intersection: A N B = S <

(TA(I’Z) A TB(IE
(Fa(zi) vV Fp(

i) (Calzi) NCp(x4)), (Ua(zsi) VUp(21)),
(EJ) > /.’szl eX

Proposition 1[5]. Quadripartitioned single valued neutrosophic
sets satisfy the following properties under the aforementioned
set-theoretic operations:

1.(i) AUB=BUA

(i) ANB=BnNA

2.i) AU(BUC)=(AUuB)UC
(i) AN(BNnC)=(AnB)NC
3.i)) AU(ANB)=A4

(i) AN(AUuB)=A4

4.(1) (A9)°=A

(i1i) A°=6

(tit) @ = A

(iv) De-Morgan’s laws hold viz. (AUB)® = A°nN B
(ANB)" = A°UB

5.(i)) AUA=A

(i) AnNA=A

(#i1) AUO = A

(iv) ANO =6
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3 Interval-valued possibility quadripar-
titioned single valued neutrosophic soft
sets and some of their properties

Definition 10. Let X be an initial crisp universe and E be a set of
parameters. Let I = [0,1] , QSV NS(X) represents the collec-
tion of all quadripartitioned single valued neutrosophic sets over
X , Int([0,1]) denotes the set of all closed subintervals of [0, 1]
and (Int([0, 1]))* denotes the collection of interval valued fuzzy
subsets over X . An interval-valued possibility quadripartitioned
single valued neutrosophic soft set (IPQSVNSS, in short) is a
mapping of the form F, : E — QSVNS(X) x (Int([0,1]))*
and is defined as F,(e) = (F¢, pe), eeE, where, for each zeX,
F, (z) is the quadruple which represents the truth membership,
the contradiction-membership, the ignorance-membership and
the falsity membership of each element x of the universe of dis-
course X viz. F,.(x) % (2), % (z),u% (z), f& (x))
VzeX and p. (z) oo (z), pt (x)]eInt([0,1]).  If
X = {z1,22,...,2n} and E = {ey,e€2,...,e,}, an interval-
valued possibility quadripartitioned single valued neutrosophic
soft set over the soft universe (X,FE) is represented as,

Fp(ei) = {(%7p€1 (xl)) ) (%7pe, (JjQ)) yesey
(%J)ei (xn)>}V1Z

A — T — +
Fp(eq) {(<t?<z1>,c§$<z1>,u?<w1),f§‘ Gy P (@) 22, (xl)o

(@?(:nn),c?(x,ﬁ? ey e (@) P2, (mn)]> }reiek, (
i=1,2,...m

Example 1. Let X = {xj,20,23} and E = {ej,ea}.
Define an IPQSVNSS over the soft universe (X, E),

F,: E— QSVNS(X) x (Int([0,1]))

Fy(e1) = {(W0405> [0.5,0. 6})
(wss 001+ 10:25,03) . (rrshaoe [06,0.7]))
Fy(e2) = {<m [0.1,0. 2])
Another IPQSVNSS G, can be defined over (X, E) as
Guler) = {<m [0.8,0. 85])
(o 04.03]) (o iz 04,06))}
Gule2) =A{ WCW, [0.6,0.75]) ,
(wasstzom 08.09) (Goofties 035.05))

Definition 11. The absolute IPQSVNSS over (X, £) is denoted
by Az such that for each eeFE and VxeX, A.(z) = (1,1,0,0)
and 1.(z) = [1,1]

Definition 12. The null IPQSVNSS over
05 such that for each ecE and VzeX, 0, (
Oc(x) = [0,0]

is denoted by

(X, E)
x) = (0,0,1,1) and

3.1 Operations over IPQSVNSS

Definition 13. Let F}, and G, be two IPQSVNSS over the
common soft universe (X, E). Some elementary set-theoretic
operations on IPQSVNSS are defined as,

(i) Union: F,UG,, = H, such that for each ecE and VzeX,
H(x) (15 (2) V15 (@), ¢ (@) V e (@), uf (@) A
ug; (@), f5 (@) A f5 (@) and

ne(x) = [sup (pz (), pg (7)), sup (pd (), ud ()]

(ii) Intersection: F,NG, = H, such that for each eeF and
VzeX, He(x) = (t% (z) At (2), ¢k (2) A g (), uf (2) V
ug (), fi (2) V f& (2)) and

ne(x) = [inf (pc (), pe (x)),inf (pf (x),uf ()]

(iii) Complement: (Fp) = Fy such that for cach ecE
and VaeX, Fe(x) = (fp(a)us(2),ch(@), t(z)) and
o (1) = [1— pi (@)1 — 5 ()]

(iv) Containment: F, CG 1f for each eeF and VzeX,

te (@), ¢ (2) < CG( ), ugp (x) = ug (z), ff (2)
and pg (z) < pg (2), pd (x) < pd(x

Consider the TPQSNSS F, and G, over the
Then, ch is

t () <
> fg (@)

Example 2.
same soft universe (X, F) defined in example 1.
, obtained as,

File) = {(m (0.4, 0. 5})
F(e2) = {(m [0.8, 09})

(wroisma 04.055]) (maosisas 06.07))
H, = F,UG,, is obtained as,

Hy(er) = {(m [0.8,0. 85})
(wsosroon04.05) . (raihaes: 06.07))
Hy(es) = {(m [0.6,0.75]) ,

(wrosiza: 08.09) . (oodimoz 0:85.0]))
Also, the intersection K5 = F,NG,, is defined as,

Ks(er) = {(oaoihans [05.0. 6])
025,03]) , (s 8aoer 0-4,0.6])}
{(ooibaar 01,02]),
045,0.6]) , (550555007 0:3,0.4])}

((020?0106)
K(;(eg):
((010;,0607)

Proposition 2. For any
the following results hold:
1.(¢) F,UG, = G,UF,

F,, G, HyeIPQSVNSS(X, E),

(u)FﬂGu—GHﬂF
2. (i) F,0 (G, OHy) = (E,0G,) OH,
(it) F,N (G,NH,) = (F,NG,) NH,
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3.(i) F,005 = F, e (@) —ug(2)] < |cp(2)—uf(z) and [1—{ud (v)+pu, ()} <
(i1) F,Ny = 60, 11— {pj(x) + p7 (z)}|, VzeX, VeeE. Then,
(iii) F,0A7 = Ay te(x) — f&(@)|-]cg () — ug (@) |1 — {ud () + pg (2)}]
(iv) F,NA7 = F, < |ty (z) — fF( )|-lew(2) = up(2)].]1 = {pf (z) + p7 (2)}]
4.(i) (F2)" =F, = 1= HXH TET 2oeck 2onex L0 () — fE(2)]|ch(z) —
(ii) AS = 65 u%(wiHl {od (@ )Jrzpe(z):}l o) — ool
iii) (6:) = 4; < L= [RITET eer Zaex t6(@) — [G@)] g (2) -
i (fo) =4 ugs @1 - {1 ) + oy (@)}
5. (i) (FQUGM) = (Fp)Nm (Gu) E (Fp) <e (G )
(”) (FpﬁGu ‘= (Fp)CU (Gu ‘

Proofs are straight-forward.

4 Some uncertainty-based measures on
IPQSVNSS

4.1 Entropy measure

Definition 14. Let IPQSV NSS(X, E) denotes the set of
all TPQSVNSS over the soft universe (X,E). A mapping
e : IPQSVNSS(X,FE) — [0,1] is said to be a measure of
entropy if it satisfies the following properties:

(el) e (F5) =e(F,) i

(e2)e (F,) < e(G,) whenever F,CG, with fu(x) > fa(x) >
(@) > th(a), upla) > ugle) > ch(e) > cp(z) and

oo () + it (@) < 1.

( 3) e(Fp) = 1iff 15 (z) = [ (2),
(x)+pe (x) =1, VzeX and VeeFE.

% (x) = u% (z) and

Theorem 1. The mapping e : IPQSVNSS(X,E) — [0,1]
defined as, €(F,) = 1 — qxim Seer 2onex [tr(2) —

fe@) ek (@) — ug()][1 = {pZ (z) + pc (z)}] is an entropy
measure for IPOQSVNSS.

Proof:

@) e(F;) = 1 - ||X\||\EHchEZzeX|fF(x) -
th(@)|-Jup(z) — e (@) 11 = {(1 = pZ () + (1 = pF (2))}

= 1 ] See Seex [1(@) — F(@)] 5 (x) ~
ufe (@)1 = {pd () + pz ()} = € (F)).

(id) Suppose that F,CG, and f&(z) > t4(2),
uG(x) > cg(x) , po ( ) —|— pd (r) < 1. Automatically,
pe (z) + pf (z) < 1. Thus, fi(2) > f&é(2),tq(x) > t5(2),
up(z) = ug (@), cg (@) = cp(z), pe (2) = pe (2),

pe (x) > pf(2), and f&(x) > tg(x), ug(z) > cg(@) ,
pe (z) +pd (z) < L.

= fr(x) = fa(2) = t5(z) = tp(2), up(z) = ug(z) =
cg(x) > cp(x) . po (x) > p. (x),pd (x) > pf(z) and

() +pd (z) < L opg (2) +pd (2) <1

From the above relations it follows that t%(x) —
t5(x) = fr(z) but i (z) — f&(z) <0, ip(x ) fe(x )
= tg(z) = fe(@)] < [tp(e) — fR(@)]. Slmllarlya

(iii) e (F,) = 1
S 1~ [XE] Lk Leex [0 (2) — [fR(@)]|ck(z) —

ugp (@)1 = {pd (z) + pc (2)}| =1

& T e Sonex 15:() — Fo @) () — e (@)1 -
{pd(z) +pc(2)} =0

& ty(x) — fe@)] = 0, [cp(z) — uip(2)] = O,
1 —{pF(z)+ p; (z)}| = 0, for each zeX and each ecF.

& t5(x) = (). ch0) = ugle). pt(x) + py (2) = L, for

each zeX and each ecFE.

Remark 1. In particular, from Theorem 1, it follows that,

e (Af) —Oande (90) —0.

Proof is straight-forward.

4.1.1 An application of entropy measure in decision making
problem

The entropy measure not only provides an all over information
about the amount of uncertainty ingrained in a particular struc-
ture, it can also be implemented as an efficient tool in decision
making processes. Often while dealing with a selection process
subject to a predefined set of requisitions, the procedure involves
allocation of weights in order to signify the order of preference
of the criteria under consideration. In what follows next, the
entropy measure corresponding to an IPQSVNSS has been uti-
lized in defining weights corresponding to each of the elements
of the parameter set over which the IPQSVNSS has been defined.

The algorithm is defined as follows:

Step 1: Represent the data in hand in the form of an [IPQSVNSS,
say I,

Step 2: Calculate the entropy measure € (F),), as defined in
Theorem A.

Step 3: For each aeFE, assign weights wp(«), given by the
formula,

wr(a) = S5, where fip(a) = 1 — et 3, ¢ [15(2) —
[r@)[eg(2) = ug(@)|-[1 = {pg () + pg () }].

Step 4: Corresponding to each option xeX, calculate the net
score, defined as,

score(x;) = >, wp().t%(z;) + cf(z;) + {1 — uf(z)} +

e
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Step 5: Arrange score(x;) in the decreasing order of values.
Step 6: Select max;{score(z;)}. If max;{score(z;)} =
score(xy,), xmeX , then x,, is the selected option.

Theorem 2.

wr(a) = 242

Corresponding to each parameter «ekE,
is such that 0 < wr(a) < 1.

Proof:
From the definition of kp(a) and e(F),), it is clear that

wr(a) > 0.
up(@)[1 = {pg(2) +

Consider [t%(x) — fa(x)|.|cx(x) —

P, (@) }]. It follows that,

D ack 2pex 13 (@) = fE(@)| e () — up(@)].|1 = {p3 (x) +
pa (@)} = 3, x [te(z) — fR(@)llep(z) — ui(z)[]1 —
{r3 (x) + pg (x)}], whenever || X|| > 1.

= 1 - HXHHEHZaeEerX te(z) — fR@)||ck(z) —
U;?;v(ﬂ})”l - {pa( )+po¢( )}| S 1- HXH1HE|| ZwGX |t%(.§6) -
[ @) g (z) — ug(@)|.11 — {pd (x) + pg (2)}]

e (Fp) < kr(a)

= wp(a) = E(F”) < 1, for each aeE.

Example 3. Suppose a person wishes to buy a phone and
the judging parameters he has set are a: appearance, c: cost, b:
battery performance, s: storage and [: longevity. Further suppose
that he has to choose between 3 available models, say =1, z2, 3
of the desired product. After a survey has been conducted by
the buyer both by word of mouth from the current users and
the salespersons, the resultant information is represented in the
form of an IPQSVNSS, say F}, as follows, where it is assumed
that corresponding to an available option, a higher degree of
belongingness signifies a higher degree of agreement with the
concerned parameter:

Fy@) = {( praoirosy 0.5,06])

(o tioomm 06,07), (wemsizms 0-45,05]))
Fo©) = {(osothroa [07,0.75])

(m [0-4, 055]) ) (<070§$01> [0.6, 0.65])}
Fy(0) = { (oo oo [0:6.0.69))

(m [0.75, 0-8]) ; (m [0.7, 0.8])}
Fols) = { (s tame 07,08

(s tomo 08.08) . (mesirom . 085.09))
Fy(l) = {<m [0.45,0.55]) ,

(oo 1067.073))  (fgmsatisosy  07,0.75))}

Following steps 2-6, we have the following results:

(2) e (F,) =0.982
(3) wr(a) = 0.984,wr(c) = 0.983,wr(b) = 0.988, wr(s) =

0.99,wp (1) = 0.984

(4) score(x1) = 7.193, score(xs) = 9.097, score(xz) = 8.554
(5) score(xg) > score(xs) > score(xy)

(6) 2 is the chosen model.

4.2 Inclusion measure

Definition 15. A mapping [ IPQSVNSS(X,FE) x
IPQSVNSS(X,FE)— [0,1] is said to be an inclusion measure
for IPQSVNSS over the soft universe (X, F) if it satisfies the
following properties:

(1) 1 (Ar,f5) =0

(12)1 (FpaG)—lﬁFpéGu

(I3) if F,CG,CH, then I(H,,F,)
[(H,.F,) < I(H,C,)

< I(G,,F,) and

Theorem 3. The mapping I : IPQSVNSS(X,E) — [0,1]
defined as,

I(FP’GH) = 1 mZeeEZzeXUt%(I> -
min{ts (@), @)} + lep(@) — mingeh (@), (@)} +
s (152, ()} — Wi (o)] + mar( ), foo) -
@+ (o) — mintpz @ @) + 9t e) -
min{pt (x), pt(z)}|], is an inclusion measure for IPOSVNSS.
Proof:

(i) Clearly, according to the definition of the proposed

measure, [ (Ai,éﬁ) =0

(é¢) From the definition of the proposed measure, it fol-
lows that,

1(E,.G,) =

- ZeeE ZIEXHt (l’) - mln{tF( ) ( )}‘ +
Gh(a) — mn(cE (B + Imarfu (). (0)} -
wp(o)] + mac{fp(o) f50) — fi@)] + loc@) -
min{p; (2), iz @Y + o2 (@) — min{pt (@), u @] =
0,VzeX,VeeFE.

& tp(@) — min{tip(z),to(@)} = 0, |ep(z) —
min{cp(z), cg(x)}| = 0, [maz{uf (x), ug(2)} — ug(x)| =0,
imaz{fp(z), f&(x)} — fe@)] =0, |p-(z) —
min{p; (z), pg (x)}| = 0and |pf (x) —min{p7 (z), ud (2)}] =
0,VzeX,VeeFE.

Now, [t5.(z) — min{ts(x), b5, (@)} = 06 t5.(z) < t&(@).

Similarly, it can be shown that, c%(x) < c&(z),u%(x)
ug(), fr(x) = f&(x),pc(x) < pg(x) and pf(z)

pd (z), VreX, VeeE which proves F,CG .

IN IV

w2

uppose, F,CG,CH,. Thus we have, t.(z) < t&(z) <

cp(z) < Ca(m) < CH(m) up(r) > ug(z) = ug (),

> fe(@) > fH(x), pe () < pg(z) < n(x) and
< pt(z) < ntf(z) for all zeX and ecE.

=1(H,,F,) <I(G,Fp,).

In an exactly analogous manner, it can be shown that,

I(H,,F,) <I(H,,G,). This completes the proof.
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Example 4. Consider IPQSVNSS F,, G, in Example 1,
then I (F),,G,,) = 0.493.

4.3 Distance measure

Definition 16. A mapping d IPQSVNSS(X,E) x
IPQSVNSS(X,E) — R* is said to be a distance measure be-
tween IPQSVNSS if for any F,, G, H,eIPQSVNSS(X, E)
it satisfies the following properties:

(d1) d(Fp, G.) = d(Gy, Fp)

(d2) d(F,,G,) > 0andd (F,,G,) =0« F, =G,

(d3) d (F. Hy) < d(E,, )+ d (G, Hy)

In addition to the above conditions, if the mapping d satisfies the
condition

(d4) d (F,,G,) < 1,YF,,G,eIPQSVNSS(X, E)

it is called a Normalized distance measure for IPQSVNSS.

Theorem 4. The mapping dj
IPQSVNSS(X,E) — Rtdefined as,
b (FpyG) = Yooup Yo (5(@) — t(@)] + |ch(a) -
(@) + (@) = ug @)+ 1fe@) — fol@) + oy (@) -
o ()| +|pF (z)—pt(x)|) is a distance measure for IPQSVNSS.
It is known as the Hamming Distance.

IPQSVNSS(X,E) x

Proofs are straight-forward.

Definition 17. The corresponding Normalized Hamming
distance for IPQSVNSS is defined as dj) (F,,G,) =
sz dh (Fp, Giu)s where [|.|| denotes the cardinality
of a set.

Theorem 5. The mapping dg
IPQSVNSS(X, E) — Rtdefined as,
di (FpGu) = Yoip Yo (t5(0) — 1) + (5 (x) —
cti())? + (u () — gy (@))2 + (Fi () — fe(@)? + (py () —
ps (2)2 + (pF (2) — pt(x))2}2 is a distance measure for
IPQSVNSS. It is known as the Euclidean Distance.

IPQSVNSS(X,E) x

Proofs are straight-forward.

Definition 18. The corresponding Normalized Hamming
distance for IPQSVNSS is defined as df (F,,G,) =
s e (Fo Ga)-

Proposition 3. F,CG, CH, iff

(Z) dp, (Fpa Hn) =dp (Fpa Gu) +dp (Gua Hn)
(i7) diLV (Fp, Hy) = dfzv (Fp, Gp) + dév (G, Hy)

Proofs are straight-forward.

Example 5. Consider the IPQSVNSS given in Example 1.
The various distance measures between the sets are obtained
as, dp, (F,,G,) = 5.29, th (F,,G,) = 0.882,dg (F,,G,) =

4.387, dY¥ (F,,G,) = 0.731

4.4 Similarity measure

Definition 19. A mapping s IPQSVNSS(X,E) x
IPQSVNSS(X,E) — Rt is said to be a quasi-
similarity measure between IPQSVNSS if for any
F,,G,, HyelPQSVNSS(X,FE) it satisfies the following
properties:

(s1) s (F,,G,) =s(G,, F,)

(s2)0<s(F,,G,) <lands(F,,G,)=1<F,=G,

In addition, if it satisfies

(s3)if F,CG,CHythen s (F,, H,) < s (F,,G,) A s (G, Hy)
then it is known as a similarity measure between IPQSVNSS.

Various similarity measures for quadripartitioned single
valued neutrosophic sets were proposed in [5]. Undertaking a
similar line of approach, as in our previous work [5] we propose
a similarity measure for IPQSVNSS as follows:

Definition 20. Consider F),, G,e]PQSVNSS(X, E). Define
functions chjG : X — [0,1], 4 = 1,2,..,5 such that for each

0 (@) = |tg(z) — t5 ()]

70 (@) = | f(2) — f&(@)]

30 (@) = [eg (@) — 5 ()]

T (@) = [ug(x) — ug ()|

S (@) = |ps () — pg ()]

el (2) = |t (2) — pd ()]

Finally, define a mapping s IPQSVNSS(X,E) x
IPQSVNSS(X,E) — RY as, s(F,,G,) = 1 —

6 F.G
GHXﬁHEH ZeeE ZZL’EX Zi:l Ti,e (LII)

Theorem 6. The mapping s (F,, G,) defined above is a
similarity measure.

Proof:
(¢) It is easy to prove that s(F,, G,,) = s(G,, F}).

(15)  We have, % (z),c%(z),u%(z), fa(x)e[0,1]  and
Pe(), pre(z)eInt([0,1]) for each xzeX,eeE. Thus, Tf’ec(x)
attains its maximum value if either one of ¢ (z) or tZ (x) is equal
to 1 while the other is 0 and in that case the maximum value is 1.
Similarly, it attains a minimum value 0 if ¢%.(z) = t& (). So, it
follows that 0 < Tf ’CG (z) < 1, for each zeX . Similarly it can be
shown that 7/, (), i = 2, ..., 6 lies within [0, 1] for each weX.
So,

0< Y7 (@) <6

=0 < ZeeE EZEX E?:l TiljvéG(x) < 6HX||||E||

which implies 0 < s(F),,G,,) < 1.

Now s(F,,G,) = 1iff >1" | 7; .(z) = 0 for each zeX,eeF
& tp(@) = t5(2), cp@) = cg@), up(e) = ug(),
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fi(x) = pg (), pf (2)

zeX,eeF ie..

(z

= f&(z) and p; (x)
iff F,, G,,.

= pt(z) , for all

) Suppose F CGMCH then, we have, t%.(z) < t&(z) <
th (), cp(z) < cglz) < (@), up(2) = ug(z) > ufy(2),
( ) = fc( z) > fg(x), po (z) < peo(z) < no(z) and
pr () < pl(z) < nf(z) for all zeX and ecE. Con-

sider Tff(x) and TgéG(x). Since t%(z) < t&(z) holds,
it follows that, [t&(z)—t%(z)] < |t4(z) —t5(2)|=
TlF ) < TlF H(z).  Similarly it can be shown that
TiFPG(:C) < TFH( ), for i = 3,5,6 and all zeX. Next,
consider 7'2F (x).
Smce ( ) > f&lx) > fg(x), it follows that
fe(@) = f&(x) < fi(z) = fh(x) where ff(x) — f&(z) > 0
fp( )=f ( ) > 0. Thus, | f7(2) = f&(2)] < |fr(2)—fa ()=

Ty (@ ><T”’< ).

Also, it can be shown that Tf Cz) < Tf () respectively for
each zeX.
Thus, we have ZeeE ZlEX Zl 1Tie ( ) <

ZeeEZmeXZz 1 ze ( )
= 1 GHXHHEHZSEEZ(EeX Zz 1Tie ( ) <

1 - 6||X|| [E[] ZPEE Za&'eX Zz 1 LE ( )

= s(F,, Hy) <s(F,,GL)

In an analogous manner, it can be shown that
s(Fy,,Hy) < s(G,,Hy). Thus, we have, s(F,, H,) <
5(Fp,Gu) Ns (G, Hy)

Remark 2. s(Az,605) = 0.
Proof :

For each xeX and ecE,

At () = |t2})(x) _ ti‘\i(x” = 1, T;‘i,@@(x) =
15,60 = £ @) =1 -
Aoy = |C§6(I) — c%i(gg” = 1, fthe) =
0y (2) — s ()] =

0@ = g (@) - pc@] = L R0 =
ot (@) — i (@) =1

which yields > .5 ZweX E@ 17 ( ) = 6[|X]]. HE“

O:‘ 5(A1,60) = 1 — e Seck Dwex Yo (@) =

Suppose

Definition 21.
functions 7°¢

Consider i
1,2,..,5 as in Definition 1.

F,,G,eIPQSVNSS(X,E).
X - 01, i =
Define a mapping s,

IPQSVNSS(X,E) x IPQSVNSS(X E) — RT as,
DB Dwex 21 1 W(e)ﬂ e (W) .
S (Fp, Gp) =1 — SXITIEN () , where w(e) is

the weight allocated to the parameter ecE and w(e)e[0, 1], for
each ecE.

Theorem 7. s, (F,, G,,) is a similarity measure.
Proof is similar to that of Theorem 6.

Remark 3. s, (F,,G,) is the weighted similarity measure
between any two IPQSVNSS F), and G,.

44.1 Allocation of entropy-based weights in calculating
weighted similarity

It was shown in Section 4.1.1 how entropy measure could be
implemented to allocate specific weights to the elements of the
parameter set. In this section, it is shown how the entropy-based
weights can be implemented in calculating weighted similarity.
Consider an IPQSVNSS F), defined over the soft universe
(X, E). Let wp(e)el0, 1] be the weight allocated to an element
ecl), w.r.t. the IPQSVNSS F,.

Define wg () as before, viz.

wr(a) = 2525, where £p(0) = 1= [ria Spex [t5(@) =

[ (@) ek (@) — ug(2)].]1 = {pg () + pg (2)}]
Consider any two IPQSVNSS F,, G,eIPQSVNSS(X). Fol-
lowing Definition C, the weighted similarity measure between

these two sets can be defined as o ro

_ Peer W@ e x 2 7 (2)}
sw(Fp,Gu) = 1 — S=Eremeissse
wla) = , and wg(a) = ig;)) is the weight

allocated to the parameter ae X w.r.t. the IPQSVNSS G/,.

where

wr (a)4wg (@)
2

From previous results clearly, wr(a),wg(a)el0,1] =
w(a)el0,1].
Example 6. Consider F,,G,eIPQSVNSS(X) as de-

fined in Example 1. Then s (F,,G,) = 0.738. Also, wr(e1) =
0.983,wg(e1) = 0.987,wr(es) = 0.993,wa(e2) = 0.988,
which gives, w(ey) = 0.985,w(ez) = 0.991 which finally yields
5w (F,, G) = 0.860.

5 Relation between the various uncer-
tainty based measures

Theorem 8. s} (F,,G,) = 1 — di (F,,G,) is a similarity
measure.

Proof:

(Z) th (vaGu) :th (GWF) :>8d (F G ) = (Gme)
(ii) 0 < d (F,,G,) <1=0<s}(F, G, ) <

Also, s} (F,,G,) =1 < dY (FP,G )=0< Fp =G,.

(i4i) Whenever F,CG,CH,, dY (F,,H,) = dY (F,,G,) +
dY (G, Hy). Thus,

sq(Fp.Gu) — sy(Fp Hy) = 1 — diy (F),G,) — 1 +

th (va Hn) = d;zv (Fpa Hn) - th (Fp’ Gu) = d}ly (Gw Hn) >
0, from property of distance measure.

= s} (FpoHy) < s} (Fy, G).

Similarly, it can be shown that, s} (F,, H,) < s} (G, H,).
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Hence, s}, (F,, H,) < sk (F,,G,) A sk (G, Hy).
Remark 4. For any similarity measures (F,,G,,),1—s (F,,G,)
may not be a distance measure.

Theorem 9.52 (F,,G,,) = y is a similarity measure.

1
1+dh,(FpaGu

Proof:
(1) dn (Fp, Gp) = dn (G, Fp) = 85 (Fp, Gp) = 57 (G, F)
() dn (Fp,Gu) > 0 = 0 < s5(F,,G,) < 1. Also,

s3(F,,G,) =1<4d, (F,,G,) =0& F,=G,.
(’LZ?,) dp, (Fp, Hﬁ)
F,CG,CH,.

=dj (F H ) >dy, (Fp, G#) and d, (Fp, Hn) > dy, (GH’ Hn)
= 1+dh(1F,,,Hn) < 1+dh(}‘7,,,G“,) = 55 (Gqu) < 55 (Fp, G).
Similarly, it can be shown that, s3 (G, F,,) < s2 (G, H,).

Corollary 1. s (F,,G,) =

measure.

1 . .. .
TTaN (F,.G) is a similarity

Proofs follow in the exactly same way as the previous the-
orem.

Remark 5. For any similarity measure s (F,, G,,) ,ﬁ -1
P
may not be a distance measure.

Theorem 10 Consider the similarity measure s(F,,G,).
s (F,, F,NG)is an inclusion measure.

Proof:

) Choose F, = Aj and G,, = ;. Then, s(F,, F,NG,) =
(Az,65) = 0, from previous result.

i) s(Fy, F,NG,) =14 F, = F,NG, < F,CG,,.

jii) Let F,CG,CH,. Then, s(F,,H,) < s(F,,G,) and
s(F,,Hy) < s(Gu, Hy) hold. Consider s(F,, H,) <
(F G ). From commutative property of similarity measure,
it follows that, s (H,, F,) < s(G,,F,) = s(H,, H,NF,) <
s (G, G,AF,). Similarly, s (H,, H,(\F,) < s (Fp, F,0G,,).

(i
(i
(i

Theorem 11.1 — dj, (F,, F,NG,,) is an inclusion measure.

Proof follows from the results of Theorem 8 and Theorem
10.

L are in-

1
Theorem 12. = F, . F,NG,)

1+dy (F,,F,NG L)
clusion measures.

and

1+df (

Proofs follow from Theorem 9,Corollary 1 and Theorem
10.

Theorem 13. Let e : IPQSVNSS( ,E
measure of entropy such that €(F,) < (G,,)

le(F,) — e(G,)| is a distance measure.

Proof

(1) le(Fp) —e(Gu)| = [e(Gp) — e(F,)

(74) |e(F,) —e(GL)| > Oandmpartlcular le(F,) —e(Gp)| =
0 & e(F,) = ( & e(F,) < e(Gu) and
(Fp) 2 e(Gy) = Fp =Gy,

(7i7) Triangle inequality follows from the fact that,
e(F,) — e(Hy)|l < |e(Fp) — e(Gu)l + [e(Gu) — e(Hy)l

forany F,, G, Hyel PQSVNSS(X, E).

6 Conclusions and Discussions

In this paper, the concept of interval possibility quadripartitioned
single valued neutrosophic sets has been proposed. In the present
set-theoretic structure an interval valued gradation of possibil-
ity viz. the chance of occurrence of an element with respect to
a certain criteria is assigned and depending on that possibility of
occurrence the degree of belongingness, non-belongingness, con-
tradiction and ignorance are assigned thereafter. Thus, this struc-
ture comes as a generalization of the existing structures involv-
ing the theory of possibility namely, possibility fuzzy soft sets
and possibility intuitionistic fuzzy soft sets. In the present work,
the relationship between the various uncertainty based measures
have been established. Applications have been shown where the
entropy measure has been utilized to assign weights to the ele-
ments of the parameter set which were later implemented in a
decision making problem and also in calculating a weighted sim-
ilarity measure. The proposed theory is expected to have wide
applications in processes where parameter-based selection is in-
volved.
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